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Abstract Small vessel diseases (SVDs) are a group of disorders that result from pathological alteration of the small blood ves-
sels in the brain, including the small arteries, capillaries and veins. Of the 35–36 million people that are estimated to
suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20–25% of
strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility.
Yet the underlying cause(s) of SVD are not fully understood. Magnetic resonance imaging has confirmed enlarged
perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of
a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of
waste products from the brain. The pathophysiological signature of PVS and what this infers about their function
and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the
brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD
and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of
peri-vascular cell debris and other waste products that form part of a vicious cycle involving impaired cerebrovascu-
lar reactivity, blood-brain barrier dysfunction, perivascular inflammation and ultimately impaired clearance of waste
proteins from the interstitial fluid space, leading to accumulation of toxins, hypoxia, and tissue damage. Here, we
outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning
dementia and stroke through the common denominator of SVD.
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1. Introduction

The umbrella term ‘small vessel disease’ (SVD) refers to a heteroge-
neous group of vascular disorders resulting from the pathological impair-
ment of the small vessels of the brain. It is responsible for a large
proportion of the cases of stroke and dementia worldwide.1 SVD

manifests in several different ways, showing various pathological, neuro-
imaging, and clinical presentations such as stroke, cognitive impairment,
dementia, physical disability, and depression,2–7 may predispose to delir-
ium, and worsen outcome after stroke.8 This multiplicity of clinical
expressions has contributed to delays in recognizing the similarities be-
tween such patients and that small vessel damage is a common
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underlying pathophysiology. Importantly, the prevalence of SVD is in-
creasing and effective disease-modifying interventions, including pharma-
cological treatments, are yet to be found. This presents a huge social and
economic burden that needs to be urgently addressed.9

Pathological evidence of SVD has been recognised since the 1800s.
Since then, further post-mortem studies and advanced imaging technolo-
gies have allowed the hallmarks of SVD to be studied in greater de-
tail.10,11 Magnetic resonance imaging (MRI) images from patients with
SVD show characteristic abnormalities, such as white matter hyperinten-
sities (WMHs), cerebral microbleeds, lacunes and enlarged perivascular
spaces (PVS).2,12,13 These individual imaging features of SVD are inter-
related, contribute to a ‘total SVD burden’, and both the individual fea-
tures and the total SVD burden are associated with increased exposure
to vascular risk factors in adulthood (particularly hypertension and
smoking), stroke risk, concurrent cognitive dysfunction plus early life fac-
tors such as lower educational attainment, lower socioeconomic status
and low childhood IQ.13–20

Clinically ‘silent’ neuroimaging signs of SVD can appear during ageing,
and markers of cerebrovascular disease are fairly common incidental
findings on MRI performed for other reasons.21–24 Most cases of SVD
occur sporadically, although a small proportion are caused by genetic
mutations. These latter include cerebral autosomal dominant arteriopa-
thy with subcortical infarcts and leukoencephalopathy (CADASIL), the
most common monogenic SVD, and others such as cerebral autosomal
recessive arteriopathy with subcortical infarcts and leukoencephalopathy
(CARASIL25–31), with more monogenic variants being identified all the
time.32

Although these genetic variants show phenotypic similarities to spo-
radic cases, the underlying cause of most sporadic SVD remains un-
known. WMH are highly heritable,33–36 making the limited genetic
associations identified so far with sporadic SVD somewhat surprising.
However, recent genome-wide association studies,28,33,37–39 and recent
targeted studies, have identified some genetic variants associated with
sporadic SVD,40,41 suggesting that genetic common variants with small
effect sizes but with lifelong action could increase vulnerability to various
exposures in later life, leading to accumulating small vessel damage and
dysfunction.28,41 Since intelligence in part reflects white matter integrity,
which in turn is partially determined genetically, this could partly explain
the association between childhood IQ and the SVD burden seen in later
life in any one individual, and the heritability of WMH.

Amongst several potential molecular mechanisms that could link ge-
netic traits to pathogenesis, are advanced glycation endproducts (AGEs)
and activation of the receptor for AGE (RAGE). AGEs accumulate dur-
ing hypertension and ageing, leading to vascular stiffening and inflamma-
tion, both of which we discuss later as important known mechanisms in
SVD. AGE accumulation is increased when inflammation is present, and
in the presence of oxidative stress and diabetes42 indicating one of sev-
eral ways that adverse effects of combinations of risk factors may be
much worse than might be expected from adding together the effects of
individual risk factors alone. RAGE activation leads to production of re-
active oxygen species and altered gene expression.42,43 Furthermore
RAGE is activated in animal models of hypertension, and inhibition of
RAGE activation prevents amyloid deposition.44 RAGE activation is be-
lieved to be implicated in vascular diseases and neurodegenerative condi-
tions such as Alzheimer’s disease (AD45)—e.g. RAGE expression is
increased in cerebral blood vessels of animal AD models and transports
amyloid b across the blood-brain barrier (BBB)46,47—but there is not
yet specific evidence relating to SVD or PVS dysfunction, particularly not
yet in humans.

Environmental influences, such as education and socioeconomic sta-
tus, appear to modify the risk of both developing imaging features of
SVD and of having a stroke, while factors such as cognitive reserve may
protect cognitive function against a developing burden of SVD brain
damage and contribute to variability in disease expression between
patients.14,20,48,49 Further evidence for a complex ‘nature-nurture’ bal-
ance underlying SVD is that although genetic and vascular risk factors,
particularly hypertension, diabetes, and smoking, increase the risk of de-
veloping SVD, these multiple common vascular risk factors combined ex-
plain only a small proportion of the variance in SVD imaging features;
thus they may exacerbate a predisposition, rather than being the sole
cause of SVD.2,50 This interpretation is further borne out by the disap-
pointing results to date of clinical trials of vascular risk factor reduction
therapies: these have not prevented recurrent lacunar stroke, cognitive
decline, or made much impression on reducing SVD lesion progression
(e.g. the SPS3 trial51), further suggesting that SVD-specific treatments
will require other approaches.52,53

Research into the causes and pathophysiological mechanisms of SVD
has been hampered by the difficulty in visualizing small vessels in the hu-
man brain during life and the fact that pathology at death is often not re-
flective of the early disease stages.2 Although specific lesions such as
WMH or lacunes have received much research attention, features such
as the PVS and its relevance to brain fluid balance have only been recog-
nised more recently. Furthermore, while much clinical research and
practice has focussed separately on ‘stroke’ and ‘dementia’, and thus
overlooked until recently the common underlying importance of micro-
vessels and their dysfunction, similarly, much laboratory research has fo-
cussed on either the blood vessels or the neurons/glia and thus
overlooked the integration between microvessels and brain tissue and
the importance of the PVS.

To this end, a Fondation Leducq Transatlantic Network of Excellence
(TNE) is now focussed on understanding the role of PVS in SVD (Figure 1).
Knowledge about PVS and brain fluid and waste drainage systems in health
and disease is growing. How PVS become enlarged, at what stage in the pro-
gression of SVD this occurs, and what the downstream consequences are,
remain unanswered questions. Below, we discuss the role of PVS in the
healthy brain, the association between disease and enlarged PVS, and pro-
pose hypotheses for the potential involvement of these enlarged spaces in
the pathogenesis of SVD which are being addressed as part of the Fondation
Leducq TNE programme.

2. Perivascular spaces

PVS, also known as Virchow-Robin spaces, are fluid filled compartments
surrounding the small blood vessels in the brain. PVS were originally
named after Rudolf Virchow and Charles Philippe Robin, who individu-
ally provided detailed descriptions in the 1800s.54 Although historical
descriptions of PVS and their function have been controversial,55,56 re-
cent advances now recognise potentially important features such as ar-
chitectural differences between PVS in different brain regions in
humans.57

The current literature consensus is that PVS form a network of spaces
around cerebral microvessels that act as a conduit for fluid transport, ex-
change between cerebrospinal fluid (CSF) and interstitial fluid (ISF) and
clearance of waste products from the brain. Indeed, a central brain
lymphatic-like system has been proposed since the 1700s.58 This clear-
ance system has been identified in both animal models and humans and is
varyingly referred to as ‘para-arteriolar’, ‘para-venular’, ‘paravascular’, or

Cerebral perivascular spaces in small vessel disease 1463
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‘glymphatic’—a term derived from the observed dependence on func-
tional glial cells and its similarities to the lymphatic system elsewhere in
the body.59,60

This proposed clearance pathway has most recently been explored in
experiments involving the study of movement of fluorescent tracers in
rodents.56,61–63 However, the system of fluid drainage is not completely
understood. Efflux of ISF via PVS is proposed to facilitate waste clearance
from the brain, while influx of CSF from the basal cisterns or superficial
subarachnoid spaces into the periarteriolar spaces is thought to not only
help flush out waste but also to deliver various signalling molecules and
metabolic factors required for brain function.64,65 However, the precise
routes of fluid clearance and whether these occur passively by diffusion
or undergo periods of more active exchange by convection as a conse-
quence of vascular pulsation, or both, are controversial.57 Fluid transport
along this pathway is thought to be driven by cerebrovascular pulsatil-
ity60,64 (although there is conflicting evidence for this and others argue
in favour of diffusion66). The rate and direction of fluid movement is also
controversial.56,57,67–69 Many of these apparent differences in space func-
tion and fluid fluxes may reflect the effects of different experimental
designs, closed vs. open craniotomy, temperature control, and anaes-
thetic agents to name but a few, on the delicate intracranial haemody-
namics and PVS systems. In addition, the ability to capture beat-to-beat
variations by real time imaging in the context of differentiating between
convective vs. diffusion mass transport of CSF and solutes is currently
limited.

The concept of this complex brain fluid and waste clearance system is
controversial, as recently reviewed elsewhere.70–72 Nevertheless, this
pathway appears to be important for the clearance of interstitial solutes
from the brain, and is most likely vital for maintaining brain homeostasis.
This view is supported by a reasonable body of human data demonstrat-
ing widening, and increasing visibility, of PVS in various presentations of
SVD, stroke, dementia,73 systemic inflammation,74 and associations of
PVS themselves with impaired cognition and poor blood pressure or glu-
cose control.17,75,76 A recent small study in patients being investigated

for hydrocephalus, who had gadolinium contrast injected into the CSF
followed by serial brain MRI, also suggested that fluid uptake into PVS is
more active in humans during the night.77 Compromised function (po-
tentially indicated by widening of PVS, discussed below) may therefore
have a negative impact on brain health78 and be involved in conditions
such as AD, diabetes, increased risk of stroke and brain injury.79,80 If PVS
can be measured accurately and dynamically, they present a potential
biomarker and novel therapeutic target.81

2.1 Enlarged PVS in disease
Possibly the earliest description of dilated PVS pathologically was in the
1800s by Durant-Fardel.11,54 PVS become visible on MRI when enlarged,
and though they may be detected on MRI in healthy individuals, widened
PVS become more frequent during ageing and when associated with
pathological alterations to the brain tissue such as with increasing burden
of SVD lesions.73,82–86 Interestingly, as well as WMH being highly herita-
ble, these enlarged PVS themselves are also highly heritable.87

Depending on the scan orientation these enlarged PVS will appear punc-
tate or linear. PVS were defined in the STRIVE guidelines to aid the de-
scription of SVD pathophysiological features as having a diameter ‘<3
mm when imaged perpendicular to the course of the vessel’.88 Most are
much smaller than 3 mm in diameter and there is acknowledged to be
overlap between larger PVS and small lacunes about which more re-
search is needed.

It may seem odd that enlargement of PVS, rather than shrinkage,
should be abnormal, but as we discuss later, it appears likely that widen-
ing of PVS indicates obstruction by protein and cell debris and thus stag-
nation of fluid drainage. There is substantial evidence that enlarged PVS
are abnormal. For example, they indicate increased stroke risk89 particu-
larly with lacunar rather than large vessel stroke, and other SVD features
particularly WMH.73,90 Their presence also correlates with vascular de-
mentia, decreased performance in measures of cognitive function in
healthy older men,17,91 hypertension,92–94 WMH73,74,76 and reduced
von Willebrand factor suggesting reduced vessel elasticity86 in SVD. PVS

Figure 1 (A) Enlarged PVS are key pathological features of SVD as shown on MRI from patients with sporadic SVD (Top panel, insert: PVS detected on
T2 MRI), and associate with WMH (bottom panel). (B) The cycle of events we believe are involved in SVD pathogenesis and PVS dysfunction, including al-
tered blood flow, BBB dysfunction and disrupted brain fluid flow. (C) Some of the key outstanding questions in SVD research, which also outline the scientific
goals of the Fondation Leducq TNE ‘Understanding the role of the PVS in cerebral SVD’.

1464 R. Brown et al.
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enlargement can also be seen in cerebral amyloid angiopathy (CAA95,96),
CADASIL,97,98 is a marker of SVD73,90,93,99,100 and is possibly associated
with brain atrophy. Furthermore, enlarged PVS are associated with sys-
temic inflammation,74 BBB dysfunction in SVD101 and with inflammatory
exacerbations in multiple sclerosis (MS102,103).

2.2 Role of enlarged PVS in SVD
PVS are considered to play a role in normal brain homeostasis, while en-
larged PVS are a feature of several diseases, and are associated with
SVD. How PVS become enlarged in SVD and what the downstream
effects of this are remains unclear. There are numerous potential ways in
which PVS are likely to be involved in disease progression, and untangling
the causes and consequences from the range of evidence in the literature
is a challenge to be addressed. To investigate the factors that contribute
to the enlargement of PVS, the consequences of these enlarged spaces,
and the effect on clearance of waste products from the brain via the
brain drainage system, four main areas of study can be identified and are
discussed below and highlighted in Figure 1.

2.2.1 What are the pathophysiological causes and

consequences of the expanded PVS in SVD?
We propose that expansion of PVS is likely to involve inflammation and
that this in turn will result in increased oxygen consumption.
Inflammatory markers are elevated in a range of vascular disorders, in
ageing mice and in elderly people with cognitive decline.104–106 There is
evidence for systemic inflammatory processes occurring in SVD.74,107,108

Interestingly, SVD burden is increased in lupus, an inflammatory disorder
associated with increased stroke risk.109 Inflammatory markers are also
associated with WMH, a hallmark feature of SVD.110 However, the role
of inflammation in SVD is still to be fully elucidated111–113 and may lead
to WMH development via triggering dysfunction of PVS.74 The triggers
of inflammation are unknown, but potential factors could include salt in-
take114 and systemic inflammatory disorders such as rheumatoid
arthritis.50,108,109,115

Inflammatory markers accumulate around cerebral blood vessels as
shown pathologically in traumatic brain injury, intracerebral haemorrhage116

and MS.103 Pro-inflammatory markers are associated with enlarged PVS and
inflammatory cells are known to accumulate in the PVS.117–121 Release of in-
flammatory cells can cause breakdown of the extracellular matrix and affect
the integrity of the BBB, along with triggering demyelination.122 In the
stroke-prone spontaneously hypertensive rat (SHRSP), a model of SVD, in-
flammation is associated with impaired myelin integrity and BBB dysfunc-
tion.123,124 Furthermore, perivascular macrophages are thought to be
involved in AD, and may contribute to the neurovascular dysfunction seen
in this disease.116,125

The precise interaction between inflammation, enlarged PVS and brain
fluid dynamics is still to be determined. It is possible that aggregation of
inflammatory cells in the PVS leads to remodelling and alterations in fluid
clearance. Targeting inflammation may therefore present a therapeutic
avenue for SVD. In fact, reducing perivascular macrophages in the
SHRSP model improved endothelial function and remodelling of the
middle cerebral artery.126 Depletion of perivascular macrophages also
reduces oxidative stress, endothelial function and cognitive dysfunc-
tion.127 Further studies of inflammation in rodent models of SVD, with
relation to the time course of vascular alterations and fluid movement,
will help elucidate the role of inflammation in SVD.

Inflammation in SVD may be linked to reduced blood flow, hypoperfu-
sion and hypoxia.128 It is traditionally thought that structural alterations in

blood vessels and reduced blood flow are central mechanisms in SVD—
in fact, hypoperfusion is used to model aspects of SVD in rodents.129,130

In Fisher’s seminal studies he described ‘segmental arteriolar disorganisa-
tion’ associated with lacunes, showing enlargement of the lumen and ab-
normalities in arterial architecture.131 It has since been proposed that
dysfunction of the vessel endothelial cells leads to alterations to blood
vessel architecture. These changes could lead to both enlargement and
narrowing of the vessel lumen, along with vessel stiffening.2 Vascular
smooth muscle cells are also involved in blood vessel remodelling,132 e.g.
a narrowed lumen has also been associated with an increase in vascular
smooth muscle cells in the SHR model.133 Further work is needed to con-
firm the cause and time course of vessel alterations, but multiple studies
in both patients and animal models show that overall CBF is reduced, po-
tentially as a result of these alterations. However, the exact role of re-
duced CBF in SVD pathogenesis is contentious due to the lack of
longitudinal studies designed to illuminate causation.

Attenuated cerebrovascular reactivity (CVR) and CBF in CADASIL
mouse models have been noted prior to other alterations in brain pa-
thology, such as lacunes.134,135 Regions of normal-appearing WM in
patients with WMH can show reduced CVR, suggesting that vascular
alterations may precede WMH development136,137; however, direct evi-
dence for this is surprisingly scarce. WM has fewer capillaries than the
cortex,138 which along with slower blood flow and presence of a water-
shed area may contribute to greater susceptibility of WM to hypoperfu-
sion than grey matter.139,140 However, while increased WMH are
consistently associated with decreased CBF cross-sectionally, evidence
to support the assumption that decreased CBF leads to white matter
damage is somewhat lacking, as highlighted in a recent systematic re-
view.141 This meta-analysis draws attention to the lack of convincing evi-
dence that reduced CBF predates WMH in humans, the data suggesting
that increased WMH precede decreased CBF rather than the opposite.
Interestingly, recent studies in the CADASIL model suggest that reduced
CBF and WML occur independently.142 Therefore, the temporal rela-
tionship between a reduction in blood flow and progressive damage to
the brain, such as WMH, needs to be clarified143 as a priority.

Whether reduced CBF is cause or effect, there is strong evidence that
it is a factor in SVD,141 and as such we can hypothesize that reduced
blood flow could trigger hypoxia, neuronal death and other neuropatho-
logical alterations adding to worsening of the cerebral environ-
ment.122,128,144 These changes could occur alongside inflammation and
demyelination because the resulting reduction in oxygen delivery could
lead to activation of microglia and macrophages, triggering demyelin-
ation145 exacerbate dysfunction of the BBB122 and in turn encourage en-
largement of PVS. We could further hypothesise that if fluid flow along
the brain drainage pathway is driven by cerebral arterial pulsatility,146,147

then increased stiffness and loss of pulsatility could lead to reduced
waste clearance.

Although it is likely that reduced CBF and vascular dysfunction are key
events in SVD pathogenesis, the temporal association between reduced
CBF and SVD pathogenesis, and its relationship with enlarged PVS
remains unclear. This association can be examined using a range of tech-
niques, including two-photon phosphorescence lifetime measurements
of oxygen delivery,148 and histological measures of hypoxia,149 in rodent
models of SVD.

2.2.2 The role of pericytes and BBB disruption in SVD
Endothelial dysfunction is a recognised contributor to SVD.2,150,151 BBB
dysfunction increases with ageing, in vascular dementia, AD and with

Cerebral perivascular spaces in small vessel disease 1465
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increased WM lesion load152–157 and has been found to precede the de-
velopment of dementia.154 Furthermore, breakdown of the BBB is found
in patients with lacunar stroke,101,158–160 in WMH on MRI,137,160–163 in
vascular cognitive impairment and dementia152,153,164,165 and is associ-
ated with poor functional outcome after minor cortical or lacunar
stroke.166

In patients with SVD, BBB leakage is also apparent in normal-
appearing WM, increases together with increasing SVD-lesion burden,
and appears to predict cognitive dysfunction,150 indicating an important
role for BBB dysfunction in the pathogenesis and clinical expression of
SVD. Patients with SVD have also been found to have elevated circulat-
ing levels of markers of endothelial activation and damage,167 elevated
serum levels of homocysteine, an endothelial toxin and presumed risk
factor for SVD,168,169 and there is evidence that the association between
homocysteine levels and SVD risk is mediated by endothelial
dysfunction.169

Interestingly, recent genome-wide association studies identified the
Foxf2 gene region as a major risk locus for small vessel stroke.39 Foxf2 is
expressed in brain vascular endothelial cells and pericytes,170,171 and
mice deficient for Foxf2 develop prominent structural and functional ab-
normalities of endothelial cells along with a disruption of the BBB.171

The cause of the BBB dysfunction is unclear, but inflammation has
been indicated as a causative factor that can trigger endothelial dysfunc-
tion (32see above). Another potential culprit is pericyte dysfunction.
Pericytes are proposed to play a variety of roles within the neurovascular
unit172 including control of the dilation of capillaries.173,174 Some contro-
versy has arisen over the role of pericytes in capillary dilation175; how-
ever, this could potentially be explained by the presence of subclasses of
pericytes and the correct labelling of pericytes vs. smooth muscle
cells.176 Pericytes are also involved in the ischaemic response, contract-
ing and causing capillary constriction, thereby presenting a potential ther-
apeutic target.174,176 Animal models developed to have reduced
numbers of pericytes show reduced CBF and CVR, BBB breakdown and
neurodegeneration.155,177,178 More recently, pericyte loss has been dem-
onstrated to underlie white matter damage, which is associated with
both SVD and dementia.179 Animals with white matter damage resulting
from pericyte loss were shown to develop axonal degeneration, en-
larged PVS, and functional deficits in behavioural tests.

Pericyte dysfunction has been linked to several disorders, including
AD and diabetic retinopathy179–181 and they are among a number of cells
of the neurovascular unit that are affected in SVD.182 Pericyte cells have
been proposed to be lost in rodent models of SVD such as the
CADASIL mouse model,183,184 in models of cerebral hypoperfusion185

as well as in human post-mortem tissue,186 although an up-regulation of
pericytes has been noted in some CADASIL patients.187 When pericytes
are lost in SVD, nearby endothelial cells also show signs of dysfunction,
and these changes together may contribute to alterations in CBF and
BBB function.186

Markers of endothelial dysfunction correlate with enlarged PVS in
SVD86,101 and in MS,102,103 indicating a relationship between enlarged
PVS and BBB breakdown. We propose that in SVD, pericyte degenera-
tion results in opening of the BBB and aggravates inflammation in PVS.
These events may further compromise pericyte and PVS function trig-
gering a vicious cycle of events.

Of course, it is not only pericytes that are affected in SVD.
Oligodendrocytes,188 the basement membrane,189 and the extracellular
matrix122,190 have all been proposed to play a role. The mechanisms un-
derlying BBB dysfunction, and underlying the association between abnor-
mal PVS and endothelial dysfunction are yet to be determined, and could

be studied by cross-comparison between specific models of pericyte
loss and models of other putative SVD mechanisms such as SHRSP. The
therapeutic value of BBB preservation and how this would affect the ap-
pearance of enlarged PVS and the progression of SVD is also to be
tested.

2.2.3 How are PVS and brain fluid clearance affected in

rodent SVD models?
Enlarged PVS are evidently an imaging biomarker for cerebrovascular
disease73,76,89 and could indicate dysfunction of fluid clearance due to ex-
cess accumulation (e.g. from BBB failure) or failure to drain the usual
amount of ISF (e.g. from obstructed PVS), which may further result in im-
paired drainage of toxins and build-up of harmful waste products.191,192

Perivascular drainage is impaired in aged wildtype mice and in models of
AD.193–195 PVS contribute to amyloid-b clearance from the brain.
Normally, transvascular clearance across the BBB is thought to clear
most amyloid-b from the brain (�60–85%), whereas ISF flow across PVS
removes the remaining smaller fraction (�15–40%) of amyloid-b
depending on whether the animal is awake196,197 or asleep192 and better
amyloid-b clearance is also associated with physical activity.198–201 Faulty
transvascular clearance of brain amyloid-b across the BBB is likely to play
an important role in amyloid-b accumulation in the brain, both in human
AD and animal models59,202 and might explain associations between re-
duced physical activity,203 poor sleep patterns and increased risk of cog-
nitive decline and dementia.204,205 In CAA, AD, and other disorders,
dysfunction of clearance via ISF flow additionally contribute to amyloid-b
accumulation. Amyloid-b deposits are therefore suggestive of dysfunc-
tion of fluid clearance.193–195,206–210 In fact, amyloid-b clearance is re-
duced in aged mice, alongside reduced fluid transport,147 indicating a
potentially key role for this process in the pathogenesis of AD and
CAA.211

Fluid clearance is significantly impaired in models of stroke, multiple
infarcts, diabetes and traumatic brain injury.79,212–215 Closure of PVS and
impaired fluid transport has been shown in a model of migraine—com-
monly experienced in CADASIL.216 Ageing and brain injury may there-
fore impair function of the brain clearance pathway. Dysfunction of this
system could contribute to interstitial oedema, accumulation of waste
toxins, and trigger pathological events that could have a devastating im-
pact on brain health. Enlarged PVS may therefore provide not only a bio-
marker for SVD but also indicate impaired fluid transport and waste
clearance. However, it is not currently clear whether enlarged PVS result
from impaired clearance of fluid, or conversely that impaired clearance
occurs as a result of enlarged PVS. It is also possible to speculate that en-
larged PVS may be a compensatory response, designed to improve fluid
flow. While there is evidence for reduced fluid movement in models of
AD, stroke and other disorders,79,195,212–215, interestingly, a recent re-
port is suggestive of increased ISF flow in the hippocampus of the SHR
model217—more long-term studies are needed since increased flow may
predate reduced flow and failure of fluid clearance or vice versa.

Further studies of fluid dynamics in SVD and the role of enlarged PVS
in this process are therefore warranted, and clarifying potential changes
to flow in SVD presents an interesting avenue of research. It can be
hypothesised that fluid transport is impaired in SVD, and in vivo MRI imag-
ing and modelling in rodent models of SVD could be used to determine
its role in disease pathophysiology.218–220 The timecourse of these alter-
ations could be studied alongside investigations of the role of inflamma-
tion, hypoxia and vessel alterations to build a more complete picture of
the pathophysiology of SVD, which the field is currently lacking.
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..2.2.4 Understanding PVS morphology and cerebrovascular
function in patients with SVD
Currently, there is no gold-standard animal model for SVD. However,
animal models do provide opportunities to examine certain aspects of
SVD pathophysiology.221 Translational research is hugely important, and
combining our knowledge of SVD at the cellular and network level in an-
imal models with advanced imaging studies in both animals and humans
will help us to develop a more complete picture of the pathophysiology
of SVD (Figure 2).

As discussed earlier, MRI abnormalities are recognised hallmarks of
SVD.88 In addition to structural changes, such as WMH, functional ab-
normalities indicating impaired cerebrovascular function can also be
detected. CVR and cardiac pulse transmission are both altered in
SVD.222,223 PVS quantification in humans has been based on visual scor-
ing to date, which has limitations. We have developed a computational
method of analysing PVS structure,224,225 which can calculate centrum
semiovale PVS volume and numbers meaning that we can now deter-
mine whether PVS morphology correlates with makers of cerebrovascu-
lar dysfunction, such as CVR, BBB dysfunction or serum markers in SVD.
As clearance via PVS has been shown to occur diurnally, with enhanced
clearance during sleep via an enlargement of the ISF space,219 it is also
likely that sleep dysfunction will affect brain homeostasis via this pathway.
A small convenience study in patients undergoing investigation of hydro-
cephalus provided some evidence that clearance increases during sleep
in humans.77 Abnormal PVS have been observed in patients with sleep
apnoea226 and sleep disruption occurs commonly in patients with AD
and other neurodegenerative conditions.227 Sleep disruption also

negatively impacts amyloid deposition in mice.228 Clearance during sleep
may therefore provide a novel therapeutic avenue.78 We aim to address
this by investigating the presence of SVD-related brain changes in
patients with severe sleep apnoea, and determining whether treatment
with continuous positive airways pressure therapy will affect the appear-
ance of MRI and serum markers of cerebrovascular dysfunction.

As reviewed by Blair and colleagues,229 advanced imaging techniques
have been essential in developing our understanding of SVD. Rating
scales and improved analysis methods will aid assessment of
PVS,73,86,224,225,230,231 while advances in imaging technology, such as 7 T
MRI, will aid the study of the role of PVS in SVD and other disor-
ders.85,232 Although current clinical evidence for dysfunction of the brain
clearance pathway in disease is limited, newly developed techniques are
being used to image fluid flow in PVS in patients.233,234 However, we
need to reduce variability and cement reproducibility in MRI markers by
harmonising protocols and quantification methods.12 Validation of ad-
vanced imaging techniques for use in multicentre studies provides prom-
ise for using new methods in clinical trials.235 Longitudinal clinical studies
are needed to help us to fully understand disease progression.236,237

3. Conclusions

SVD has a complex pathophysiology with many contributing factors.
A combination of vascular dysfunction, inflammation and BBB dysfunc-
tion are likely to underlie this disease and have devastating effects on
brain health. However, the timing and contribution of these events to

Figure 2 Translation between preclinical and clinical findings will be facilitated by comparing and harmonising rodent and human imaging techniques,
allowing the relationship between enlarged PVS on MRI (A and B) to fluid flow (C and D) to be determined. A. Clinical imaging. Top: FLAIR (L) and T2 (R)
MRI shows WMH (L) form along the PVS (R, arrow). Below: T2 shows a PVS running inwards from cortex (arrow); T2* shows white matter venule (arrow)
closely related to the PVS. (B) T2*-weighted MRI of a normotensive mouse (top panel) and hypertensive mouse showing cortical vessels associated with sus-
ceptibility contrast probably due to thickening of the vessel wall and/or altered PVSs (lower panel). (C) ‘Glymphatic’ transport pathways detected by T1 MRI
and Optimal Mass Tomography analysis in a rodent brain following tracer infusion into the CSF. The timecourse of fluid flow from the cisterna magna
throughout the brain can be revealed using this technique (D). Fluid transport in the PVS detected by macroscopic fluorescent optical imaging in the cortex
following injection of fluorescent markers into the CSF and vasculature.

Cerebral perivascular spaces in small vessel disease 1467
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.
SVD pathophysiology is yet to be confirmed. MRI has provided imaging
biomarkers for SVD,88 including enlarged PVS, which correlate with SVD
burden. There is recent, and increasing, evidence for the association be-
tween abnormal PVS and SVD. However, how PVS come to be enlarged
in SVD and their role in the pathogenesis of the disease is yet to be de-
termined. Here we discussed potential pathways that could lead to en-
larged PVS and the effects this may have on brain health, and present the
work that is being addressed in the Fondation Leducq funded TNE. This
network aims to tackle the problem of SVD using a cross-disciplinary ap-
proach, linking findings from animal studies (both in vivo and in vitro) to
studies in patients with sporadic SVD. Furthermore, we aim to provide
novel insight into related pathological mechanisms by studying SVD-
related brain changes in sleep apnoea patients.

SVD is a pressing issue, with a global health impact. Enlarged PVS are
just one factor in this complex disorder and there are many contributing
factors that are not discussed here. Furthermore, there are many suppo-
sitions in the literature that remain to be proven. By looking at each of
the processes that are known to occur in SVD in detail, and providing
proof for some of the assumed knowledge we may further our under-
standing and uncover novel therapeutic avenues for SVD.
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