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SUMMARY

Modern epidemiological studies collect data on time-varying individual-specific characteristics, such as
body mass index and blood pressure. Incorporation of such time-dependent covariates in time-to-event
models is of great interest, but raises some challenges. Of specific concern are measurement error, and
the non-synchronous updating of covariates across individuals, due for example to missing data. It is well
known that in the presence of either of these issues the last observation carried forward (LOCF) approach
traditionally used leads to bias. Joint models of longitudinal and time-to-event outcomes, developed
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recently, address these complexities by specifying a model for the joint distribution of all processes and are
commonly fitted by maximum likelihood or Bayesian approaches. However, the adequate specification of
the full joint distribution can be a challenging modeling task, especially with multiple longitudinal markers.
In fact, most available software packages are unable to handle more than one marker and offer a restricted
choice of survival models. We propose a two-stage approach, Multiple Imputation for Joint Modeling
(MIJM), to incorporate multiple time-dependent continuous covariates in the semi-parametric Cox and
additive hazard models.Assuming a primary focus on the time-to-event model, the MIJM approach handles
the joint distribution of the markers using multiple imputation by chained equations, a computationally
convenient procedure that is widely available in mainstream statistical software. We developed an R
package “survtd” that allows MIJM and other approaches in this manuscript to be applied easily, with just
one call to its main function. A simulation study showed that MIJM performs well across a wide range of
scenarios in terms of bias and coverage probability, particularly compared with LOCF, simpler two-stage
approaches, and a Bayesian joint model. The Framingham Heart Study is used to illustrate the approach.

Keywords: Additive hazard model; Cox model; Joint model; Measurement error; Missing data; Multiple imputation;
Multiple overimputation; Regression calibration; Time-dependent covariates.

1. INTRODUCTION

Large-scale studies in which data are collected from individuals over time are central to modern health
research. Our motivating example and a pioneer of such studies in epidemiology is the Framingham Heart
Study (FHS), in which a wide range of time-varying exposures have been collected regularly over a period
of more than 55 years. These variables include both physical/biological characteristics [body mass index
(BMI), blood pressure, etc.] and behavioral/socio-demographic characteristics (smoking, marital status,
etc.). To understand the pathways by which such characteristics may affect the occurrence of health events
(death, diabetes onset, etc.), it is common to incorporate them as time-dependent covariates in models for
a time-to-event outcome.

Hazard models are often adopted, assuming that the hazard rate at a given time depends on the current
“true” (error-free) values of the covariates. In principle, unbiased estimation of these models requires that
we know, at each observed event time, the current true covariate values for the set of individuals still
at risk just before that point. This requirement is rarely, if ever, fulfilled for time-dependent continuous
covariates, or markers, for two main reasons. First, many markers, particularly biological markers, are
measured with error due to flaws in technical procedures and biological, non-prognostic, and short-term
variations. Second, these covariates are usually measured in discrete time, but changes in their values and
failures both occur in continuous time. Thus, the true values of the markers at the event times can be
viewed as missing data.

This missing data problem is commonly dealt with using the last observation carried forward (LOCF)
approach, i.e. singly imputing a missing value at an event time with the last observation available.Andersen
and Liestøl (2003) found that the bias imparted by this approach increases with the degree of measurement
error and with non-synchronous updating of the covariates across individuals, for instance due to skipped
follow-up visits. While missing visit-specific measurements are not those necessary to fit the model (i.e.
those at the event times), this missingness exacerbates the biases arising from the discrete-time observation
of continuously changing characteristics.

The caveats of LOCF have led to the development of joint modeling approaches, whereby the joint
distribution of a number of time-dependent markers (usually just one) and the time-to-event outcome is
modeled. Various maximum likelihood methods (e.g. De Gruttola and Tu, 1994; Wulfsohn and Tsiatis,
1997) and Bayesian approaches (e.g. Faucett and Thomas, 1996; Daniels and Hogan, 2008; Hanson and
others, 2011; Rizopoulos, 2016b) have been developed to fit these models, and comprehensive reviews are
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available (e.g. Wu and others, 2012). Drawbacks of these methods are the reliance of their performance on
the correct specification of the full joint distribution, which can be a difficult task, and their computational
complexity, which limits the flexibility of joint modeling packages available in mainstream statistical
software. Indeed, most packages cannot handle more than one marker and are constrained to parametric
hazard functions or proportional hazards models (Gould and others, 2015; Hickey and others, 2016).
Restriction to such survival models is also evident in specific models proposed for the setting with multiple
time-dependent markers (e.g. Xu and Zeger, 2001; Chi and Ibrahim, 2006; Rizopoulos and Ghosh, 2011).

Two-stage joint modeling approaches are an appealing alternative to full joint modeling to tackle
multiple markers and other survival models, such as the additive hazard model. Various two-stage methods
have been proposed for one marker (Wu and others 2012), but the general principle of the simpler versions
is as follows. In the first stage, a linear mixed model is fitted to estimate the subject-specific true marker
trajectories, and the missing values at the event times are singly imputed from these. In the second stage,
the hazard model is fitted using the imputed data. These simple approaches rely on approximations to the
marker distribution and can be less efficient than joint-estimation methods. Notably, issues could arise:
(i) when the uncertainty in the single imputations is not accounted for in the second stage; (ii) when,
with multiple markers, the interrelations among these are not accounted for in the first stage; and (iii)
when the informative drop-out induced by the events is ignored in the first stage, leading to an inaccurate
approximation of the marker distribution (Ye and others, 2008; Albert and Shih, 2010).

We propose a new two-stage approach, Multiple Imputation for Joint Modeling (MIJM), to incorporate
multiple markers in the semi-parametric Cox and additive hazard models. We draw from the literature
on multiple imputation (MI) (Rubin, 1987), a missing data approach, to improve upon simple two-stage
approaches. The joint distribution of the markers is treated as a nuisance, which is computationally
convenient, but also reasonable when interest lies in the time-to-event model and considering that ade-
quately specifying that multivariate distribution may be challenging. The approach is easy to implement
in mainstream software. The R package survtd (Moreno-Betancur, 2017) facilitates its application (see
Section 7 of supplementary material available at Biostatistics online).

2. NOTATION AND ASSUMPTIONS

Suppose that n individuals in a study are followed until an event of interest occurs (e.g. death) or a
censoring time (e.g. due to end of study). We assume independence across individuals and independent
censoring given covariates. For i = 1, . . . , n, let Ti and Ci denote, respectively, the time to event and the
right-censoring time, so the observed time is T̃i = min{Ti, Ci} and the event indicator is Di = I (Ti < Ci),
where I is the indicator function. Let t1, . . . , tS denote the set of times, indexed in increasing order, at
which an event was observed (i.e. all T̃i such that Di = 1). The aim is to model the hazard rate of the event,
denoted by λ(t) at time t ≥ 0, as a function of a vector Z i of time-fixed covariates measured at baseline,
assumed to be fully-observed without error, and several, say K , time-varying continuous markers. Let
Y k

i (t) denote the “true” (error-free) value of the kth marker for individual i at time t (k = 1, . . . , K ;
i = 1, . . . , n; t ≥ 0).

2.1. Target hazard rate models

We consider two types of model, both assuming that the hazard rate depends on the current value of all
markers and the time-fixed covariates, and leaving the baseline hazard, denoted by λ0(t), unspecified. The
two models differ in the interpretation of their respective regression coefficients, providing complementary
information of interest. The Cox proportional hazards model assumes that covariates have multiplicative
effects on the hazard, in the following standard form:

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
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λ{t|Ȳ i(t), Z i} = λ0(t) exp{γ ′
Y Y i(t) + γ ′

Z Z i}, (2.1)

where Y i(t) = {Y 1
i (t), . . . , Y K

i (t)}′ and Ȳ i(t) denotes the history of the markers until time t. Regression
coefficients in this model provide relative measures of association (hazard ratios). The semi-parametric
additive hazard model (Lin and Ying, 1994) is the additive counterpart of model (2.1), and its coefficients
provide absolute measures of association (hazard differences):

λ{t|Ȳ i(t), Z i} = λ0(t) + γ ′
Y Y i(t) + γ ′

Z Z i. (2.2)

2.2. Assumptions about the marker measurement process

In principle, unbiased estimation of models (2.1) and (2.2) requires data on the true marker values at
the observed event times, but these are virtually never available. The trajectories {Y k

i (t) : t ≥ 0} are not
observed in continuous time, but are often to be measured at a set of pre-fixed visit times, τ1 := 0, τ2, τ3, . . .,
common to all individuals, until the event or censoring occurs. The visit times will not generally coincide
with the event times t1, . . . , tS . Let Ji denote the number of planned visit times occurring before T̃i. Further,
for each marker some of the Ji measurements can be missing (e.g. due to skipped visits). We refer to these
as missing “at-risk-visit” measurements, to distinguish them both from the missing values at the event
times needed to fit the hazard models and from potentially missing measurements after the event or
censoring occurs. We assume that the probability of a missing at-risk-visit value does not depend on the
value itself given values of that marker at other visits, values of the other K − 1 markers at that visit, the
time-fixed covariates, the time-to-event outcome and visit timing. This is a more relaxed condition than
the “everywhere missing at random” assumption (Seaman and others, 2013).

Finally, when a measurement does take place, the value is measured with random error, represented as a
normally distributed deviation from the true trajectory. Hence, for k and i fixed, the available measurements
are Ỹ k

ij , for j in a subset of {1, . . . Ji}, where Ỹ k
ij = Y k

i (τj) + εk
ij and εk

ij ∼ N (0, σ 2,k) is the measurement
error. The deviations εk

ij are assumed to be independent of the covariates, the markers and of each other
across time-points (j) and markers (k).

3. MULTIPLE IMPUTATION FOR JOINT MODELING (MIJM)

3.1. Overview of two-stage joint modeling approaches

The data missing to fit models (2.1) and (2.2) are the values Y k
i (ts) for k = 1, . . . , K , i = 1, . . . , n and

s ∈ {1, . . . , S} such that ts ≤ T̃i. Two-stage approaches generally seek to impute these with probable
values based on fitted models (first stage), and then use these imputations to fit the hazard model (second
stage). Note that there is no need to impute the missing at-risk-visit values.

A simple version is to fit separately, in the first stage, K linear mixed models, one per marker, including as
predictors the covariates Z i and spline or polynomial terms for functions of time (and possibly interaction
terms). This yields smoothed estimates of the subject-specific true marker trajectories from which the
missing values are singly imputed. The performance of this approach (henceforth “simple2S”) can be
suboptimal due to issues (i)–(iii) mentioned in the introduction.

The proposed MIJM approach, described in the following sections, is a refined version using
MI, under which multiple, say M , imputations of the missing values are drawn from interdepen-
dent imputation models (in this case one model for each marker) to produce M completed data sets.
The analysis model (in this case the hazard model) is fitted to each completed data set and the M
estimates obtained from these are then combined using the formulas of Rubin (1987). The bene-
fit of multiple over single imputation is that MI standard errors appropriately reflect the uncertainty
regarding the imputed values, addressing the aforementioned issue (i) of simple two-stage approaches
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(Bycott and Taylor, 1998; Ye and others, 2008; Albert and Shih, 2010). Further, by carefully building the
K interdependent imputation models, and drawing values from these using an iterative algorithm called
multiple imputation by chained equations (MICE) (van Buuren and Groothuis-Oudshoorn, 2011), our MI
approach also addresses issues (ii) and (iii).

3.2. Stage 1: multiple imputation of time-dependent covariates

3.2.1. Imputation models for the longitudinal markers. For each marker k ∈ {1, . . . , K}, an imputation
model is built by fitting a linear mixed model to the observed values of the marker across visits and indi-
viduals (Ỹ k

ij , i = 1, . . . , n and j in a subset of {1, . . . Ji}). Specifically, expected subject-specific trajectories
are modeled as:

(βk
Z)′Z i + (βk

Y )′Y −k
i (τj) + (βk

τ )
′ηk(τj) + (βk

O)′Oi(τj) + (bk
i )

′U k
i (τj). (3.1)

Components of this mixed model are now described in detail. The fixed-effects vector is βk =
{(βk

Z)′, (βk
Y )′, (βk

τ )
′, (βk

O)′}′ and the random-effects vectors are bk
i ∼ N (0, �k), i = 1, . . . , n. The vec-

tor ηk(τj) may contain spline or polynomial terms for τj to model time-trends in the fixed-effects part of
the model, which also includes the time-fixed covariates Z i. A subset of the variables in Z i and ηk(τj),
collected in the vector U k

i (τj), are allowed to have subject-specific random effects. Such flexibility may
be needed for markers with complex-shaped trajectories. In our simulation study and example, we con-
sidered random intercepts and slopes. Another two key sets of variables are included as predictors with
fixed effects in (3.1), as described next.

First, the full vector of current values of the other K − 1 markers, Y −k
i (τj) = {Y 1

i (τj), . . . ,
Y k−1

i (τj), Y k+1
i (τj), . . . , Y K

i (τj)}′, is included. All these variables are in the target hazard model and could
also be predictive of missingness, and recommendations in the MI literature suggest including all variables
in any of these two categories in the imputation model (van Buuren and Groothuis-Oudshoorn, 2011).
This can also be seen as an approximate way to deal with issue (ii) of simple two-stage approaches, i.e.
the interrelations among the markers are accounted for.

Second, information on the time-to-event outcome is included following recommendations for MI in
the context of incomplete covariates (van Buuren and others, 1999). This addresses issue (iii) in that it
provides an approximation of the marker distribution that can be sufficiently accurate for the purpose
of imputation and subsequent estimation of the target time-to-event model. Specifically, we include: the
Nelson–Aalen estimator of cumulative hazard at time T̃i, �̂(T̃i); interactions of �̂(T̃i) with the time-fixed
covariates (succinctly, �̂(T̃i) × Z i); and a modified event indicator, defined by Dij = 1 if Di = 1 and
j = Ji, and Dij = 0 otherwise, i.e. Dij = I (Di = 1 ∧ Ji = j). Thus, in (3.1), Oi(τj) is the vector containing
�̂(T̃i), �̂(T̃i) × Z i and Dij. The justification for this strategy, used by the MIJM approach, is provided in
the Supplementary material available at Biostatistics online (Section 1) and extends results of White and
Royston (2009). Briefly, it is based on an approximation to the conditional distribution of each marker
given the time-to-event outcome.

Throughout the manuscript, we also consider an alternative approach, identical to MIJM in all aspects
except that it includes the actual event indicator Di as predictor in the imputation model instead of the
modified indicator, i.e. Oi(τj) contains �̂(T̃i), �̂(T̃i) × Z i, and Di. This is the approach recommended to
impute incomplete time-fixed covariates for the Cox model (White and Royston, 2009), and we assessed its
comparative performance here due to its simplicity. Nonetheless, we expect that approximation to be less
accurate as it is unadapted to the time-dependent covariate setting, and we thus refer to it as “unMIJM”.
For unMIJM, Oi(τj) = Oi(τj′) for all j, j′, i.e. the vector is time-fixed, but we keep the same notation
throughout for simplicity.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
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As usual with MI, the resulting K imputation models are not assumed necessarily to represent the true
data generating mechanism (because of the difficulty of specifying a joint distribution that is compatible
with these conditional models) but are working models for imputation purposes.

3.2.2. Multiple imputation by chained equations (MICE). The drawing of imputations for the missing
marker values at the event times (i.e. Y k

i (ts) for s such that ts ≤ T̃i) from the trajectories determined by
(3.1) requires an iterative procedure due to the dependence of each marker model on the true values of
other markers, which need to be imputed as well. We use MICE, a procedure that draws iteratively from
these K models until convergence to yield one set of imputations.

For k = 1, . . . , K , let �k = {(βk)′, (bk
1)

′, . . . , (bk
n)

′}′, and let Ỹ
k

obs denote the vector of all the available
measurements of marker k across individuals. Let Y k collect the true values of this marker across all
individuals at their respective relevant planned visit and event times (for individual i, the values for
each t ∈ {τ1, . . . , τJi , t1, . . . , tS} such that t ≤ T̃i). Let ηk

i = {ηk(t)′ : t = τ1, . . . , τJi , t1, . . . , tS}′ and
U k

i = {U k
i (t)

′ : t = τ1, . . . , τJi , t1, . . . , tS}′. For the MIJM method, we extend the definition of Oi(t) to
any time-point t /∈ τ1, τ2, . . . by considering the natural definition of the modified indicator at time t:
Di(t) = I (Di = 1∧ T̃i = t) (see Section 1 of supplementary material available at Biostatistics online) and
define Oi = {Oi(t)′ : t = τ1, . . . , τJi , t1, . . . , tS}′. For unMIJM, we let Oi(t) = Oi denote the corresponding
time-constant vector. The vectors X k

i = {Z ′
i, (η

k
i )

′, O′
i, (U

k
i )

′}′, i = 1, . . . , n, are collected in X k .
For imputation m ∈ {1, . . . , M }, the iterative procedure is initialized by imputations based on simple

random draws Y k
(0), k = 1, . . . , K , from the data. If G iterations are to be carried out, then at iteration

g ∈ {1, . . . , G}, draws �k
(g) and Y k

(g) of �k and Y k are performed sequentially for k = 1, . . . , K as follows,
based on the current values of the remaining markers:

�k
(g) ∼ P(�k |Ỹ k

obs, Y 1
(g), . . . , Y k−1

(g) , Y k+1
(g−1), . . . , Y K

(g−1), X k) and

Y k
(g) ∼ P(Y k |Ỹ k

obs, Y 1
(g), . . . , Y k−1

(g) , Y k+1
(g−1), . . . , Y K

(g−1), X k , �k
(g)),

where the formulations for k = 1 and k = K make the obvious modification. These draws are performed
following (I) and (II) below, which are based on the procedure of Moreno-Betancur and Chavance (2016)
but incorporating measurement error correction.

(I) Performing draws of the parameters �k
(g).

Using standard asymptotic results, the conditional (posterior) distribution of �k
(g) above is approximated

by a normal distribution with mean and variance equal to the estimates of fixed and random effects and
of their variance–covariance, respectively, given restricted maximum likelihood (REML) estimates of
the variance components. Specifically, the imputation model for marker k is fitted based on the current
values of the other markers using the profiled REML criterion of Bates and others (2015). This yields
maximum likelihood estimates and best linear unbiased predictors of the fixed and random effects vectors,

respectively, denoted by β̂
k

(g) and b̂
k

i,(g), i = 1, . . . , n, and estimates of their variance–covariance matrices,

denoted by V̂
k

β ,(g) and V̂
k

bi ,(g) i = 1, . . . , n. We thus draw βk
(g) ∼ N {β̂k

(g), V̂
k

β ,(g)} and bk
i,(g) ∼ N {b̂k

i,(g), V̂
k

bi ,(g)}
for i = 1, . . . , n, and set �k

(g) = {(βk
(g))

′, (bk
1,(g))

′, . . . , (bk
n,(g))

′}′.

(II) Performing draws of Y k
(g) from the posited trajectory.

Draws of marker k for individual i are required for all times t ∈ {τ1, . . . , τJi , t1, . . . , tS} such that
t ≤ T̃i. Given �k

(g), a draw at time t is obtained using the linear predictor (3.1), setting Y k
i,(g)(t) =

(βk
Z ,(g))

′Z i + (βk
Y ,(g))

′Y −k
i,(g)(t) + (βk

τ ,(g))
′ηk(t) + (βk

O,(g))
′Oi(t) + (bk

i,(g))
′U k

i (t), where Y −k
i,(g)(t) = {Y 1

i,(g)(t),

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
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. . . , Y k−1
i,(g) (t), Y k+1

i,(g−1)(t), . . . , Y K
i,(g−1)(t)}′ is the vector of current values of the other markers at time t for

individual i.
At convergence, often achieved after a small number of iterations, the algorithm yields the mth set of

imputations. In practice, the number of iterations should be based on graphical assessments of convergence
(van Buuren and Groothuis-Oudshoorn, 2011), while the number of imputations may be based on relative
efficiency calculations (Rubin, 1987). Note that, in addition to imputing the missing values at the observed
event times t1, . . . , tS at which the individual is at risk, imputations are also performed at each iteration
for all planned visit times τ1, τ2, . . . even though these values are not needed to fit the hazard model. The
reason is that the imputation model (3.1) is estimated at each iteration from the values occurring at planned
visit times. In practical terms, this requires stacking two distinct data sets for the imputation procedure.

3.3. Stage 2: fitting the hazard model

The procedure above yields M imputations of each missing value. To fit model (2.1) or (2.2) based on the
mth set of imputations (m = 1, . . . , M ), we require a data set with multiple rows per individual, one for
each event-time ts such that ts ≤ T̃i. The data set has a column for each of the K markers, including its mth
imputed value for the corresponding individual and event time. Additional columns include the time-fixed
covariates Z i, which are constant across rows corresponding to the same individual. Columns defining
the entry and exit times, as in the usual data set-up when dealing with time-dependent covariates, are also
required (Therneau and Grambsch, 2000). Thus, for the row corresponding to individual i and event time
ts, the “entry” time is the previous event-time ts−1 (where we define t0 = 0) and the “exit” time is ts. The
data set prepared in this way can then be used in a function that fits the hazard model using a start/stop
or entry/exit formulation. The M results obtained are then combined using Rubin’s formulas. The main
function of the R survtd package (Moreno-Betancur, 2017) performs all the steps: data manipulation
pre- and post-MI, MI procedure, model fitting, and pooling of results, so that one call to this function
suffices to apply our approach (see Section 7 of supplementary material available at Biostatistics online).

4. SIMULATION STUDY

We aimed to compare the performance across various scenarios of the following approaches: LOCF,
simple2S, unMIJM, and MIJM. We also considered a Bayesian full joint modeling method (“JMbayes”),
available in a development version of the R package JMbayes (Rizopoulos, 2016a), but only for the Cox
model in a subset of scenarios. This method assumes a multivariate mixed model for the markers and a
hazard model similar to (2.1) but the baseline hazard is modeled using B-splines (Rizopoulos, 2016b).

4.1. Data generation

The simulation models closely followed aspects of the FHS, but we considered a reduced sample size
(n = 200, except when assessing impact of sample size) and a less intensive and shorter schedule of
planned visit times relative to the median survival time as not many studies have the luxury of such a
long and intensive follow-up. For each individual i = 1, . . . , n, we generated two time-fixed covariates:
Z1i ∼ Bern(0.45) and Z2i ∼ N (44, 8.52), following the distribution of gender and baseline age, respec-
tively, in the FHS. Parameters of the models used to generate the time-dependent markers, missing data,
and the time-to-event outcome, described next, were determined from the FHS by fitting analogous models
to, respectively, systolic blood pressure (SBP) measurements, the probability of missing at-risk-visit SBP
measurements, and mortality. Some parameters were fixed while others were varied across simulation
scenarios (see next section). All parameter values and related details are provided in the Supplementary
material available at Biostatistics online (Section 2).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
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Repeated measures of three markers (K = 3) were generated for the n subjects at common times
τj ∈ {0, 1, . . . , 9} such that Ỹ k

ij = Y k
i (τj) + εk

ij , where εk
ij ∼ N (0, σ 2,k) were independent across j and

k . We considered two types of model, detailed next, for the joint distribution of the multiple markers to
determine the true underlying trajectories. Fixed intercept parameters were chosen in both cases so that
the marginal mean of the error-polluted measurements was around 140 in all scenarios, as is the case for
SBP (in mmHg) in the FHS. The marginal standard deviation varied between 30 and 50 according to the
measurement error scenario (see below).

The first was a correlated random effects model, which is a multivariate mixed model, parametrizing
the marginal mean of the marker vector (Fieuws and Verbeke, 2004). We drew from trajectories given
by Y k

i (τj) = αk
0 + αk

Z1
Z1i + αk

Z2
Z2i + αk

τ τj + ak
i0 + ak

iτ τj, for k = 1, 2, 3, where ai0 = (a1
i0, a2

i0, a3
i0)

and aiτ = (a1
iτ , a2

iτ , a3
iτ ) were both zero-mean multivariate normal vectors, for i = 1, . . . , n, such that

corr(ak
i0, al

i0) = corr(ak
iτ , al

iτ ) = ρ ≥ 0, for all k , l ∈ {1, 2, 3}. Hence, the random intercepts across markers
could be correlated, and so could the random slopes, and this correlation ρ modulated the correlation
between markers. The random intercepts and slopes were independent of each other, i.e. corr(ak

i0, al
iτ ) = 0,

for all k , l ∈ {1, 2, 3}. Hence ak
i0 = (ak

i0, ak
iτ ) ∼ N (0, �k) where �k was a diagonal matrix with diagonal

(ω
2,k
0 , ω2,k

τ ).
The second was the so-called “product-normal” model, which is based on conditional models (Spiegel-

halter, 1998; Cooper and others, 2007). Here, the trajectory of marker 1 did not depend on any of the other
markers and the trajectory of marker k ≥ 2 depended on the current values of markers 1 through k−1. Thus
the markers were generated sequentially from a chain of conditional models, assuming that the trajectory
of marker k ∈ {1, 2, 3} followed Y k

i (τj) = αk
0 + αk

Z1
Z1i + αk

Z2
Z2i + ∑k−1

l=1 αk
Yl

Y l
i (τj) + αk

τ τj + ak
i0 + ak

iτ τj,

where the fourth term was null for k = 1 and ak
i = (ak

i0, ak
iτ )

′ ∼ N (0, �k), i = 1, . . . , n, were vectors
of subject-specific random intercepts and slopes independent of each other (i.e. with �k diagonal as for
the correlated random effects model) and independent of the random effects for other markers. Here the
interdependence among markers was controlled through the regression coefficients αk

Yl
.

For both the Cox and additive hazard models, a time to event Ti was generated for each individ-
ual using the cumulative hazard inversion method, assuming a Weibull baseline hazard with shape
parameter υ = 2 and scale parameter λ. For the Cox model, the hazard function was given by:

λ{t|Z1i, Z2i, Ȳ 1
i (t), Ȳ 2

i (t), Ȳ 3
i (t)} = 2λt exp

{
γZ1Z1i + γZ2Z2i + ∑3

k=1 γYk Y k
i (t)

}
, and for the additive hazard

model by λ{t|Z1i, Z2i, Ȳ 1
i (t), Ȳ 2

i (t), Ȳ 3
i (t)} = 2λt + γZ1Z1i + γZ2Z2i + ∑3

k=1 γYk Y k
i (t). In both cases around

20% independent censoring was superimposed by drawing censoring times Ci from a uniform distribution.
The repeated measures of the K markers were then truncated at the follow-up time T̃i = min{Ti, Ci}, so
only Ji = max{j : τj ≤ T̃i} measurements were available for individual i at this stage. Then measurement
Ỹ k

ij , 0 < j ≤ Ji, was set to missing if Rk
ij = 1 where Rk

ij was drawn from a Bernoulli distribution with success

probability following logit{P(Rk
ij = 1)} = δk

0 + δk
τ τj + δk

T T̃i + δk
DDi + δk

Z1
Z1i + δk

Z2
Z2i + ∑

l 	=k δk
l Y l

i (τj).

4.2. Simulation plan

In preliminary simulations, we assessed the procedure in the case of one marker (K = 1). With K = 3
markers, we performed a main set of simulations for each combination of multiple marker model and
hazard rate model, altering the following aspects for each marker k = 1, 2, 3 to ranges observed in
the FHS example. First, we varied σ 2,k to alter the degree of measurement error, using the following
intra-cluster correlation (ICC)-type measure as an indicator of the scale of error relative to total variation:
ICCk = (ω

2,k
0 +ω2,k

τ )/(ω
2,k
0 +ω2,k

τ +σ 2,k). The lower the measurement error, the higher ICCk . We considered
scenarios with low (ICCk = 0.8), moderate (ICCk = 0.5) and high (ICCk = 0.2) error. Second, we varied
δk

0 to alter the proportion pk
Miss of missing at-risk-visit values to no (pk

Miss = 0%), low (pk
Miss ≈ 20%), and

high (pk
Miss ≈ 40%) missingness.
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Third, we considered null, weak and strong effects of the markers on the hazard by taking γYk ∈
{0, 0.005, 0.01} in the Cox model andγYk ∈ {0, 0.0005, 0.001} in the additive model, respectively. Estimates
of these parameters were expressed as effects per 100 units for the Cox model and per 1000 units for the
additive model. Fourth, we varied the strength of the pairwise marginal correlations between the three
markers to low (around 0.05), moderate (around 0.15), or high (around 0.3), by setting, respectively,
ρ = 0, 0.5, 0.75 in the correlated random effects model, andα2

Y1
= α3

Y1
= 0, 0.1, 0.5 andα3

Y2
= 0, 0.05, 0.05

in the product-normal model. In the main set of simulations, all three markers were identical with regards
to the aspects being studied. In additional simulations, we varied these aspects across the markers (details
in Section 5 of supplementary material available at Biostatistics online) and also assessed the impact of
increasing sample size to n = 400.

4.3. Analysis of each generated data set and performance indicators

In each scenario, 1000 data sets were generated. The target parameters, γY1 , γY2 , γY3 , γZ1 , and γZ2 , were
estimated from each data set by fitting the Cox or additive model with various approaches: using the true
values of the markers at the event times according to the simulation model, which shows what one would
obtain if perfect data were available (“True” analysis); the LOCF approach; the simple2S approach in
the main set of simulations with low and high correlation; and the two MI strategies described, MIJM
and unMIJM, performing M = 5 imputations and G = 5 iterations. In selected scenarios, we assessed
the impact of excluding the interaction term �̂(T̃i) × Z i from the imputation model, and of increasing
the number of imputations to M = 20. For the Cox model only, in selected scenarios, we considered the
JMbayes approach.

In each scenario, for each parameter γ·, each estimator γ̂· and its standard error estimator ŜE(γ̂·),
we calculated the following indicators, where all means are taken across the 1000 generated data
sets: the mean bias (MB) given by MB= mean(γ̂·) − γ·; the mean relative bias (MRB), given by
MRB= 100 × {mean(γ̂·)/γ· − 1}; the observed (empirical) standard error (ObsSE), given by the stan-
dard deviation of γ̂· across the 1000 data sets; the standardized bias (StdBias), given by StdBias=100 ×
[{mean(γ̂·) − γ·}]/ObsSE; the mean estimated standard error (EstSE), EstSE= mean{ŜE(γ̂·)}; and the
coverage probability (CP), given by the percentage of the 1000 data sets for which the 95% confidence
interval (CI) contained the true value γ·.

4.4. Results

Figures 1 and 2 show the standardized bias for γY1 with five approaches across the main set of scenarios,
for the additive hazard model and K = 3 markers generated from a correlated random effects model
with low and high correlation, respectively. Table 1 shows detailed results for the additive model and
both multiple marker models in selected scenarios. Next we summarize the results from the main set of
simulations regarding estimation of γY1 , γY2, and γY3 with n = 200 and in the settings with low and high
correlation for the additive model (a total of 108 scenarios), and further below for the Cox model. In the
Supplementary material available at Biostatistics online we provide results for the case K = 1 (Section 3),
further results for the main simulations (Section 4) and results for the additional simulations (Section 5),
which led to similar conclusions.

With perfect data (“True” analysis), estimates obtained across all scenarios were approximately unbi-
ased, standard errors were correctly estimated and CIs achieved nominal coverage (MRB between −23%
and 12% and CP between 93% and 98% across all 108 scenarios; see also Table 1).

The LOCF approach led to negative bias in scenarios with measurement error or missingness, and the
magnitude of the bias increased as the effect size increased and as these issues were more pronounced.
The bias of LOCF was worst in scenarios with low correlation between the markers (MRB between −96%

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
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Fig. 1. Simulation study results: Standardized bias for the regression coefficient of marker 1, γY1 , expressed in effect
per 1000 units, in the additive model with low-correlated multiple markers generated from a correlated random effects
model.

and −10% across all scenarios with low correlation compared with −89% to 2% with high correlation).
Notably, with missing measurements there was a negative bias even in the scenarios with null true effects
(γYk = 0). The variance of the LOCF estimator decreased as the missingness and the measurement error
increased, failing to reflect the increased uncertainty in these scenarios, and being even lower than what was
achieved with perfect data. Together, the large biases and small standard errors translated into standardized
biases of very large magnitude (Figures 1 and 2). Estimated standard errors were close to their empirical
counterparts. Hence, solely as a result of the behavior of the regression coefficient estimator, this analysis
yielded very poor coverage probability across most scenarios (CP as low as 3% in some scenarios).
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Fig. 2. Simulation study results: Standardized bias for the regression coefficient of marker 1, γY1 , expressed in effect
per 1000 units, in the additive model with highly correlated multiple markers generated from a correlated random
effects model.

The simple2S approach had reduced bias compared with LOCF, but exhibited negative bias in scenarios
with low correlation, which increased as missingness and measurement error increased (MRB between
−37% and 0% across these scenarios). The approach was approximately unbiased in scenarios with high
correlation (MRB between −24% and 9%). Standard errors were generally higher than for LOCF but close
to those with perfect data, thus also failing to reflect the increased uncertainty due to unobserved data.
Standardized biases were lower than for LOCF but still important in settings with low correlation or high
missingness (Figures 1 and 2). The standard error estimator was approximately unbiased (between −12%
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and 15% difference relative to empirical standard errors). CPs were poor in settings with bias, ranging
between 87% and 98% in low correlation scenarios and between 90% and 98% with high correlation.

The MIJM approach yielded approximately unbiased estimates across scenarios with low correlation
(MRB between −27% and 16%). A positive bias was observed in some settings with high measurement
error or strong effect size across scenarios with high correlation (MRB between −13% and 80%). These
biases were less pronounced for the product-normal model (MRB between −13% and 59%) than the
correlated random effects model (MRB between −3% and 80%), and biases in the product-normal model
were highest for γY1 possibly because Y 2 and Y 3 were generated with conditional models that more closely
resemble the imputation model (maximal MRB 59% for γY1 compared with 30% and 24% for γY2 and γY3 ,
respectively). Still, the MIJM estimator had the highest variance, which was always greater than that with
perfect data and appropriately increased as missingness and measurement error increased. The variance
was highest when the bias was highest, which resulted in consistently small standardized biases. Rubin’s
variance formula performed well in this analysis: although it led to slightly overestimated standard errors
in some cases (up to 30% higher than empirical standard error), the CIs achieved coverages close to or
somewhat higher than the nominal value across all scenarios (CP between 94% and 99% across the 108
scenarios). Notably, CPs remained satisfactory even in the cases of largest bias.

The unMIJM approach resulted in negative bias in scenarios with low correlation, which increased
as missingness and measurement error increased (MRB between −38% and −6%). The estimator was
approximately unbiased or had moderate bias across scenarios with high correlation (MRB between
−20% and 31%). As for MIJM, in scenarios with high correlation, the bias of unMIJM was lower with the
product-normal model (MRB between −20% and 15%) than with the correlated random effects model
(MRB between −15% and 31%). The standard errors of the unMIJM estimator were close to those of
the True and simple2S analyses. Standardized biases were thus generally larger in magnitude or similar
to those of MIJM. For this analysis, Rubin’s formula overestimated the standard error in most cases
(between 10% and 73% higher than empirical standard errors), a consequence of the substantive-model-
incompatibility implicit in this approach. CIs were thus over-conservative, ranging from 96% to 100%
across all scenarios.

Results for the Cox model exhibited similar patterns. In the selected scenarios where it was considered,
the JMbayes approach was approximately unbiased, standard errors were appropriately higher than for
the True analysis, and standardized biases were small (see Table S3 of supplementary material available
at Biostatistics online). This was to some extent expected for the correlated random effects model, which
is the marker model assumed by JMbayes, but it is notable that this was also true for the product-normal
model. On the other hand, there was a consistent underestimation of standard errors with this approach,
particularly with the product-normal model. This may be due to misspecification by JMbayes of the
marker model or B-splines providing a poor approximation of the baseline hazard. The biased standard
error estimates led to poor CPs in some scenarios.

5. EXAMPLE: FRAMINGHAM HEART STUDY

We focused on assessing the associations between BMI, SBP and blood glucose levels, and all-cause
mortality. Following Abdullah and others (2011), we fitted survival models for the time-to-death since
recruitment including these time-varying markers as explanatory variables, in addition to some time-fixed
baseline covariates (age, sex, country of birth, education level, smoking, alcohol use, and marital status).
Analyses were restricted to the n = 4881 participants who did not have diabetes or cardiovascular disease
at the baseline visit, and who had all three markers non-missing on at least one of their 28 two-yearly visits.
The maximum follow-up time was 59.2 years, and 4552 participants had died (93%) with the remaining
being censored on December 31, 2007 (see Section 6 of supplementary material available at Biostatistics
online, for Kaplan–Meier curve and statistics on baseline factors).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
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Fig. 3. Trajectories based on available measurements for three time-dependent markers in the Framingham Heart
Study, for all individuals (gray) and for a random sample of ten individuals (black).

Figure 3 shows the profiles of the three time-varying markers for a random subset of 10 participants.
These markers span the three scenarios of measurement error explored in our simulation study, with BMI
having a low degree of error (ICC = 0.89 as estimated from the available data), SBP having a moderate
degree of error (ICC = 0.63) and blood glucose having a high degree of error (ICC = 0.15). The proportion
of missing at-risk-visit measurements was low for BMI and SBP (21% and 24%, respectively) and high
for blood glucose (41%). These characteristics suggest the need for approaches beyond LOCF. Marginal
correlations estimated from the observed data were: corr(BMI,SBP) = 0.24, corr(BMI,glucose) = 0.13 and
corr(SBP,glucose) = 0.14.

We fitted Cox and additive hazard models as in (2.1) and (2.2), respectively, using LOCF, simple2S,
MIJM, unMIJM, and, in the case of the Cox model, JMbayes. In the latter four approaches, time-trends
for each marker were modeled using cubic polynomials of time (which provided superior or similar fit
compared with natural cubic splines), and the models included random intercepts and slopes. Based on
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Table 2. Application to the Framingham Heart Study: Estimated mortality hazard ratios (HR) and differ-
ences (HD) for an increase in one unit of each time-dependent marker, obtained by fitting multivariable
Cox and additive hazard models, respectively, using various approaches to incorporate these imperfectly
observed time-dependent covariates

Cox model Additive model

Marker Analysis HR 95% CI p-value HDa 95% CI p-value

BMI LOCF 0.97 (0.97; 0.98) <0.001 −113 (−135; −91) <0.001
(kg/m2) simple2S 0.98 (0.98; 0.99) <0.001 −110 (−134; −86) <0.001

MIJM 0.95 (0.93; 0.96) <0.001 −200 (−233; −166) <0.001
unMIJM 0.98 (0.97; 0.99) <0.001 −106 (−133; −80) <0.001
JMbayesb 0.98 (0.97; 0.99) <0.001 — — —

SBP LOCF 1.02 (1.01; 1.04) <0.001 2 (−47; 50) 0.95
(10 mmHg) simple2S 1.15 (1.13; 1.17) <0.001 284 (220; 348) <0.001

MIJM 0.97 (0.94; 1.02) 0.21 −186 (−316; −56) 0.01
unMIJM 1.13 (1.10; 1.16) <0.001 278 (195; 361) <0.001
JMbayesb 1.14 (1.12; 1.16) <0.001 — — —

Glucose LOCF 1.05 (1.04; 1.07) <0.001 262 (181; 342) <0.001
(mmol/L) simple2S 1.13 (1.11; 1.15) <0.001 719 (584; 854) <0.001

MIJM 1.18 (1.14; 1.22) <0.001 971 (721; 1221) <0.001
unMIJM 1.11 (1.08; 1.13) <0.001 555 (421; 689) <0.001
JMbayesb 1.14 (1.12; 1.15) <0.001 — – —

BMI, body mass index; SBP, systolic blood pressure; CI, confidence interval;
HR, hazard ratio; HD, hazard difference.
aUnits: events per 100 000 person-years.
bThis approach was applicable only to the Cox model.

relative efficiency calculations and graphical assessments, respectively, M = 20 imputations and G = 5
iterations were used for MIJM and unMIJM. Indeed, results with M = 50 were essentially the same (not
shown).

Table 2 shows the results. For BMI, all approaches suggest evidence of a protective association with
each unit increase, independent of current SBP and blood glucose levels, although MIJM suggests a
stronger association both in absolute and relative terms. For SBP, in relative terms all approaches suggest
evidence of a weak harmful independent association with increasing SBP except MIJM, which does not
show evidence of an association. In absolute terms, results are discrepant across the approaches: LOCF
does not show evidence of an association, MIJM indicates a weak protective association with increasing
SBP and simple2S and unMIJM display the opposite. For blood glucose, all approaches suggest evidence
of a harmful independent association with increasing glucose levels in both relative and absolute terms,
although MIJM suggests a much stronger relation. The results of this illustrative example are to be
interpreted with caution since the fit of these simple Cox and additive hazard models could perhaps
be improved by modeling U-shaped associations, particularly for SBP (see Section 6 of supplementary
material available at Biostatistics online).

6. CONCLUDING REMARKS

We developed a refined two-stage joint modeling approach, MIJM, to incorporate multiple markers in two
hazard rate models. Simulation results showed that MIJM performed well with one or multiple markers,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx046#supplementary-data
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with small standardized biases and CIs that achieved nominal coverage across all scenarios studied and
for all multiple-marker/survival model combinations considered. The latter shows that the absolute bias
of MIJM in some extreme scenarios is of little practical significance due to the accompanying increased
variability (Collins and others, 2001).

The unMIJM approach, which differed from MIJM only in the way the time-to-event outcome was
included in the imputation model, had a performance that was variable across scenarios and overall poorer
than that of MIJM. This difference emphasizes the importance of appropriately addressing issue (iii)
when using two-stage approaches. Further, the implicit less-refined approximation of unMIJM yielded
overly-conservative CIs in most scenarios due to systematic bias in the MI variance estimator. The unMIJM
approach may, however, have value in settings with highly correlated markers and low measurement error.
The simple2S approach also showed variable performance across scenarios, although it performed well
in scenarios with high correlation and low missingness.

Full joint modeling performed well in terms of bias, but standard error estimates seemed vulnerable
to misspecification of the full joint distribution, which affected CPs. More generally, this approach is
computationally challenging: at the time of writing we were unable to identify any readily available full
joint modeling software, Bayesian or frequentist, that accommodated multiple markers and both semi-
parametric hazard models considered in this paper. While it was possible to apply the approach assuming
a proportional hazards model with spline-modeled baseline, we could only do this in selected scenarios
due to extended running time. All approaches seemed clearly preferable to LOCF.

The MIJM approach can be easily implemented for any number of markers using mainstream software,
and the R package survtd reduces this task to a single function call. Of note, the package can in addition
be used to apply unMIJM, simple2S, and LOCF as easily. The MIJM approach is also computationally
fast, demonstrating substantially lower running times than JMbayes.

Future work could include refinements of MIJM to better accommodate strongly correlated markers or
to tackle other time-to-event models. Assessment of the MIJM approach in the context of unplanned rather
than planned visiting times would also be of interest. While there are no practical obstacles to applying the
approach in that setting, assumptions about ignorability of the visiting process would be required, and the
modified event indicator would be defined in terms of the last available measurement rather than the last
planned visit before end of follow-up. Thus, the accuracy of the approximation underlying the approach
could be affected, e.g. if there were high variability in the delays between visiting times.

To conclude, the proposed MIJM approach provides a pragmatic yet principled solution to a common
problem in health research. Some inevitable approximations are involved in the imputation modeling, but
the approach was robust in our simulations, which explored a wide range of scenarios using structures and
parameter settings that mimicked many aspects of the FHS and could be expected to reflect other similar
studies.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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