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Abstract

The constant threat of viral disease can be combated by the development of novel vaccines and 

therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such 

development relies on high-resolution characterization of viruses and their dynamical behaviors, 

which are often challenging to obtain solely by experiment. In response, all-atom molecular 

dynamics simulations are widely leveraged to study the structural components of viruses, leading 

to some of the largest simulation endeavors undertaken to date. The present work reviews 

exemplary all-atom simulation work on viruses, as well as progress toward simulating entire 

virions.

Graphical Abstract:

Introduction

Viruses are a constant threat to human health, as well as the health of our domesticated 

animals and agriculture. Often, viral infections are challenging to treat due to limited 

therapeutic options. Although vaccines are effective at preventing or reducing the severity of 

viral disease, protective vaccines against fewer than 20 different viruses are currently 

available (WHO). Further, the high mutation rates of some viruses necessitate that vaccines 

be updated annually, or that new antiviral treatments be constantly realized to continue 

disease management in chronically infected individuals.
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The rational development of novel prophylactic and therapeutic interventions against viral 

pathogens depends on detailed knowledge of virus structure, infection cycle processes, and 

the conformational dynamics that link structures to their functional roles in these processes. 

All-atom molecular dynamics (MD) simulations, often referred to as the “computational 

microscope,” remain the only method capable of elucidating the dynamical properties of 

biomolecules within their physiological environments at full chemical resolution [1]. 

Modern supercomputers and MD simulation codes enable researchers to investigate the 

nuances of virus structure and dynamics, even for very large components of virus structure 

[2].

Most all-atom MD simulation studies of viruses have focused on their protein-based 

components, particularly envelope proteins, viroporins, capsids, and accessory proteins or 

enzymes. Some work has leveraged MD simulations to construct complete atomistic models 

of viral proteins or their assemblies by integrating experimental data. Other work has taken 

advantage of MD simulations to characterize, under native conditions, the chemical-physical 

properties of such structures through analysis of their dynamics and influence on 

surrounding solvent. The overarching goals of virus simulation endeavors are to reveal 

critical aspects of virus structure or mechanistic insights into their function that can be 

targeted for novel disease treatments. Here, exemplary all-atom simulations of viruses are 

briefly reviewed, and progress toward simulating entire virions at atomistic detail is 

discussed.

Envelope Proteins

The first stage of viral infection is cell entry. Often, this process begins with adhesion of the 

virus to the host cell via receptor binding. In enveloped viruses, receptor binding is mediated 

by membrane-embedded surface proteins, which typically also represent the major antigens 

of the virus and may participate in virus-host membrane fusion. Other envelope proteins 

play a role in viral egress. The motivation to elucidate the molecular determinants of 

receptor recognition, as well as the antigenic and fusogenic properties of envelope proteins, 

have rendered them of great interest for study with MD simulations.

A broadly-studied viral envelope protein is the influenza hemagglutinin (HA) trimer (Fig. 

1a), which is responsible for cellular adhesion and membrane fusion. Much work on HA has 

been aimed at understanding its specificity for host cell receptor glycans, which is an 

important factor in the avian-human transmission barrier [6, 7]. Characterization of receptor 

binding may support the development of adhesion-inhibiting drugs.

All-atom MD simulations have been applied to numerous crystal complexes of HAs with 

receptor analogues to characterize binding mode dynamics, as well as to study recognition 

and specificity based on bound receptor conformations and interaction profiles [8, 9, 10, 11, 

12]. Recent modeling and simulation work has also revealed that HA receptor specificity 

may depend on extended glycan structure and the ability to accommodate bidentate binding 

to biantennary glycans [13, 14]. MD simulations have been further employed to evaluate the 

effects of HA mutations that alter receptor binding and specificity [15, 16] and to study HA-

antibody recognition and escape [17, 18].
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Notably, HA is glycosylated, with N -glycans contributing around 20% of its molecular 

weight [6]. All-atom simulations of glycosylated HAs have been used to probe the influence 

of glycosylation on receptor binding [19], to provide insight into accessibility of glycan-

remodeling enzymes [20], and to characterize interactions between HA and lung surfactant 

protein D, an innate immune lectin that neutralizes influenza A via attachment to HA 

glycans [21].

HA initiates fusion of the viral envelope and host membranes following cell adhesion and 

endocytosis, when endosomal acidification triggers it to undergo a conformational change. 

The mechanism of HA-mediated membrane fusion has been extensively studied with 

simulation approaches, including characterization of fusion peptide dynamics, interactions 

with the host membrane, and structural effects of reduced pH [22, 23, 24, 25, 26, 27, 28, 29, 

30, 31, 32].

The secondary surface antigen of the influenza A virus is the neuraminidase (NA) tetramer 

(Fig. 1a), which cleaves host cell glycans to allow escape of progeny virions. Several 

compounds that mimic the native substrate of NA and bind to inhibit its action have been 

licensed for use as antiviral drugs for the treatment of influenza A (i.e., tamivir and 

zanamivir) [33]. The majority of simulation work on NA has focused on exploiting it as a 

drug target. In some cases, all-atom simulations have been employed to characterize the 

conformational dynamics of NA from the perspective of designing novel drug compounds or 

elucidating the determinants of ligand recognition and inhibition [34, 35, 36, 37]. In other 

cases, simulations of NA have been used as part of computational screening protocols to 

discover new druggable hot spots or inhibitor leads [38, 39, 40]. Additional studies have 

provided insights into the mechanisms of drug resistance [41, 42, 43], the role of calcium in 

NA stability and drug binding [44], and the structural basis for increased virulence of NA 

stalk-deletion mutants [45].

Another well-studied envelope protein is the human immunodeficiency virus type 1 (HIV-1) 

envelope (Env) trimer (Fig. 1b and 2d), which mediates cellular adhesion and membrane 

fusion. All-atom MD simulations have been employed to characterize the conformational 

properties of Env, particularly its V3 variable domain, a critical determinant of CD4 receptor 

binding [46, 47]. Other simulation work on Env has focused on identifying correlated 

motions that may underlie allosteric communication networks within the protein [48, 47, 49, 

50]. The transmembrane domain and fusion peptide of Env have also been extensively 

investigated with MD simulations to explore conformational variability and membrane 

interactions, providing insights into the mechanism of membrane fusion [51, 52, 53, 54, 55, 

56].

Importantly, Env is heavily glycosylated, with N -glycans accounting for roughly 50% of its 

molecular weight [57]. These glycans form a shield around Env, cloaking it from the host 

immune system, and may also influence the binding affinity of CD4. The glycan shield is of 

great interest as a target for broadly-neutralizing antibody and vaccine design [57], and can 

only be accurately described with simulations that encompass chemical detail. Several all-

atom MD studies have investigated the effects of glycosylation on the conformation and 

dynamics of Env variable domains V1, V2, and V3, as well as implications for receptor and 
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antibody binding [58, 59, 60]. More recent work has used computational modeling and 

simulation to produce fully glycosylated Env trimers, with the goals of characterizing the 

dynamical behavior of the glycan shield and determining its impact on antibody elicitation, 

recognition, and binding [50, 61, 62, 63].

Beyond influenza A and HIV-1, all-atom MD simulations have also been applied to study 

the envelope proteins of several other viruses. Such work has included investigations of the 

effects of varying pH on the dengue virus [64, 65, 66, 67, 68, 69] and vesicular stomatitis 

virus (VSV) [70] envelope proteins, structure and host membrane interactions for the Ebola 

virus [71, 72, 73] and herpes simplex virus (HSV) [74] envelope protein fusion peptides, 

solution dynamics of human parainfluenza virus type 3 (HPIV-3) hemagglutinin-

neuraminidase [75], and conformational flexibility in the hepatitis C virus (HCV) E2 

envelope protein [76, 77].

Viroporins

Enveloped viruses can encode another class of membrane-embedded proteins, called 

viroporins, that play diverse roles in their respective viral infection cycles. Viroporins are 

small, hydrophobic proteins that oligomerize within the envelope to form hydrophilic 

channels, capable of transporting ionic species and small molecules [78]. The essential 

activities of these channels, their druggability, and potential as models to understand 

transport mechanisms within the human cell, have rendered them of long-standing interest 

for study with MD simulations.

The most widely-studied viroporin, from a computational perspective, is the influenza A 

matrix protein 2 (M2) ion channel (Fig. 1a), which transports protons across the viral 

envelope following endosomal acidification to prepare the particle for host membrane fusion 

and subsequent genome release [79]. All-atom MD simulations have been broadly employed 

to study M2 channel activation, gating, and proton permeation [80, 81, 82, 83, 84, 85, 86], as 

well as investigate the relationship between pH and channel conductance [87, 88] and 

internal water structure [89]. Adamantane drug compounds (i.e., amantadine and 

rimantidine) are known to inhibit M2 channel activity [79]. Additional all-atom MD 

simulation work on M2 has been aimed at characterizing drug binding and channel 

inhibition [84, 85, 90], probing the mechanisms of drug resistance [91, 92], and designing 

new inhibitors against drug-resistant mutants [93, 94].

Other viroporins that have been examined using all-atom MD simulations include the viral 

protein U (Vpu) of HIV-1 (Fig. 1b and 2a). Various early modeling and simulation studies of 

Vpu [95] led to evaluation of its preferred oligomeric state and all-atom investigation of its 

dynamics and channel activity [96]. All-atom simulations were also applied to develop a 

model for the Paramecium bursaria chlorella virus type 1 (PBCV-1) Kcv potassium channel 

to probe structure-function relationships [97, 98] and elucidate its mechanism of ion 

transport [99]. More recently, all-atom simulations were employed to determine the structure 

of the hepatitis C virus (HCV) p7 viroporin monomer [100] and to model various channel 

oligomer states, enabling characterization of their dynamics and conductance properties 

[101, 102, 103, 104, 105].
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Capsids

Many viruses package their genome within a remarkable protein shell called a capsid. Often, 

capsids play key functional roles in delivering the viral genome to the host cell nucleus, 

rendering them of great interest as drug targets. Capsids generally represent the largest 

protein components of virus structures, and simulations of intact capsids have accounted for 

the most substantial all-atom virus simulations yet published [106, 2]. Work by Perilla et al. 

has clearly demonstrated the need for chemical detail to facilitate accurate simulation studies 

of virus capsids as drug targets [107].

The first all-atom simulation of a complete virus capsid was based on satellite tobacco 

mosaic virus (STMV, Fig. 1c and 2g) and encompassed a landmark particle count of 1 

million atoms with solvent [108]. Both an empty and genome -containing capsid were 

investigated over 10–13 ns. With packaged RNA, the simulated capsid maintained structural 

integrity and exhibited only minor deviations from icosahedral symmetry. Without RNA, the 

simulated capsid rapidly broke symmetry and began to implode. The results of the work 

strongly suggest that RNA is responsible for nucleating assembly of STMV virions.

Prior to work on STMV, simulations of complete capsids were approximated using 

rotational symmetry boundary conditions, which exploit the icosahedral symmetry of capsid 

structures to model, at least in effect, a complete capsid using only the capsid asymmetric 

unit [106]. As time has progressed, all-atom simulations of intact capsids have become 

increasingly accessible. Notably, such work has included characterization of the stress-

response of the southern bean mosaic virus (SBMV) capsid [109], validation of multi-scale 

modeling approaches based on the Sesbania mosaic virus (SeMV) capsid [110], derivation 

of a complete atomic model for the rabbit hemorrhagic disease virus (RHDV) capsid [111], 

and examination of the interplay between solvent and ions and the porcine circovirus type 2 

(PCV2) capsid [112, 113].

The first all-atom simulation of a virus capsid to explore the microsecond timescale was 

based on an empty model of satellite tobacco necrosis virus (STNV), which encompassed 

1.2 million atoms with solvent [114]. Like many non-enveloped plant viruses, STNV 

exhibits specific binding sites for divalent ions, likely calcium, and has been shown 

experimentally to undergo structural expansion unless these ions are bound. Simulations 

with and without bound calcium confirmed that the former maintain a smaller diameter and 

the latter swell. The results of the work produced an atomistic model for the swollen STNV 

capsid, which was not previously available, as well as an atomistic description of the 

dynamics underlying the swelling process.

The empty poliovirus capsid was studied over a timescale of 200 ns, based on a system of 6 

million atoms with solvent [115]. Simulation results revealed that the capsid functions as a 

semipermeable membrane structure, translocating water molecules, but not ions, in 

equilibrium across its surface. Further, the solution pressure on the interior of the capsid was 

found to be negative, owing to electrostatic interaction of solution electrolytes with the 

charged capsid surface. The results of the work demonstrate that the capsid plays an 
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essential role in maintaining an environment conducive to the stable accommodation of its 

RNA genome and associated counterions.

The empty hepatitis B virus (HBV) capsid was simulated for 1.1 µs based on a model of the 

complete assembly domain, derived from crystallography and molecular modeling [116]. 

The simulation encompassed 6 million atoms with solvent and revealed that the capsid 

undergoes notable asymmetric distortion at equilibrium. Further, the capsid exhibited a 

fivefold preference to translocate sodium over chloride through its triangular pores, and 

induced the localization of sodium along its interior surface. The results of the work 

implicate the triangular pores as the extrusion site of the capsid’s carboxy-terminal domain 

tails, which contain cellular signals, and suggest a mechanism by which the capsid could 

modulate signal exposure based on tail phosphorylation. Simulations have also been used to 

investigate the effects of small-molecule drugs on HBV capsid morphology [107] and to 

determine the structural basis for enhanced assembly and drug resistance in HBV capsid 

mutants [117].

An all-atom structure of the human immunodeficiency virus type 1 (HIV-1) capsid (Fig. 1b 

and 2e) was derived by combining results from cryo-EM and NMR experiments with 

computational modeling and data-guided MD simulations [118]. This landmark simulation 

endeavor, encompassing 64 million atoms with solvent, overcame the challenges of HIV-1 

capsid size and asymmetric architecture to generate the first chemically complete model. 

The results of the study revealed key structural elements defining pentamer-hexamer and 

hexamer-hexamer interfaces within the capsid and produced a much-needed platform to 

enable investigation of capsid function and targeted drug development. Notably, the all-atom 

model has been used to study capsid interactions with the host cell factors cyclophilin A 

[119, 120] and MxB [121], which regulate and restrict HIV-1 viral infectivity, respectively.

In a subsequent study, the empty HIV-1 capsid model was simulated for 1.2 µs, setting the 

current published record for the most substantial all-atom simulation ever performed [122]. 

The simulation revealed that the capsid translocates chloride across its surface at twice the 

rate of sodium through ion-specific channels, which may relate to the translocation of 

nucleotides during reverse transcription. Further, the capsid exhibited complex dynamics, 

including collective motions that divide the structure into two hemispheres and suggest a 

mechanism for capsid uncoating, as well as oscillatory surface waves at four different 

frequencies that may underlie emergent properties of the capsid.

Immature Particle Lattices

Retroviruses such as HIV-1, human T-cell leukemia virus type 1 (HTLV-1), and Rous 

sarcoma virus (RSV) initially assemble as immature particles from Group-specific antigen 

(Gag) polyproteins. During maturation, proteolytic processing of Gag yields cleavage 

products that reassemble to produce mature virions [123]. All-atom simulations proved 

invaluable in determining the structures of the immature HTLV-1 [124] and RSV [125] Gag 

lattices, as well as the HIV-1 capsid protein-SP1 peptide maturation intermediate (CA-SP1) 

[126]. Notably, simulations revealed that the CA-SP1 six-helix bundle exists in a dynamic 

helix-coil equilibrium, and that maturation-inhibiting drugs and mutations act by stabilizing 
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a helical form of the bundle [126]. MD studies of CA-SP1 bound to inositol phosphates 

showed that these small molecules facilitate the formation of the six-helix bundle and, thus, 

promote assembly of the Gag lattice [127]. Simulations of the RSV lattice model were used 

to determine the effects of charge distribution and mutations on Gag assembly [128].

Viral Enzymes

Some viruses encode and package enzymes necessary to carry out the processes that drive 

their infection cycles. All-atom MD simulations of the HIV-1 protease (Fig. 1b and 2b), 

which is responsible for proteolytic cleavage of Gag prior to maturation, revealed the motion 

of the enzyme’s active-site flaps, whose opening and closing are considered essential to 

function [129, 130, 131, 132, 133, 134]. Further, studies of the West Nile virus (WNV) NS3 

protease identified a conformational selection mechanism used to identify its substrate [135]. 

Additionally, all-atom simulations were instrumental in elucidating the mechanism by which 

non-nucleoside reverse transcription inhibitors (NNRTIs), an important class of therapeutics 

against HIV-1, interfere with the virus’ reverse transcripase [136] (Fig. 1b and 2c), which 

synthesizes DNA from the RNA template.

Toward All-Atom Simulations of Complete Virions

As experimental methods, particularly cryo-EM and cryo-ET, continue to provide greater 

detail on virus composition and architecture, and as supercomputers and simulation codes 

continue to offer greater performance for the study of large biological systems, the 

computational community becomes poised to study the dynamics of complete virions within 

physiological environments. Nonetheless, the paucity of accurate, full-length, and fully 

atomistic models for some major components of virus structure presents a significant 

challenge to the derivation and investigation of all-atom virions.

Importantly, the lack of accurate all-atom models for encapsidated genome structures is the 

foremost limiting factor for the construction of complete virions. While the work of 

Freddolino et al. on genome-containing STMV (Fig. 1c) represents the only all-atom 

simulation of a complete virion performed to date [108], the genome structure employed was 

not based on the actual STMV RNA sequence. Similarly, a complete pariacoto virus (PaV) 

virion derived using molecular modeling included an RNA model based on an artificial RNA 

sequence [137]. For both of these virions, limitations in determining genome organization 

from crystal structures, which typically rely on icosahedral averaging, led to inaccuracies in 

the resulting RNA models [138, 139]. Recently, Zeng et al. used computational methods to 

generate the first all-atom model for the complete structure of any virus using the natural 

genome sequence, that of STMV containing realistic RNA [5].

Moving forward, modeling and simulation will continue to play an essential role in the 

determination of all-atom structures for genome-containing capsids, particularly through 

approaches that integrate experimental data from techniques such as NMR and cryo-EM 

[140, 141]. Although simulation studies of the intact HBV capsid have shown that the 

inherent flexibility of some virus structures may limit the ability to obtain true atomic (1–2 
˚A) resolution with cryo-EM [116], advances in image processing are enabling high-
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resolution asymmetric reconstructions capable of producing m o r e authentic descriptions of 

encapsidated genome, such as those obtained for the immature HBV particle and 

bacteriophage MS2 [142, 143]. The availability of more complete structural information, 

along with improved understanding of genome organization within capsids [144] and 

integrative modeling approaches [1] that employ increasingly accurate protein and nucleic 

acid force fields [145, 146], will support new simulation studies of all-atom virions in the 

near future, particularly for non-enveloped viruses.

All-atom simulations of enveloped viruses will face the additional challenge of treating the 

envelope membrane lipid bilayer. Due to size, complex lipid compositions, and the inclusion 

of membrane-embedded surface proteins, viral envelopes require careful consideration to 

model and equilibrate [147]. Further, enclosing a virus capsid in a fully atomistic envelope 

will significantly increase system size and simulation expense, particularly given the 

inclusion of solvent. Figure 2 emphasizes the dramatic size disparity between several 

protein-based components of HIV-1 that have been previously investigated with all-atom 

simulations and a model of the intact envelope membrane (Fig. 2f). The envelope necessarily 

dwarfs the HIV-1 capsid, the simulations of which currently represent the most far-reaching 

accomplishment of computational virology reported for structures of atomic detail [118, 

122]. Following construction of a complete HIV-1 virion, it is clear that substantial 

supercomputing power will be required to simulate such a colossal biological assembly at 

chemical resolution, especially over timescales sufficient to allow meaningful study.

In the meantime, three viral envelopes have been investigated using coarse-grained 

simulation methods, including that of an immature HIV-1 particle [148], influenza A virus 

[149], and dengue virus [150] While the immature HIV-1 particle included its viral matrix 

component, the influenza A virion did not explicitly include matrix protein 1 (M1, Fig. 1a). 

The general lack of high-resolution structures for viral matrix assemblies represents another 

limiting factor in the construction of realistic all-atom virions.

In addition to suitable numbers and distributions of envelope proteins and viroporins 

embedded in the viral surface, truly complete and realistic virion models will also 

incorporate appropriate glycosylation on proteins and glycolipid species, as well as 

stoichiometric numbers of viral enzymes and accessory proteins encoded and packaged by 

the respective virus. The availability of in situ structures for intact virions, such as those 

recently obtained for HIV-1 using cryo-ET [151, 152], will dramatically support future all-

atom modeling and simulation efforts. Additionally, experimental characterization of viral 

envelope lipidomes and improved software and force fields for building and simulating large 

membrane assemblies [147] are essential advancements that will soon enable all-atom 

simulations of complete enveloped virions. Undoubtedly, all-atom virions will be among the 

first large-scale biological systems to be investigated on upcoming exascale supercomputing 

platforms.
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Highlights:

• Viral protein simulations are among the largest all-atom simulations ever 

published.

• All-atom simulations reveal the dynamics of viral proteins at chemical 

resolution.

• All-atom detail is required for accurate simulations, particularly with drugs.

• Data-guided simulations help determine viral structures inaccessible to 

experiment.

• In situ structures and integrative modeling will enable all-atom simulations of 

virions.
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Figure 1: 
Schematic illustrations of viruses whose protein components have been heavily studied 

using all-atom MD simulations. a. Influenza A virus virion, average diameter of 120 nm [3]. 

Hemagglutinin (HA), neuraminidase (NA), and the matrix protein 2 viroporin (M2) are 

embedded within the viral envelope, which surrounds the matrix protein 1 (M1) assembly 

and encloses the RNA. b. Mature HIV-1 virion, average diameter of 145 nm [4]. The 

envelope protein (Env) and viroporin (Vpu) are embedded within the viral envelope, which 

surrounds the matrix protein assembly and encloses the RNA-containing capsid. The virus 

also carries copies of a protease and reverse transcriptase (RT). c. STMV virion, diameter of 

17 nm [5]. STMV is a non-enveloped virus, composed only of the RNA-containing capsid.

Hadden and Perilla Page 21

Curr Opin Virol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Graphical size comparison of viral protein components. a. HIV-1 viroporin (Vpu), 

transmembrane domain. b. HIV-1 protease. c. HIV-1 reverse transcriptase (RT). d. HIV-1 

envelope protein (Env) ectodomain. e. HIV-1 capsid. g. HIV-1 envelope membrane. g. 

STMV capsid.
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