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Abstract

With its important biological implications, modeling the associations of gene expression (GE) and 

copy number variation (CNV) has been extensively conducted. Such analysis is challenging 

because of the high data dimensionality, lack of knowledge regulating CNVs for a specific GE, 

different behaviors of the cis-acting and trans-acting CNVs, possible long-tailed distributions and 

contamination of GE measurements, and correlations between CNVs. The existing methods fail to 

address one or more of these challenges. In this study, a new method is developed to model more 

effectively the GE-CNV associations. Specifically, for each GE, a partially linear model, with a 

nonlinear cis-acting CNV effect, is assumed. A robust loss function is adopted to accommodate 

long-tailed distributions and data contamination. We adopt penalization to accommodate the high 

dimensionality and identify relevant CNVs. A network structure is introduced to accommodate the 

correlations among CNVs. The proposed method comprehensively accommodates multiple 

challenging characteristics of GE-CNV modeling and effectively overcomes the limitations of 

existing methods. We develop an effective computational algorithm and rigorously establish the 

consistency properties. Simulation shows the superiority of the proposed method over alternatives. 

The TCGA (The Cancer Genome Atlas) data on the PCD (programmed cell death) pathway are 

analyzed, and the proposed method has improved prediction and stability and biologically 

plausible findings.
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1. Introduction

For complex diseases, profiling studies have been extensively conducted, collecting data on 

multiple types of omics measurements. Different types of omics measurements are 

interconnected, for example with molecular changes at the DNA/epigenetic level and 

microRNAs regulating gene expressions. Studying the associations between different types 

of omics measurements can lead to a better understanding of disease biology and clinically 

useful models. In this study, we analyze the association between GE (gene expression) and 

CNV (copy number variation), which have one of the first known regulation relationships 

and have attracted extensive attention. The proposed approach is also potentially applicable 

to other types of omics measurements and other high-dimensional problems.

Modeling the GE-CNV association is challenging. Both GE and CNV measurements are 

high-dimensional. The expression level of a specific gene can be affected by both the cis-

acting and trans-acting CNVs [6], with the set of relevant CNVs usually unknown. Some 

studies, such as [17], are limited by conducting the “one GE versus one CNV” analysis on 

only the cis-acting CNVs. Cis-acting and trans-acting CNVs behave differently, with the cis-

acting CNVs usually having dominant effects. Further Figure A.1 in the Online Supplement 

and those alike suggest that the effects of cis-acting CNVs can be nonlinear. Many of the 

existing studies, such as [9, 16], are limited by assuming linear effects. There are a few 

studies that consider nonlinear modeling [12] and suggest the limitations of linear modeling. 

However, they are under different contexts, and there is still a lack of large-scale regression 

analysis.

In data analysis, many GEs have been observed to have long-tailed distributions. In addition, 

various technical problems can cause data contamination [21]. In Figure A.2 (Online 

Supplement), the long-tailed characteristic of GE distributions is clearly seen. Most of the 

existing studies adopt non-robust estimation, which, with such distribution, may result in 

biased model parameter estimation and false variable selection. The existing studies are also 

limited by lacking attention to the correlations among CNVs, which are commonly observed 

in data analysis. Studies in other contexts have shown that effectively accommodating the 

correlations among variables leads to more accurate selection and estimation. However, this 

has not been pursued in the GE-CNV analysis.

Although multiple studies have been conducted on modeling the GE-CNV associations, they 

fail to address one or more of the aforementioned challenges. In this article, we develop a 

new and more effective analysis approach, which can directly overcome the limitations of 

existing analyses. The primary analysis goal is to identify CNVs that are relevant for GEs 

and estimate their effects. For a specific GE, we jointly model the effects of multiple 

candidate CNVs and data-dependently search for the important ones. A partially linear 

model is adopted, with a nonlinear effect for the cis-acting CNV and linear effects for the 

trans-acting CNVs. A robust loss function is adopted to accommodate long-tailed 

distributions and data contamination. Penalization is used for estimation and variable 

selection. We describe the correlations among CNVs using a network structure and 

accommodate it in estimation. It is remarkable that with multiple advancements over the 

existing alternatives, the proposed method is still statistically and numerically manageable.
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In Section 2, we introduce the data and model settings. The proposed method is described in 

Section 3. We develop an effective computational algorithm and rigorously establish the 

consistency properties. Simulation is conducted in Section 4. We analyze the TCGA (The 

Cancer Genome Atlas) data on the PCD (programmed cell death) pathway in Section 5. 

Additional technical details and numerical results are provided in an online supplement.

2. Data and model settings

Consider a random sample of size n, each with p GE and k CNV measurements. Let 

Y = (y1, …, yp) denote the n × p matrix of GEs with ym = (y1
m, …, yn

m)⊤, for all m ∈ 1, ..., p , 

and let X = X1, …, Xk, Xk + 1  be the n × (k + 1) matrix of CNVs with Xt = Xt1, …, Xtn
⊤, for 

all t ∈ 1, …, k  and the n × 1 vector Xk + 1 = 1, …, 1 ⊤ for intercept. For simplicity of 

notation, consider data with matched GE and CNV measurements. For the ith sample and 

mth GE, we consider

yi
m = f m Xmi + Σ

t = 1

k + 1
Xtiαt

m1 t ≠ m + εi
m . (1)

where the fms are unknown smooth functions, with the consideration that most biological 

processes are continuous. In practice, some datasets may have not fully matched GEs and 

CNVs. This can be easily accommodated by making minor modifications to the proposed 

method and will not be further discussed.

For identifiability, we impose the constraint f m Xm1 + ⋯ + f m Xmn = 0 in estimation. Let 

αm = α1
m, …, αm − 1

m , αm + 1
m , …, αk + 1

m ⊤
 denote the k × 1 regression coefficient vector, and εi

m

be the random error. Also denote X = x1, …, xn
⊤, where xi

⊤ is the ith row of X. For the 

random error, assume that Pr εi
m ≤ 0 xi = 1/2 . Note that strict moment assumptions, which 

are commonly needed in the existing studies, are not made on εi
m.

Under the smoothness condition, we approximate fm using the basis expansion

f m Xmi ≈ ∑
ℓ = 1

L
γmℓBmℓ Xmi ,

where L is the number of basis functions, γm = γm1, …, γmL
⊤ is the spline coefficient vector, 

and Bm Xmi = Bm1 Xmi , …, BmL Xmi
⊤ is the set of normalized B-spline basis. Denote 

α = α1 ⊤, …, αp ⊤ ⊤
 and γ = γ1

⊤, …, γp
⊤ ⊤

.

In the literature, there are multiple strategies for modeling trans-acting CNV effects. Some 

describe their effects through their regulating genes and model across-gene effects. Some 
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studies suggest that such a strategy is “more direct” and may have a strong biological basis. 

However, this strategy can be mathematically challenging, since GEs are on both sides of the 

regression and dynamic network analysis may be needed. In this study, we directly regress 

GEs on CNVs. This strategy has been adopted in multiple recent studies, including [20, 26, 

30], and generated scientifically and statistically interesting results. It is beyond the scope of 

this article to compare different modeling strategies. Model (1) jointly describes the effects 

of all candidate CNVs, includes that with a single CNV as a special case, and is more 

flexible. It is a partially linear model and allows the cis-acting CNV to contribute to GE in a 

nonlinear way. It is possible to also allow nonlinear effects for trans-acting CNVs. However, 

their effects are comparatively smaller, and it is reasonable to “pay more attention” to the 

cis-acting CNV with a larger effect. In addition, excessive nonlinear modeling leads to high 

computational cost and unstable estimation. Model (1) also includes the multivariate linear 

model as a special case.

3. Robust network-based penalized estimation

Robust estimation is needed when the random error has a long-tailed distribution or 

contamination. Consider the LAD (least absolute deviation) loss function

Q α, γ = 1
n ∑

m = 1

p
∑
i = 1

n
yi

m − ∑
ℓ = 1

L
γmℓBmℓ Xmi − ∑

t = 1

k + 1
Xtiαt

m1 t ≠ m . (2)

The LAD loss is a special case of the popular quantile regression.

To accommodate the high data dimensionality, and to select relevant CNVs, we consider the 

penalized estimate

α, γ = arg min
α, γ

Q α, γ + P α, γ; λ, ζ , (3)

where α = α1 ⊤, …, αp ⊤ ⊤
, γ = γ1

⊤, …, γp
⊤ ⊤

, and λ and ζ are tuning parameters. A nonzero 

component of the estimate suggests an association between the corresponding GE and CNV. 

For penalty, we first consider

PA α, γ; λ1, λ2, ζ = ∑
m = 1

p
∑
t = 1

k + 1
ϕ αt

m; λ1, ζ 1 t ≠ m + ∑
m = 1

p
ϕ γm 1

; λ2, ζ ≡ P1 + P2, (4)

where ϕ s; λ, ζ = λ∫0

s
1 − x/ λζ +dx is the Minimax Concave Penalty (MCP, [29]) with 

tuning parameter λ and regularization parameter ζ. For trans-acting CNVs, penalties are 

imposed on their regression coefficients. For cis-acting CNVs , their effects are represented 

by vectors of regression coefficients, and penalties are imposed on the group norms of these 

vectors. We adopt the ℓ1 group norm, which leads to similar statistical properties as the ℓ2 
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group norm but simplifies computation. The proposed analysis imposes the same tuning 

parameters across all GEs and CNVs, which ensures that they are analyzed on the same 

ground. This is reasonable as no GE/CNV is “special” compared to others. In addition, 

having a smaller number of tunings (compared to allowing for GE-/CNV-specific tunings) 

significantly reduces computational cost.

A limitation of PA is that it does not accommodate the (sometimes high) correlations among 

CNVs. To solve this problem, we first adopt a network structure to describe the correlations 

among CNVs. In the CNV network, a node corresponds to a CNV, and two nodes are 

connected if the corresponding CNVs are correlated. To construct adjacency, which 

quantifies the network connection between any two nodes, we consider the following 

approach [28]. For nodes i and j, let rij be their correlation coefficient. Let A = (aij : 1 ≤ i, j ≤ 

k) be the adjacency matrix. Consider ai j = ri j
ϱ 1 ri j > r . In subsequent numerical studies, we 

set ϱ = 5, which retains the sign of rij, down-weighs weak correlations (which are possibly 

noises), and keeps the strong ones. Choosing the power transformation and the specific value 

of ϱ follows the published literature [8, 28]. The cutoff r leads to a sparse network and is 

calculated from the Fisher transformation [4] as 

r = exp 2c/ n − 3 − 1 / exp 2c/ n − 3 + 1 , where c = 1.96 is determined from the standard 

normal distribution. We refer to [8, 28] for more discussions on network construction. There 

are other ways of defining network adjacency. For example, some approaches use biological 

(such as pathway) information. It is expected that they are equally applicable. As our goal is 

not to compare different network constructions, we focus on this specific network structure 

without further discussing others.

To accommodate the CNV network, we propose the penalty

PB α, γ; λ, ζ = PA α, γ; λ1, λ2, ζ + λ3 ∑
m = 1

P
∑

1 ≤ j < t ≤ k
a jt × α j

m − sgn a jt αt
m 1 j, t ≠ m

≡ P1 + P2 + P3,

(5)

where λ = λ1, λ2, λ3 , and sgn is the sign function. The newly added P3 has been motivated 

by the following considerations. When two CNVs are highly correlated, it encourages their 

regression coefficients to have similar magnitudes. The “directions” of estimates and 

“degree of encouragement” are adjusted by ajt. A similar strategy has been developed in the 

literature under different contexts [14]. The ℓ1 penalty is adopted to be “consistent” with the 

loss function, which significantly simplifies computation. The tuning parameters are data-

dependently adjusted to effectively avoid over shrinkage.

The proposed P3 shares some similarity with the Laplacian penalty [8], contrasted penalty 

[19], and others in shrinking the differences of regression coefficients but also has notable 

differences. First it is noted that the application context is significantly different. In addition, 

different from the Laplacian penalty, it is based on the ℓ1 norm. The fused Lasso is defined 

on the differences of consecutive coefficients and demands a “spatial lining-up”, which 
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differs from the considered network structure. Also different from the existing methods, 

penalties are only imposed on trans-acting CNVs, not all CNVs. Cis- and trans-acting CNVs 

behave differently, and shrinking the difference between a linear and a nonlinear effect is 

insensible. In the literature, there are also methods that incorporate the networks of both GEs 

and CNVs [20]. The numerical study in [20] suggests that, after incorporating the CNV 

network structure, further accommodating the GE network leads to incremental 

improvements but significant computational cost. In addition, the goal of penalization is to 

select and estimate the coefficients of CNV effects. It thus seems “more direct” to build the 

penalty on the correlations (network) of CNVs.

3.1. Computation

With fixed tunings, optimization with different GEs can be conducted separately in a parallel 

manner. For each GE, the proposed penalty has an “MCP+ℓ1” form, both of which have been 

well studied in the literature. Overall, optimization can be achieved by adopting and 

modifying existing techniques. Specifically, we develop an effective computational 

algorithm based on the MM (majorize minimization) and CD (coordinate descent) 

techniques.

The MM step: Denote θs0
s  as the majorization function of ϕ s; λ, ζ  at s0. In the proposed 

iterative algorithm, we use the superscript “(d)” to denote the dth iteration. Denote 

ϕ′ αt
m + ; λ, ζ  as the limit of ϕ′ s ; λ, ζ  as s αt

m from above. Then we have

θ
αt

m d − 1 αt
m = ϕ′ αt

m d − 1 + ; λ, ζ αt
m − αt

m d − 1 + ϕ αt
m d − 1 ; λ, ζ (6)

as the majorization function of ϕ αt
m ; λ, ζ .

The CD step: With the assistance of MM, minimization can be solved using the CD 

approach. In the dth iteration, for m ∈ 1, …, p  and t ∈ 1, …, k + 1 .

Step 1. Minimize the majorized penalized objective function with respect to γm, with the 

other parameters fixed at their current estimates. Consider only terms relevant to γm:

1
n ∑

i = 1

n
yi
m − ∑

t = 1

k + 1
Xtiαt

m1 t ≠ m − ∑
ℓ = 1

L
γmℓBmℓ Xmi + ϕ′ γm

d − 1
1 + ; λ2, ζ γm 1 .

With the assistance of slack variables, this optimization problem can be casted as a linear 

programming problem, viz.

minimize
ξ, γm

1
n ∑

i = 1

n
ξi
+ + ξi

− + ϕ′ γm
d − 1 + ; λ2, ζ ∑

ℓ = 1

L
γmℓ
+ + γmℓ

−
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subject toξi
+ − ξi

− = yi
m − ∑

t = 1

k + 1
Xtiαt

m1 t ≠ m − ∑
ℓ = 1

L
γmℓBmℓ Xmi ; (7)

ξi
+ ≥ 0, ξi

− ≥ 0 for all i ∈ 1, …, n ,

where a+ = a1 a ≥ 0  and a− = − a1 a ≤ 0 . This can be solved using existing software.

Step 2. Minimize the majorized penalized objective function with respect to α j
m, with the 

other parameters fixed at their current estimates. It is equivalent to minimizing

1
n ∑

i = 1

n
yi
m − ∑

ℓ = 1

L
γmℓBmℓ Xmi − ∑

t = 1

k + 1
Xtiαt

m1 t ≠ j, m − X jiα j
m

+ ϕ′ α j
m d − 1 + ; λ1, ζ α j

m + λ3 ∑
t = j + 1

k
a jt × α j

m − sgn a jt αt
m 1 j, t ≠ m

= 1
n ∑

i = 1

n
X ji × vi j

m + ϕ′ α j
m d − 1 + ; λ1, ζ α j

m + λ3 ∑
t = j + 1

k
a jt × α j

m − sgn a jt αt
m 1 j, t ≠ m ,

where

vi j
m = 1

X ji
yi
m − ∑

ℓ = 1

L
γmℓBmℓ Xmi − ∑

t = 1

k + 1
Xtiαt

m1 t ≠ j, m − α j
m,

for all i ∈ 1, …, n . Minimizing the above objective function can be further formulated as a 

weighted median regression with n + k − j + 1 pseudo-observations

arg min
α j

m

1
n + k − j + 1 ∑

i = 1

n + k − j + 1
wi j vi j

m , (8)

Where

vi j
m =

vi j
m if i ∈ 1, …, n ,

α j
m if i = n+1

α j
m − sgn a jt at

m if i ∈ n + 2, …, n + k − j + 1 ,

and
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wi j
m =

X ji /n if i ∈ 1, …, n ,

ϕ′ α j
m d − 1 + ; λ1, ζ if i = n+1

λ3 a jt if i ∈ n + 2, …, n + k − j + 1 .

The minimizer of (8) is the weighted median of the n + k − j + 1 pseudo-observations.

The overall algorithm can be summarized as follows.

Algorithm: The two-step coordinate descent algorithm

 Initialize d = 0, γ(d)
 = 0, and α(d)

 = 0

 Repeat

   for m ∈ 1, …, p  do

    for j ∈ 1, …, k + 1  do

     Update γm
d + 1 j = m  via (7);

     Update α j
m d + 1 j ≠ m  via (8);

    end

  end

  d = d + 1;

until the difference between two consecutive estimates is less than a cutoff (set as 10−4 in our numerical study);
Return the estimate of (α, γ) at convergence.

The LAD approach is a special case of quantile regression. For the nonconvex penalized 

quantile regression, Peng and Wang [15] established convergence to a stationary point. 

Convergence properties for fused Lasso type penalties have been examined in Friedman et 

al. [5]. It should be noted that, in the aforementioned studies, the penalties have much 

simpler forms. The newly added P3 does not have a separable form, whereas most studies 

that are able to establish convergence to global optimizers have separable penalties. With the 

proposed algorithm, the value of the penalized objective function decreases at each iteration 

and is bounded below. It is conjectured that, following [5, 15, 22], the proposed algorithm 

converges to a coordinate-wise minimum, which is also a stationary point. Our literature 

search does not suggest a way to establish convergence to the global optimizer for the 

proposed approach (and under what conditions). We postpone rigorous research on 

convergence to future studies. In our numerical studies, convergence is achieved in a small to 

moderate number of iterations.

Tuning parameter selection: The tuning/regularization parameters have similar 

implications as in the literature and are selected using commonly adopted approaches. 

Specifically, we set λ2 = Lλ1 and impose comparable penalization to linear and nonlinear 

effects. λ1 (and so λ2) and λ3 control the degree of shrinkage and are selected using V-fold 

cross validation (V = 5 in our numerical study). The regularization parameter ζ balances 
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between unbiasedness and concavity. Breheny and Huang [1], Zhang [29] and other studies 

suggest experimenting with a few values (including 1.8, 3, 4.5, 6, and 10) or fixing its value. 

In our numerical study, we examine this sequence and find that the results are not sensitive 

to the value of ζ and set ζ = 3. In practice, to be prudent, ζ values other than 3 should also 

be examined. There are many publications on tuning parameter selection with splines. In our 

numerical study, we choose cubic splines and ~ n1/5 equally spaced interior knots.

Implementation: To facilitate data analysis, we implement the above procedure in R. The 

code is available at https://github.com/shuanggema.

3.2. Consistency properties

Theoretical study of penalized robust regression under high-dimensional settings is limited 

[25]. Compared with the existing ones, this study is more complicated with the partially 

linear modeling and introduction of the network-based penalty. In addition, the proposed 

method involves simultaneously estimating a large number of high-dimensional models, 

which brings significantly more challenges than estimating a single high-dimensional model. 

Our theoretical study not only provides a strong basis for the proposed method but also 

sheds light on several existing methods and has independent value.

Recall that X = (X1,..., Xk, Xk+1) = (x1,...,xn)⊤ is the n × (k + 1) design matrix. Define xi,I as 

the subvector of xi indexed by I ⊆ {1,...,k + 1}. Let Ic and |I| denote the complement and 

cardinality of set I, respectively. Then the model can be rewritten, for all m ∈ {1,..., p} and I 
∈{1,...,n}, as

yi
m = f m Xmi + x

i, mC
⊤ α

mC
m + εi

m, (9)

where x
i, mC denotes xi with the mth element removed, and α

mC
m  is the regression coefficient 

vector associated with x
i, mC for the mth GE.

Let Bmℓ x = L Sℓ x − ∑i = 1
n Sℓ Xmi /n :ℓ = 1, …, L  be the set of normalized basis 

functions, where Sℓ(x) ℓ = 1
L  is the set of B-spline basis. With basis expansion, one has, for 

all m ∈ {1,..., p} and i ∈ {1, ... ,n},

yi
m ≈ Bm Xmi

⊤γm + x
i, mC
⊤ α

mC
m + εi

m .

With a slight abuse of notation, we also denote αm
m = γm. Denote the true value of regression 

coefficients as α* = αt
m ∗ . Then γm*  , the true value of γm, is also labeled as αt

m ∗. Let f m*  be 

the true value of f m. Denote 𝒮 = t, m :αt
m * ≠ 0 , which is the union of 

ℱ = m, m :αm
m * ≠ 0  and 𝒞 = t, m :αt

m * ≠ 0, t ≠ m . Let 𝒟 = m: f m* ≠ 0  be the set of 
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important nonparametric effects. For m =∈ {1,…, p}, define 𝒮m = t: t, m ∈ 𝒮  and 

𝒞m = t: t, m ∈ 𝒞 . Let ‖ ⋅ ‖q be the ℓq norm for vectors and Cν([a, b]) be the space of ν-

times continuously differentiable functions defined on [a, b].

Let αs = αt
m: t, m ∈ 𝒮 , γ𝒟 = γm:m ∈ 𝒟 , and α𝒞 = αt

m: t, m ∈ 𝒞 . First consider

𝒪n αS = 1
n ∑

m = 1

P
∑
i = 1

n
yi

m − Bm Xmi
⊤γm1 m ∈ 𝒟 − xi, 𝒞m

⊤ α𝒞m
m

+ λ3 ∑
m = 1

p
∑

j, t ∈ 𝒜1m

a jt × α j
m − sgn a jt αt

m + ∑
j, t ∈ 𝒜1m

a jt × αi
m ,

(10)

Where 𝒜1m = ( j, t): j, t ∈ 𝒞m, j < t ≤ k; a jt ≠ 0  and 

𝒜2m = ( j, t): j ∈ 𝒞m, t ∉ 𝒞m, j < t ≤ k; a jt ≠ 0 . 𝒪n α𝒮  is the oracle counterpart of the 

proposed objective function. Define

Ui, m =
Bm Xmi

⊤, xi, Cm
⊤ ⊤

if m ∈ D,

xi, Cm
if m ∉ D .

The following conditions are needed to establish the asymptotic properties.

(C1) The cardinality of , denoted as d0, is fixed. For m ∈ , f m* ∈ Cv([a, b]) .

(C2) Xi has a compact support on [a,b], for i ∈ 1, …, k . There exist positive 

constants M1 < M2 such that 

M1 ≤ λmin(n−1∑i = 1
n Ui, mUi, m

⊤ ) ≤ λmax(n−1∑i = 1
n Ui, mUi, m

⊤ ) ≤ M2 for all m, 

where λmin and λmax denote the smallest and largest eigenvalues, respectively.

(C3) Denote the density function of εi
m conditional on Ui, m as gi, m(⋅ Ui, m). Uniformly 

over i and m, in a neighborhood of zero, gi,m(·|Ui,m) is bounded away from zero 

and infinity and has a bounded first order derivative.

These conditions are mild, and comparable ones have been assumed in the literature; see, 

e.g., [3, 13]. Conditions (C2) and (C3) also imply that, for all m, there exist positive 

constants M3 < M4 such that
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M3 ≤ λmin n−1 ∑
i = 1

n
gi, m 0 Ui, m Ui, mUi, m

⊤ ≤ λmax n−1 ∑
i = 1

n
gi, m 0 Ui, m Ui, mUi, m

⊤ ≤ M4 .

(11)

Consider the estimator αS = arg min𝒪n αS . Let sm = | m| and J = maxm∑t ≠ m
k amt . The 

following theorem establishes the consistency of α𝒮.

Theorem 1. Assume that (C1)–(C3) hold and that κn → ∞ as n → ∞. In addition, L → 
∞, (L + sm)2κn/n → 0 (m ∈ ), sm

2 kn/n 0 m ∈ 𝒟 , and λ3J →0, where C1,...,Cp are large 

constants. With probability at least

1 − ∑
m ∈ 𝒟

exp − L + sm kn/8 − ∑
m ∉ 𝒟

exp −smkn/8

the estimator αs = αt
m: t, m ∈ 𝒮  satisfies

For m ∈ 𝒟, f m x − f m* x + α𝒞m
m − α𝒞m

m *
2

≤ δm, where δm = Cm L + sm kn/n + L−v + λ3J

and f m x = Bm x ⊤γm for any x ∈ [a, b].

For m ∉ 𝒟, α𝒞m
m − α𝒞m

m *
2

≤ δm, where δm = Cm smkn/n + λ3J .The tail probability in 

Theorem 1 is exponentially small. In other words, the proposed method is able to accom-

modate high-dimensional data with ln p = o knminm ∉ Dsm . Consider the oracle estimator 

αo = αS, α
SC , where αS = αS and α

SC = 0. Let

bl λ1, λ3 = max
j, m

−λ1 − λ3 ∑
t ∈ mC − 𝒞m

a jt − ∑
t ∈ 𝒞m

a jtsgn αt
m * ,

bu λ1, λ3 = min
j, m

λ1 + λ3 ∑
t ∈ mC − 𝒞m

a jt − ∑
t ∈ 𝒞m

a jtsgn αt
m * .
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The following additional conditions are needed.

(C4) b(λ1,λ3) = min {−bl(λ1,λ3),bu(λ1,λ3)} > 0, nb(λ1,λ3) → ∞.

(C5) maxmδm
−1min t, m ∈ 𝒞 αt

m * ∞ and 

maxm ∈ 𝒟δm
−1minm ∈ 𝒟∑i = 1

n f m* Xmi
2/n ∞, where δm is defined in 

Theorem 1.

(C6) maxm δm ≤ λ1 and maxm∈  δm ≤ λ2.

Condition (C4) requires that the smallest signal does not decay too fast. Comparable 

conditions have been assumed in Wang et al. [24] and others.

Theorem 2. Assume that (C1)–(C6) and conditions in Theorem 1 hold. If ln 

p = o knminm ∉ 𝒟sm , maxm L + smδm = o b λ1, λ3 , maxmsmvL lnn + lnk + lnp = o nb λ1, λ3

and maxm < 𝒟sm ln n + lnk + lnp = o(λ2), then with probability converging to 1, αo is a local 

minimizer of the penalized LAD objective function with penalty (5).

This theorem establishes that the proposed estimator enjoys the same asymptotic consistency 

as the oracle estima-tor with probability approaching one. This property holds under 

ultrahigh dimensions without restrictive (for example, moment) conditions on the random 

errors. The proofs are presented in an Online Supplement.

4. Simulation

We set (n, k, p) = (200, 200, 200). Note that although k and p may seem modest, the number 

of unknown effects ((k + 1) × p) is in fact very large. The analysis is even more challenging 

with the basis expansion for nonlinear effects. An important component of the proposed 

method is to accommodate the connections among CNVs. In practice, the number of highly 

correlated CNVs is not expected to be large. As to be shown in data analysis, this simulation 

setting mimics that of a pathway. GEs/CNVs in the same pathway are more likely to have 

related functions and correlated measurements and are sensible to be analyzed together, 

whereas different pathways are largely different and can be analyzed separately.

In TCGA and other data, the processed CNV data marginally have unimodal continuous 

distributions close to normal. Here we simulate the CNVs to have a multivariate normal 

distribution with marginal means zero and a block diagonal covariance structure. There are 

40 blocks, with 5 CNVs per block. CNVs within the same block have correlation coefficient 

ρ, and those in different blocks are uncorrelated. Three levels of correlation are considered.

To generate the parametric parameters, we first simulate the 200×200 matrix M = diag(U1 ∗ 
I1,…, U40 ∗ I40), where “∗” denotes the element-wise product between the 5 × 5 matrices Us 

and Is with s ∈ {1,…, 40}. Each entry of Is is generated from a Bernoulli distribution with a 

success probability of 0.8. For s ∈ {2,…, 10}, the entries in the odd and even columns of Us 

are simulated from 𝓤(0.8, 1) and 𝓤(−1, −0.8), respectively. For s ∈ {12,…, 20}, the entries 

in the odd and even columns of Us are simulated from 𝓤(−1, −0.8) and 𝓤(0.8, 1), 

respectively. For s ∈ {1, 11} and s > 20, all components of Us are 0. The diagonal elements 
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of M are then set as zero. For each GE, the parametric parameters correspond to a row of M. 

Under this setup, trans-acting CNVs with nonzero effects belong to the same block as the 

cis-acting CNVs and are correlated. This is motivated by the presence of small functional 

groups, each of which consists of a small number of correlated CNVs and coregulated GEs 

[31].

For the effects of cis-acting CNVs, set fm(x) = 2 sin(xπ/2) for m ∈ {1,…, 5, 11,…, 55, 61,

…, 100} and = 0 otherwise. For blocks 1 and 11, GEs are regulated by cis-acting CNVs 

only. For blocks 2 and 12, GEs are regulated by trans-acting CNVs only. For the rest of the 

blocks with s ≤ 20, GEs are regulated by both types of CNVs. For blocks with s ∈ {21,…, 

40}, there is no detectable regulation. The settings thus comprehensively cover all possible 

scenarios. The true parametric effects are generated randomly. By expectation, there are 288 

of them. There are 90 true nonparametric effects. The intercepts are set as zero. Consider 

three random error distributions: N(0, 1) (Error 1), 0.85 N(0, 1)+0.15 Cauchy (Error 2), and 

0.75 N(0, 1)+0.25 Cauchy (Error 3), which have different contamination levels.

Beyond the proposed method, we also consider seven alternatives (Table A.1, Online 

Supplement): (A2) The partially linear modeling is adopted, and P1 + P2 is applied. There is 

no accommodation of the network structure. (A3) All CNV effects are assumed to be linear, 

P1 is used for estimation and selection, and the network structure is accommodated using P3. 

(A4) All CNV effects are assumed to be linear, and there is no accommodation of the 

network structure. Methods A5–A8 are parallel to A1–A4 but adopt the non-robust LS (least 

squares) loss. Although there are other alternatives, these seven have an analysis framework 

closest to that of the proposed method and can directly establish the merit of the proposed 

partially linear modeling, robust loss, and accommodation of the CNV network structure.

When evaluating the proposed and alternative methods, we mainly focus on selection. If 

CNVs that are relevant to GEs can be accurately identified, there are multiple ways of 

generating satisfactory estimation. Summary results are presented in Tables 1 and 2. The 

means and standard deviations of true and false positives are computed for the parametric 

and nonparametric effects separately based on 100 replicates. The main findings are as 

follows:

(a) Simulation shows the advantage of partially linear modeling. For example with 

Error 1 and ρ = 0.5, TP1 and TP2 under A1 are 287.6 and 90.0, respectively. In 

comparison, TP1 and TP2 under A3 are 232.7 and 50.9, respectively.

(b) When there is no contamination and correlation is weak to moderate, the non-

robust methods can have satisfactory performance. However, with 

contamination, the robust methods outperform. For example with Error 2 and ρ 
= 0.5, TP1 and TP2 under A1 are 286.8 and 89.5, respectively. TP1 and TP2 

under A5 are 274.5 and 87.9, respectively, which are also very satisfactory. 

However, the price is that A5 has a large number of false positives with FP1 = 

173.8.

(c) When there exist moderate to strong CNV correlations, it pays off to 

accommodate the network structure. For example with Error 2 and ρ = 0.9, A1 

and A2 have FP1 162.0 and 190.3, respectively. We note that with strong 
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correlations, the proposed method may have more false positives. This 

observation is reasonable. The network-based penalty shrinks the differences 

between regression coefficients. When an unimportant variable is correlated 

with an important one (within the same block in this simulation), this penalty 

tends to “pull” their coefficients together, also select the unimportant one, and 

increase false positives. Overall, across the whole spectrum of simulations, we 

observe superior performance of the proposed method.

In the second set of simulation, we examine whether the superiority of the proposed method 

over the alternatives depends on signal level. Specifically, under Error 2, we reduce the 

signal levels to 0.8 of those described above. Results are shown in Table A.2 (Online 

Supplement). A1 outperforms A2–A4 in a similar way as observed above. Results on the 

non-robust methods, which have inferior performance, are omitted.

In the third set of simulation, we examine if performance of the proposed method depends 

on the number of signals. Specifically, the expected number of parametric effects is doubled, 

and the number of nonparametric effects remains at 90. Other settings are similar to those 

under the first set of simulation. Results of the robust methods are shown in Table A.3 

(Online Supplement). We draw similar conclusions as those from Tables 1 and 2.

In the fourth set of simulation, we consider more realistic CNV distributions. Specifically, 

we use the real data analyzed in the next section. For each simulation replicate, we randomly 

sample 200 subjects from the TCGA data, each with 426 observed CNV measurements. The 

parametric coefficient matrix is generated in a similar way as under the first set of 

simulation. The same nonlinear fm’s and error distributions are adopted. Results are 

summarized in Table A.4 (Online Supplement). With more complex CNV distributions, all 

methods perform worse than in the first three sets. However, the patterns are similar, with 

the proposed method significantly outperforming the alternatives.

As in many other studies, the simulated CNV distributions in the first three sets may be 

much simpler than practically encountered. Luckily, this is “compensated” by the last set. 

The simulated settings have comprehensively covered different numbers and strengths of 

signals and correlations. Similar settings have been adopted in the literature [20]. In the 

literature, research on nonlinear cis-acting CNV effects is limited. It is sensible to start with 

simple forms, which have been extensively adopted in semiparametric modeling. As in any 

other study, the simulation set-tings have limitations. However, the superiority of the 

proposed method is clearly seen. We have also experimented with a few other settings and 

drawn similar conclusions (results omitted).

With the robust loss function and more complicated penalty, the proposed method has higher 

computational cost than some alternatives. However, simulation suggests that it is still 

computationally affordable. Specifically, with fixed tunings, the analysis of one replicate in 

the first set of simulation takes 5.1 (A1), 3.4 (A2), 4.7 (A3), 2.0 (A4), 3.9 (A5), 1.8 (A6), 3.1 

(A7), and 1.3 (A8) minutes on a desktop with standard configurations. We have also 

observed that, when sample size and data dimensionality increase, computational cost 

increases moderately (details omitted). The current code is written in R. Computer time may 

be much reduced if the computational core is written in C and parallel computing is adopted.
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5. Analysis of TCGA data

We analyze the TCGA data on cutaneous melanoma. In our analysis, the processed level 3 

data are downloaded from the TCGA portal. Details on data collection and processing are 

available at TCGA website. Briefly, the GE data were collected using the Illumina Hiseq 

2000 RNA-SEQ Ver 2 platforms. The processed data are the robust Z-scores, which have 

been lowess-normalized, log-transformed, and median-centered. The measurements indicate 

the under- or over-expression of genes in tumor with respect to normal tissues. The CNV 

data were collected using the Affymetrix SNP 6.0 platforms. Data went through 

segmentation analysis and were transformed into segment mean values, with amplified 

regions having positive values and deletions having negative values.

In principle, the proposed method can accommodate whole-genome data. However that 

would involve estimating a huge number of nonparametric effects and a giant coefficient 

matrix. In addition, as previously described, it is sensible to analyze different pathways 

separately. Specifically, we analyze the PCD (programmed cell death) pathway, which is 

well known for resistance to induction of apoptosis. The PCD pathway is related to the 

regulated cell suicide process where cells go through death to prevent themselves from 

proliferating or in response to certain signals to cells, such as stress or DNA damage. Genes 

within this pathway are identified using the annotation package in GSEA (http://

www.broadinstitute.org/gsea). A total of 428 CNV and 426 GE measurements are available 

on 333 subjects. We remove the two CNVs that are not matched to GEs, resulting in 426 

pairs of CNV and GE measurements. Under the proposed model, there are a total of 181,050 

parametric parameters, 426 intercepts, and 426 nonparametric parameters.

Summary analysis results are presented in Table 3. The proposed method identifies 2260 

parametric and 307 nonparametric effects. Each GE is found to be regulated by at least one 

CNV. Since a large number of effects are iden-tified, it is infeasible to present all results. For 

the identified parametric effects, we calculate the median as −0.025, and interquartile range 

as (−0.115, 0.099). For the identified nonlinear effects, we compute the normalized `1 

norms, which have median 1.029, and interquartile range (0.714, 1.668). In Figure 1, for 

four representative GEs, we show the estimated cis-acting CNV effects. For BCL2 and 

SNCA, we observe an overall decreasing and increasing trend, respectively. The “bumps” 

close to the boundaries need to be interpreted cautiously, as the numbers of observations are 

small in these regions. For IL2RA and TXNL1, the effects are mostly constants in the 

middle, but differences are observed for regions with high levels of deletions/amplifications. 

Such results suggest that the commonly adopted linear modeling may be insufficient. The 

deviation from linear can be caused by interactions, other regulating mech-anisms 

(microRNAs, methylation, etc.), and others. Mechanistic studies will be needed to fully 

validate and interpret the identified nonlinear trends.

To complement the above analysis, we implement a resampling-based method [7], use part 

of the data for iden-tification/estimation, make prediction for the rest, and compute the 

absolute prediction errors. As shown in Table 3, the proposed method has prediction 

performance slightly better than A2 but much better than the other alternatives. It is noted 

that the non-robust methods have inferior prediction, which partly justifies the necessity of 
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robust analysis. Also using the resampling approach, we compute the probability of a 

specific effect being identified, which provides a way of assessing stability. For effects 

identified using full data, the mean probabilities (of being identified) are 59% (A1), 45% 

(A2), 46% (A3), and 41% (A4), respectively. The probabilities are lower for non-robust 

methods.

As a representative example, we take a closer look at gene BCL2, which is a confirmed 

biomarker for melanoma etiology and prognosis. In the process of apoptosis, the BCL2 

protein plays an important role in inhibiting cell death and promoting cell survival. Elevated 

BCL2 gene expressions have been associated with the presence of ulceration and poorer 

survival. Using the proposed method, the cis-acting CNV is identified as having a nonlinear 

effect (Figure 1). The parametric effects identified using different methods are presented in 

Tables A.5 and A.6 (Online Supplement). Different methods generate significantly different 

findings. In Figure A.3 (Online Supplement), we show the network connection of CNVs 

identified using different methods. The proposed method identifies a tightly connected 

module composed of six CNVs: PPARD, RIPK1, SERPINB9, TNF, TXNDC5, and VEGFA. 

The corresponding genes are all located on chromosome 6p. The instability of chromosome 

6 has been associated with melanoma progression. The proposed method also identifies two 

other connected CNVs: PMAIP1 and SERPINB2. The corresponding genes are located 

closely on the chromosome (18q21.33), with PMAP1 on18q21.32 and SERPINB2 on 

18q21.3. Two isolated CNVs are also identified, with one located on chromosome 2 and the 

other on the X chromosome. The other robust methods also identify connected CNVs but 

not the six-CNV module. The non-robust methods do not identify connected CNVs.

In studies with a much smaller scale (with a few GEs and CNVs), the identified GE-CNV 

relationship can be functionally validated. The proposed analysis involves a large number of 

GEs and CNVs, and it may be unrealistic to validate all results. If there is an interest, subsets 

of the results can be examined in greater details. The improvement observed in simulation 

and improved prediction and stability provide support to the validity of analysis.

6. Discussion

In recent studies, multiple types of omics measurements have been collected, making it 

possible to study their regulation relationships. The regulation of GE by CNV is one of the 

first known regulating mechanisms and has attracted special attention. In this article, we 

have developed a new analysis approach for modeling the GE-CNV regulation. With the 

partially linear modeling, the proposed approach can more accurately describe the dominant 

cis-acting CNV effects. The proposed estimation also has notable advantages: the robust loss 

function accommodates long-tailed GE distributions and contamination; the simultaneous 

analysis ensures that all GEs are analyzed on the same ground; and the correlations among 

CNVs are effectively accommodated using a network structure and a shrinkage penalty. It is 

remarkable that with significant methodological advancements, the proposed method is still 

theoretically and computationally manageable. Under a variety of simulation settings, it 

significantly outperforms seven direct competitors. In the analysis of TCGA data, it leads to 

biologically plausible findings and improved prediction and stability.
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The proposed approach is not limited to GE-CNV analysis. In omics studies, other 

regulation relationships (for example, proteins by GEs, GEs by methylation and 

microRNAs) are also of significant interest. In addition, data with both high-dimensional 

responses and high-dimensional covariates also arise in other fields. It is noted that with 

other data, there may not be a simple match between responses and covariates. More 

carefully examining the proposed approach (methodology, computation, and theory) 

suggests that there is actually no need for matching, and it can accommodate multiple 

nonlinear effects per response. Determining which covariate effects should be nonlinear is a 

“classic” statistical problem and has been examined in multiple studies. The proposed 

approach can be coupled with the techniques for determining nonlinear effects and have 

broader applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Analysis of the TCGA data: estimated cis-acting CNV effects for four genes.
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Table 1:

Simulation: summary based on 100 replicates. In each cell, mean (sd). TP1/FP1 and TP2/FP2: number of true/

false positives for parametric and nonparametric effects.

ρ TP1 FP1 TP2 FP2

Error 1

0.1

A1 283.1 (2.9) 0.0 (0.0) 90.0 (0.0) 0.1 (0.2)

A2 283.1 (2.7) 0.0 (0.0) 90.0 (0.0) 0.1 (0.2)

A3 246.3 (9.6) 0.0 (0.0) 81.7 (2.6) 0.0 (0.0)

A4 246.8 (9.5) 0.0 (0.0) 81.7 (2.6) 0.0 (0.0)

0.5

A1 287.6 (0.7) 2.5 (1.6) 90.0 (0.0) 0.0 (0.0)

A2 287.6 (0.6) 2.4 (1.7) 90.0 (0.0) 0.0 (0.0)

A3 232.7 (3.4) 1.5 (1.0) 50.9 (0.8) 2.3 (1.3)

A4 232.2 (3.7) 1.6 (0.9) 50.8 (0.8) 2.4 (1.3)

0.9

A1 285.0 (2.4) 147.6 (14.3) 90.0 (0.0) 0.1 (0.3)

A2 286.2 (1.5) 179.9 (16.1) 90.0 (0.0) 0.1 (0.3)

A3 219.8 (3.1) 60.6 (9.7) 49.6 (0.7) 8.6 (0.6)

A4 222.1 (4.4) 64.6 (8.9) 49.4 (0.9) 8.5 (0.6)

Error 2

0.1

A1 278.1 (4.6) 0.1(0.3) 89.7 (0.5) 0.2 (0.4)

A2 278.4 (4.4) 0.1 (0.3) 89.7 (0.5) 0.3 (0.5)

A3 227.9 (9.3) 0.1 (0.3) 78.9 (2.9) 0.0 (0.0)

A4 228.0 (8.8) 0.1 (0.3) 78.9 (3.0) 0.0 (0.0)

0.5

A1 286.8 (1.4) 3.1 (1.7) 89.5 (0.7) 0.2 (0.5)

A2 286.9 (1.5) 3.0 (1.5) 89.5 (0.8) 0.2 (0.5)

A3 234.2 (3.6) 1.7 (1.1) 51.2 (1.0) 2.5 (1.3)

A4 233.2 (3.3) 1.6 (1.2) 51.2 (1.0) 2.6 (1.4)

0.9

A1 283.3 (2.8) 162.0 (12.0) 89.7 (0.5) 0.3 (0.6)

A2 284.8 (2.5) 190.3 (12.4) 89.7 (0.6) 0.3 (0.5)

A3 222.3 (4.1) 81.7 (8.6) 49.4 (0.7) 9.0 (0.5)

A4 223.6 (5.0) 85.9 (12.5) 49.4 (0.9) 8.8 (0.6)

Error 3

0.1

A1 279.2 (4.7) 0.0 (0.0) 89.4 (0.9) 0.2 (0.5)

A2 279.0 (4.7) 0.0 (0.0) 89.4 (0.9) 0.2 (0.5)

A3 218.8 (8.9) 0.0 (0.0) 76.3 (2.9) 0.0 (0.0)

A4 218.7 (8.4) 0.1 (0.2) 76.5 (2.8) 0.0 (0.0)

0.5

A1 286.5 (1.4) 3.9 (1.3) 89.3 (0.9) 0.3 (0.6)

A2 286.7 (1.2) 4.2 (1.5) 89.4 (0.9) 0.3 (0.6)

A3 233.7 (3.4) 2.0 (1.5) 50.8 (0.9) 2.9 (1.3)

A4 233.3 (3.5) 2.0 (1.3) 51.0 (0.9) 2.9 (1.2)

0.9

A1 282.4 (2.9) 162.9 (14.6) 89.6 (0.9) 0.4 (0.7)

A2 283.8 (2.2) 202.1 (19.1) 89.6 (0.9) 0.5 (0.6)

A3 223.2 (3.9) 79.4 (13.2) 49.6 (0.5) 9.1 (0.6)

A4 221.6 (3.5) 74.1 (9.7) 49.6 (0.7) 9.0 (0.6)
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Table 2:

Simulation: summary based on 100 replicates. In each cell, mean (sd). TP1/FP1 and TP2/FP2: number of true/

false positives for parametric and nonparametric effects.

ρ TP1 FP1 TP2 FP2

Error 1

0.1

A5 288 (0) 0.1 (0.2) 90.0 (0.0) 0.0 (0.0)

A6 288 (0) 0.1 (0.2) 90.0 (0.0) 0.0 (0.0)

A7 288 (0) 1.6 (1.2) 90.0 (0.0) 0.0 (0.0)

A8 288 (0) 1.6 (1.2) 90.0 (0.0) 0.0 (0.0)

0.5

A5 283.6 (2.1) 2.4 (1.5) 90.0 (0.0) 0.0 (0.0)

A6 283.2 (1.9) 2.4 (1.5) 90.0 (0.0) 0.0 (0.0)

A7 287.2 (0.8) 2.4 (1.6) 88.8 (1.1) 0.0 (0.0)

A8 287.2 (0.9) 2.4 (1.6) 88.8 (1.0) 0.0 (0.0)

0.9

A5 247.6 (3.8) 35.0 (4.6) 89.9 (0.3) 0.0 (0.0)

A6 171.6 (4.9) 16.9 (2.3) 89.9 (0.3) 0.0 (0.0)

A7 262.7 (6.9) 41.0 (11.6) 50.2 (1.3) 0.3 (0.5)

A8 204.7 (9.4) 6.5 (2.6) 43.0 (2.5) 0.0 (0.0)

Error 2

0.1

A5 287.0 (1.7) 196.5 (157.9) 89.9 (0.4) 0.4 (0.7)

A6 287.1 (1.3) 198.1 (158.0) 89.9 (0.3) 0.4 (0.7)

A7 287.3 (1.4) 201.5 (155.4) 89.5 (0.7) 0.3 (0.6)

A8 287.3 (1.4) 199.0 (155.4) 89.5 (0.7) 0.3 (0.6)

0.5

A5 274.5 (11.1) 171.7 (85.0) 87.9 (2.4) 0.6 (0.7)

A6 273.8 (11.5) 173.8 (86.9) 87.8 (2.6) 0.6 (0.7)

A7 274.6 (11.0) 176.0 (88.4) 78.3 (9.5) 0.33 (0.6)

A8 273.5 (12.0) 174.9 (89.9) 78.4 (9.1) 0.37 (0.6)

0.9

A5 242.1 (17.2) 182.6 (104.4) 88.6 (5.4) 0.9 (1.1)

A6 158.8 (23.4) 159.6 (115.3) 80.3 (12.3) 0.7 (0.9)

A7 227.6 (31.8) 160.1 (83.6) 45.4 (4.9) 0.6 (0.7)

A8 159.7 (39.8) 149.1 (116.0) 35.9 (7.7) 0.3 (0.6)

Error 3

0.1

A5 286.5 (1.9) 262.7 (133.7) 89.5 (0.7) 1.1 (0.8)

A6 286.7 (1.7) 265.4 (141.7) 89.4 (0.9) 1.0 (0.8)

A7 285.5 (1.9) 262.8 (134.0) 89.5 (0.7) 1.1 (0.8)

A8 286.7 (1.7) 263.8 (141.0) 89.4 (0.9) 1.0 (0.8)

0.5

A5 269.8 (11.2) 281.7 (126.5) 87.3 (3.0) 1.1 (1.0)

A6 269.0 (11.5) 288.6 (144.6) 87.4 (2.7) 1.1 (1.0)

A7 268.2 (9.9) 279.3 (147.5) 73.6 (2.6) 0.5 (0.7)

A8 264.1 (11.8) 268.9 (135.0) 72.1 (8.1) 0.6 (0.7)

0.9

A5 225.7 (21.0) 279.8 (154.9) 87.1 (6.7) 1.7 (1.4)

A6 145.1 (20.4) 253.6 (194.2) 74.8 (12.6) 1.4 (1.4)

A7 211.3 (33.3) 250.8 (142.9) 43.3 (4.9) 1.2 (0.9)

A8 139.8 (31.0) 233.6 (171.5) 32.4 (6.3) 1.0 (1.0)
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Table 3:

Analysis of TCGA data. Numbers of identified nonzero parametric (P) and nonparametric (NP) effects, and 

sum of absolute prediction errors (PE).

P NP PE

A1 2260 307 282.02

A2 2088 299 293.16

A3 2735 307.67

A4 2748 308.12

A5 2491 70 549.99

A6 2648 76 538.14

A7 2784 438.62

A8 2293 436.58
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