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Abstract

Information on genetic diversity and population structure are very important in any breeding

programme for the improvement of traits of interest and the development of outstanding

products for commercialization. In the present study, we assessed the genetic diversity of

94 early-maturing white and yellow tropical maize inbred lines using single nucleotide poly-

morphism (SNP) markers. The larger number of SNP markers used in this study allowed a

clearer inference of the population structure of the 94 inbred lines. Cluster analysis resolved

the inbred lines into different clusters based on their pedigree, selection history and endo-

sperm colour. However, three heterotic groups were revealed by population structure analy-

sis, but additional field evaluation could be more informative to confirm the heterotic groups

identified. Nevertheless, wide genetic variability existed among the inbred lines making

them unique with the potential to contribute new beneficial alleles to maize breeding pro-

grammes in the tropics, especially in the West and Central Africa (WCA) sub-region.

Introduction

For good progress from selection in any crop improvement programme, information on the

genetic diversity and population structure of the base germplasm is crucial. Therefore, plant

breeders routinely resort to newly available tools to make informed decisions on selection. In

the past, a number of researchers have highlighted the importance and the need for accurate

assessment of genetic diversity in applied breeding programmes. This allows the examination

of issues relating to the assignment of inbred lines to heterotic groups, selection of efficient tes-

ters for testing of inbred lines in hybrid combinations, drawing inferences on the introgression

of desirable genes from diverse germplasm sources into available genetic base, identification of

diverse parental combinations to create segregating progenies with maximum genetic variabil-

ity for further selection and the estimation of genetic diversity loss during conservation or

selection [1–6]. Studies of the early and extra-early maize germplasm in sub-Saharan Africa
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(SSA) have shown conclusively that genetic diversity is of primary importance in the display of

heterosis. Inbred lines from different heterotic groups produced higher-yielding hybrids than

those of lines from within the same heterotic group [7]. Therefore, the assessment of genetic

diversity within and between plant populations is routinely carried out via different marker

techniques such as morphological, biochemical and molecular markers [8,9].

DNA based markers are preferred over morphological and biochemical markers because

they are not affected by environmental factors and/or by the developmental stage of the plant

[8,10]. Consequently, DNA markers have been an indispensable tool for characterizing genetic

resources and providing breeders with more detailed information to assist in selecting diverse

parents [11]. In the past, various molecular markers including simple sequence repeats (SSRs)

have been extensively used in maize to study the correlation between genetic distance and

hybrid performance, heterosis, combining ability and assign inbred lines into heterotic groups

[12–17]. For example, forty-two early maturing inbred lines were genotyped by Oyekunle,

Badu-Apraku, Hearne, and Franco [17] using 23 SSR markers and grouped them into five het-

erotic groups. The information generated also provided a better understanding of the genetic

relationships among the early-maturing inbred lines and facilitated more effective utilization

of the inbred lines in the breeding programme for the development of synthetic varieties and

hybrids, and formation of heterotic populations used to derive promising inbred lines. How-

ever, the choice of either one or the other marker type, the number of loci, the cost of marker

as well as the purpose of the study and the evolutionary history of the populations under inves-

tigation play a major role [18].

With the advances in marker technology, single nucleotide polymorphism (SNP) markers

have become the choice due to their low cost per data point, high genomic abundance, locus-

specificity, co-dominance, the potential for high throughput analysis and lower genotyping

error rates [6,19–24]. Studies on the comparative utilization of either SSRs or SNPs have

revealed that SSRs with moderate density seems to be more effective for diversity and popula-

tion structure analysis in maize but as the number of SNP markers increases the results

obtained are comparable [19,25].

In the 1990s, the maize improvement programme of IITA initiated a breeding programme

for the extra-early- and early-maturing groups which resulted in the development of some

multiple stress tolerant (drought, Striga, and streak resistant/tolerant) broad-based populations

such as TZE-W Pop DT STR and TZE-Y Pop DT STR in the early maturing (90–95 days to

physiological maturity) group, and TZEE-W Pop DT STR and TZEE-Y Pop DT STR in the

extra-early (80–85 days to physiological maturity) maturing group during the first decade of

the inception of the programme [26,27]. Subsequently, numerous open-pollinated varieties

(OPVs) and inbred lines have been extracted from these multiple stress tolerant broad-based

populations and their derivatives for all agro-ecologies of West and Central Africa (WCA)

sub-regions by IITA and its National Agricultural Research (NARS) partners, which has ulti-

mately played an important role in hybrid maize development in WCA. Most of these inbred

lines have been characterized using both morphological and/or molecular markers especially

SSR markers [28]. Given the cost-effectiveness of SNP markers and their growing use for a

wide range of applications in different crops, it is of interest to shift to next-generation markers

in the assessment of genetic differences and relationships among the new extra-early- and

early-maturing white and yellow maize inbred lines that have been recently developed by IITA

for their effective classification into heterotic groups. This will serve as a guide to parent selec-

tion for further hybrid development. Therefore, the objective of the present study was to exam-

ine the genetic diversity and population structure of Striga resistant and/or drought-tolerant

maize inbred lines derived from different source populations selected from the panel of inbred

lines of the IITA maize improvement programme using SNP markers.
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Materials and methods

Germplasm

The 94 inbred lines used in this study were developed by the West and Central Africa Collabo-

rative Maize Research Network/International Institute of Tropical Agriculture (WECAMAN/

IITA), with tolerance or resistance to Striga and maize streak virus (MSV), and/or tolerance to

drought (S1 Table). The inbred lines were extracted from twelve broad-based and two narrow-

based source populations developed from both local and exotic germplasm identified based on

several years of extensive testing for adaptation to the Guinea and Sudan savanna agro-ecolo-

gies of WCA (Table 1). The first generation of inbred lines were obtained following six genera-

tions of self-pollination in four early (TZE-W Pop DT STR C0, TZE-Y Pop DT STR C0, TZE

Comp5-Y C6 and WEC STR) and two extra-early (TZEE-W Pop DT STR C0 and TZEE-Y

Pop DT STR C0) broad-based populations with varied levels of drought tolerance and Striga
resistance. A few inbred lines extracted from the two extra-early source populations, were cate-

gorized as early maturing because the flowering dates were typical of lines of the early matur-

ing group. A second generation of inbred lines was developed from two F2 populations

derived from the bi-parental crosses, TZEI 1 x TZEI 2 and TZEI 11 x TZEI 8 which involved

elite parental inbred lines from two of the four broad-based early maturing populations.

Another set of inbred lines was extracted from two other bi-parental crosses, TZE-W Pop x

1368 STR and TZE-W Pop x LD. The second generation of inbred lines was in all cases

obtained following 6–7 cycles of self-pollination and selection for drought tolerance and/or

resistance to Striga.

DNA extraction and genotyping

Fresh leaves samples were collected from three weeks old seedlings within each genotype and

stored in a deep freezer at -80˚C. Prior to genomic DNA extraction, each sample was dried in

a Labconco Freezone 2.5L System lyophilizer (Marshall Scientific, USA) followed by grinding

using SpexTM Sample Prep 2010 Geno/Grinder (Thomas Scientific, USA). Total genomic

DNA extraction was performed using the DArT protocol (www.diversityarrays.com/files/

DArT_DNA_isolation.pdf). The quality and quantity of DNA in each sample was determined

Table 1. Source populations of 94 maize inbred lines used in the present study.

S/N Source population Number of extracted inbred line Grain colour

1 TZE-W Pop x 1368 STR 4 White

2 TZE-W Pop x LD 1 White

3 TZE-W Pop STR 108 10 White

4 TZE-W Pop STR Co 4 White

5 TZE-W POP STR 104 10 White

6 TZEE-W POP STR 104 4 White

7 TZEE-W POP STR 108 1 White

8 WEC STR 2 White

9 (TZEI 1 x TZEI 2) 10 White

10 TZE-Y Pop STR Co 12 Yellow

11 TZE-Y Pop STR 106 5 Yellow

12 TZEE-Y Pop STR 106 9 Yellow

13 TZE Comp5-Y C6 3 Yellow

14 (TZEI 11 x TZEI 8) 19 Yellow

Total 94

https://doi.org/10.1371/journal.pone.0214810.t001
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on 2% agarose gel followed by quantification using an ND-1000 Spectrophotometer (Nano-

drop Technologies). For genotyping, DNA samples were sent to Diversity Arrays Platform

[29]. Library construction, sequencing and SNP calling was performed at the Diversity Arrays

Facility (Canberra, Australia).

Statistics and population structure analysis

SNP markers with more than 20% of missing data, 20% of heterozygosity and the minor allele

frequency lower than 0.05 were eliminated resulting in 15,047 SNP markers which were used

for further analysis [30]. The polymorphic information content (PIC), major allele frequency,

the number of alleles, heterozygosity and gene diversity were estimated with the aid of Power-

Marker V3.2.5 [31].

The data from the 15,047 SNP markers were subjected to population structure analysis

based on the admixture model-based clustering method using the software package STRUC-

TURE 2.3.4 [32]. The best k was identified by inputting the data into the STRUCTURE HAR-

VESTER software utilizing the Evanno method [33,34]. The initial model was run by varying

the number of clusters (k) from 1 to 20 with 10 to 20 alterations for each K. Finally, the number

of clusters was set at 10 with 10 alterations for each K. The results were obtained by running

the data against 10,000 Markov Chain Monte Carlo and 10,000 burn-in as previously described

[30]. Each genotype was assigned to a cluster at a 90% threshold, while genotypes with less

than this value were assigned to an additional cluster designated as mixed cluster.

Cluster analysis

Following the determination of the number of clusters using STRUCTURE, the 15,047 SNP

marker data were analyzed using DARwin software [35]. The neighbor-joining method (NJ)

under 30,000 bootstraps was used. Genetic distance matrix was generated using the Jaccard

similarity test in the DARwin software [36], using the formula dij = (b + c)/ (a+ (b +c)) where

dij is the dissimilarity between units i and j, a is the number of variables where Xi is present

and Xj is present, b is the number of variables where Xi is present and Xj is absent, c is the

number of variables where Xi is absent and Xj is present. To generate the final phylogenetic

tree, the results obtained from DARwin were loaded into FigTree version 1.4.3 software [37].

Results

Panel summary statistics

The results of the summary statistics of the SNP markers are presented in Table 2. Heterozy-

gosity averaged 0.07 and varied from 0.00 to 0.20. Gene diversity ranged from 0.01 to 0.50 with

an average of 0.22. The major allele frequencies of the 15,047 primers averaged 0.84 with a

range from 0.50 to 0.99. The PIC ranged from 0.01 to 0.38 with an average of 0.19 (S2 Table).

The highest and lowest minor allele frequency recorded were 0.50 and 0.01, respectively.

Table 2. Diversity indices statistics of the 94 maize inbred lines based on 15,047 SNP markers.

MaF GD He PIC MAF

Minimum 0.50 0.01 0.00 0.01 0.01

Maximum 0.99 0.50 0.20 0.38 0.50

Mean 0.84 0.22 0.07 0.19 0.16

MaF = Major allele frequency, GD = gene diversity; He = Heterozygosity, PIC = polymorphic information content,

MAF = Minor allele frequency

https://doi.org/10.1371/journal.pone.0214810.t002
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Genetic distance and population structure using SNP markers

The genetic distance between pairwise comparisons of the inbred lines varied from 0.06 to

0.65, and the overall average distance was 0.38. The majority (67.70%) of the genetic distances

fell between 0.32 and 0.42 (Fig 1). The lowest genetic distance (0.06) was observed between

inbred TZdEI 24 and TZdEI 68 (S3 Table). Both inbred lines have the same descent and selec-

tion history (S1 Table). The highest genetic distance (0.65) was observed between inbred TZEI

135 and TZEI 26. These inbred lines were derived from different source populations; TZEI 26

was extracted from WEC STR, which has white endosperm colour, while TZEI 135 was

derived from TZE-Y Pop STR C0, which has yellow endosperm colour (S1 Table).

Based on 15,047 SNPs, population structure analysis revealed three distinct sub-populations

in the 94 inbred lines (Fig 2A and 2B). The sub-population 1 consisted of 8.5% (8 lines) of the

inbred lines, 20.2% (19 lines) were grouped into sub-population 2 and 36.1% (34 lines) in sub-

population 3. A 35.1% (33 lines) of the inbred lines had a probability of association less than

90%, and were grouped into mixed populations (S1 Table). The three sub-populations were

separated mainly on the basis of the endosperm color, sub-populations 1 and 2 comprising

only yellow endosperm maize inbred lines while majority of inbred lines (94%) in sub-popula-

tion 3 consisted of white endosperm maize (S1 Table). Results showed that sub-population 1

contained only inbred lines derived from the source population TZEE-Y Pop STR 106 while

the sub-population 2 comprised about 97% of inbred lines extracted from (TZEI 11 x TZEI 8).

Sub-population 3 had the greatest diversity comprising six diverse source populations, namely

TZE-W Pop STR 108, TZE-W Pop STR 104, (TZEI 1 x TZEI 2), TZE-W Pop x 1368 STR,

WEC STR and TZE-W Pop STR Co. The expected heterozygosity among inbred lines within

the three sub-populations ranged between 0.06 for sub-population 1 and 0.34 for sub-popula-

tion 3 with an average of 0.19. Sub-populations 1, 2 and 3 had FST values of 0.83, 0.49 and 0.01,

Fig 1. Frequency distribution of pairwise genetic distances calculated based on Euclidean method for 94 tropical maize

inbred lines genotyped with 15,047 SNPs.

https://doi.org/10.1371/journal.pone.0214810.g001
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respectively. The highest allele frequency divergence of 0.15 was recorded between sub-popu-

lations 2 and 1, followed by sub-population 3 and 1 with 0.11, while the least allele frequency

divergence of 0.07 was recorded between sub-populations 2 and 3.

Cluster analysis

The results of the population structure analysis were confirmed by the phylogenetic tree which

showed that the 94 inbred lines genotyped formed three clusters and each cluster was further

partitioned into sub-clusters (Fig 3). In each cluster, inbred lines were coloured based on the

results of the population structure analysis. Each colour represents specific sub-population

such as lines coloured with blue, green, red and black corresponding to sub-population (SP) 1,

2, 3 and 4, respectively. The sub-population 4 represents the mixture of individuals at a 90%

threshold. The inbred lines were clustered based on their pedigree, selection history and endo-

sperm colour (S1 Table). Phylogenetic cluster 1 had a total of 14 inbred lines and represented a

very clear sub-cluster of 8 lines (blue colour). This sub-cluster corresponded to sub-population

1 in population structure analysis (Fig 2B), with the remaining lines considered as mixed geno-

types. All 14 lines were derived from the TZE-Y POP STR 106 and were characterized by yellow

endosperm maize lines. The second cluster generated by the phylogenetic analysis included 32

inbred lines classified into several sub-clusters. However, it is clear that the grouping of 20

maize inbred lines based on the phylogenetic analysis was similar to that based on the popula-

tion structure analysis (SP2; green color) (Figs 2B and 3). Ninety-five percent of the lines were

extracted from the bi-parental cross TZEI 11 x TZEI 8 while one of the inbred lines was

sourced from TZE Comp5-Y C6. The remaining 17 lines were derived from two source popu-

lations TZE-Y Pop STR Co and TZE Comp5-Y C6 and were identified as mixed genotypes by

structure analysis. The third and last cluster was the largest and most diverse among the three

main clusters with 48 maize inbred lines. This cluster included inbred lines from seven source

populations, namely TZE-W POP STR 108, TZE-W POP STR 104, TZE-W Pop x 1368 STR,

TZE-W Pop x LD, (TZEI 1 x TZEI 2), WEC STR and TZE-Y Pop STR Co (S2). All the inbred

Fig 2. The three sub-populations of the 94 tropical maize inbred lines using SNP markers. A. Best delta K

estimation by Evanno method. B. Estimated population structure of 94 tropical maize inbred lines as revealed by

15,047 SNP markers for K = 3. Blue, green and red colour represents sub-population 1, 2, and 3, respectively.

https://doi.org/10.1371/journal.pone.0214810.g002
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lines in this phylogenetic cluster belong to sub-population 3 (red colour) except 12 lines which

were classified by the population analysis into the admixture group (Fig 3).

Discussion

Genetic diversity studies are very essential in the selection of individual genotypes among

closely related groups for initiation of new breeding activities. It is particularly important that

the genetic similarity or dissimilarity among inbred lines are established to facilitate the devel-

opment of productive hybrids which are often a product of crosses involving inbred lines of

opposing heterotic groups. Heterotic populations are also developed from inbred lines sharing

common ancestry. New set of inbred lines are derived from the heterotic populations and the

inbred lines are expected to combine well with inbred lines developed from other opposing

heterotic populations. Genotyping has proved to be one of the reliable approaches of establish-

ing such phylogenetic relationships among a set of inbred lines [8]. In the present study, the

PIC average was of 0.19, a value found lower than ones described by some researchers in

wheat (0.44; [38]), maize (0.25–0.39, [30,39–43]) and sugar beet (0.28; [44]), but similar to the

results of Cruz et al. (0.21; [45]) in an oilseed crop Lesquerella, Bisen et al. [46] in soybean,

Ramakrishnan et al. [47] in finger millet, Singh et al. [48] in rice and Oyekunle et al. [17], Dao

et al. [40] and Senior et al. [49] in maize. Approximately 49% of the SNPs presented a

MAF<0.1 and 4.5% of the SNPs showed almost equal allele frequencies (MAF ~0.5) for the

two alternative alleles. Previously, it was shown in maize by using a set of 1,057 SNPs that IITA

maize materials presented an average value of 0.218 and 0.202 for PIC and MAF values, respec-

tively. Similar values were found for CIMMYT maize inbred lines [40]. The variation between

Fig 3. Clustering of 94 tropical maize inbred lines based on 15,047 SNP markers. Clusters resulting from structure analysis are shown in blue, green and red colours.

Mixed individuals that did not belong to any particular group at a 90% threshold are represented by the black colour.

https://doi.org/10.1371/journal.pone.0214810.g003
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our results and the findings of earlier researchers could be attributed to the differences in the

composition of experimental material, population size and number of markers involved in the

studies [50,51].

Genetic distance provides a measure of the degree of relatedness between individuals in a

population [52]. The results obtained revealed a wide genetic variability among the inbred

lines with lower number of pairwise individuals with low genetic distances, suggesting that

most of the inbred line used are unique and each of them has the potential to contribute new

alleles to the breeding programme.

The SNP markers clustered the inbred lines based on their ancestry, selection history and

endosperm colour (Figs 2 and 3; S1 Table). However, the clustering of some inbred lines was

not based on shared ancestry, indicating that inbred lines extracted from the same source pop-

ulation do not necessarily have the same selection history [53]. The lack of association between

clustering patterns and phenotypes, environmental adaptation, maturity and the heterotic

groups has also been previously observed in CIMMYT maize germplasm [51,54]. Warburton

et al. [54] suggested that markers may be better indicators of relatedness of the inbred lines in

cases where inbreds derived from the same source population are more different than those

extracted from different source populations.

Population structure analysis is a process of inferring individual ancestry of inbred lines

from genotypic information [55]. The studied SNPs revealed the presence of three sub-popula-

tions (K = 3) within the 94 inbred lines. Inbred lines with similar pedigree tended to cluster

into the same group. The SNP markers clearly assigned inbred lines into heterotic groups

based on the source populations, with individuals of the same endosperm colour and similar

genetic background placed in the same sub-population. The grouping of inbred lines using

SNP markers on the basis of similarity of pedigree and phenotype indicated that the SNP

markers were very effective in assigning the inbred lines into homogenous groups. Our find-

ings might have been influenced by the relatively larger number of SNPs used in the present

study which would facilitate better interpretation of the results and inference about population

structure [51].

The lower levels of heterozygosity observed among inbred lines within the three sub-popu-

lations suggested that the SNPs were effective in forming homogeneous sub-populations. The

very large FST values obtained for sub-populations and the moderate allele frequency diver-

gence observed between sub-populations indicates that these inbred lines are fixed and can be

classified into genetically distinct groups (heterotic groups). These characteristics make them a

valuable resource for genetic studies in maize and association mapping where uniformity of

inbred lines and genetic divergence are required. For future development of productive

hybrids, crosses should be made between parent lines from different sub-populations, particu-

larly between inbred lines in sub-populations 1 and 2.

Conclusion

High genetic distances obtained among paired inbred lines revealed the uniqueness of the

studied lines and existence of substantial genetic variability that could be exploited for the

development of productive hybrids. The inbred lines were assigned into heterotic groups

based on similarity of ancestry, selection history and endosperm colour. This study showed

that SNP markers were more reliable in categorizing maize inbred lines into groups on the

basis of shared phylogeny. The low heterozygosity observed among inbred lines within sub-

populations and the moderate divergence among sub-populations suggested that the inbred

lines could be used in the development of productive hybrids breeding or heterotic popula-

tions for the West African Sub-region.
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