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ABSTRACT Neutral models for quantitative trait evolution are useful for identifying phenotypes under selection. These models often
assume normally distributed phenotypes. This assumption may be violated when a trait is affected by relatively few variants or when
the effects of those variants arise from skewed or heavy tailed distributions. Molecular phenotypes such as gene expression levels may
have these properties. To accommodate deviations from normality, models making fewer assumptions about the underlying genetics
and patterns of variation are needed. Here, we develop a general neutral model for quantitative trait variation using a coalescent
approach. This model allows interpretation of trait distributions in terms of familiar population genetic parameters because it is based
on the coalescent. We show how the normal distribution resulting from the infinitesimal limit, where the number of loci grows large as
the effect size per mutation becomes small, depends only on expected pairwise coalescent times. We then demonstrate how deviations
from normality depend on demography through the distribution of coalescence times as well as through genetic parameters. In
particular, population growth events exacerbate deviations while bottlenecks reduce them. We demonstrate the practical applications
of this model by showing how to sample from the neutral distribution of Qsr, the ratio of the variance between subpopulations to that
in the overall population. We further show it is likely impossible to distinguish sparsity from skewed or heavy tailed mutational effects

using only sampled trait values. The model analyzed here greatly expands the parameter space for neutral trait models.
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EUTRAL models of quantitative traits provide a null

distribution against which goodness-of-fit tests can be
used to test for natural selection (Lande 1976; Leinonen et al.
2013). Neutral models also clarify the effects of purely neu-
tral forces such as genetic drift and mutation on trait distri-
butions (Lynch and Hill 1986). Common approaches model
phenotypes as normally distributed among offspring within a
family, among members of a population, or among species
(Turelli 2017). Indeed, it has been suggested that the nor-
mality assumption is the defining characteristic of quantita-
tive genetics (Rice 2004). This is approximately true if
phenotypes are influenced by a large number of sufficiently
independent Mendelian factors (Fisher 1918) and selection is
weak (Turelli and Barton 1990).
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The goal of neutral models for quantitative traits is to ask to
whether phenotypic differentiation between groups can be
reasonably explained by processes other than natural selec-
tion. On macroevolutionary time scales, models stemming
from Lande (1976) have used Brownian motion to describe
the evolution of the mean value of a quantitative trait in a
population. These models are used in tests for extreme trait
divergence between species (Turelli et al. 1988), test for phy-
logenetic signal in trait distributions (Freckleton et al. 2002),
and correct for phylogenetic dependence when calculating
correlations between traits (Felsenstein 1985). On shorter
time scales, multivariate normality of neutral trait values also
underlie tests for spatially varying selection in structured
populations such as the method developed by Ovaskainen
et al. (2011). Other neutral models for quantitative traits
have not assumed normality (Chakraborty and Nei 1982;
Lynch and Hill 1986; Lande 1992), and the dynamics of
phenotypic evolution are examined forward in time as a
balance between mutation creating variance, migration
spreading variance among subpopulations, and fixation re-
moving it. However, these studies were limited to simple mod-
els of population structure and history. Backward-in-time,
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coalescent models would allow for more general demographic
scenarios.

Under normality, trait dynamics are modeled without con-
cern for the number of causal loci, genealogies at these loci, or
the distribution of mutational effects (the distribution that
mutations at causal loci draw their effects from). However,
heritable phenotypic variation is ultimately due to discrete
mutations at discrete loci, and how the variation arising from
these mutations is distributed depends on individual genealo-
gies. The distribution of genealogies in the genome might be
influenced by recent population growth and the distribution of
mutational effects could be skewed for due to the details of a
particular developmental pathway. When a large number of
mutations affect a trait, the central limit theorem ensures that
the distributions of genealogies and mutational effects can be
ignored, but a full model of phenotypic variation would have to
include them. Importantly, deviations from normality may
affect the outcomes of goodness-of-fit tests that necessarily
aim to identify outliers from a normal model.

A more expansive neutral model of phenotypic variation
would consider genealogies at causal loci. The principle
modeling framework for genealogical variation is the coales-
cent (Wakeley 2008), but few studies have connected the
coalescent to quantitative genetics. Whitlock (1999) used co-
alescent theory to argue that measures of phenotypic (Qsr)
and genetic (Fsr) differentiation have the same expected
value in general models of population subdivision. Using co-
alescent simulations, Griswold et al. (2007) investigated the
effects of shared ancestry and linkage disequilibrium on the
genetic covariance matrix for a set of traits (G matrix). They
found that linkage disequilibrium and small numbers of
causal loci can cause phenotypic covariance not predicted
by mutational covariance. Mendes et al. (2018) also used a
coalescent-based model to show that using a species tree
based on population split times increases false positive rates
in phylogenetic comparative methods, among other prob-
lems. Although not explicitly connected, Ovaskainen et al.
(2011) developed a test for spatially varying selection that
assumes the genetic covariance between individuals depends
only on pairwise coancestry coefficients, which have a clear
interpretation under the coalescent (Slatkin 1991).

Two studies have asked how the shape of the distribution of
mutational effect sizes, beyond just the variance, impacts trait
distributions. Khaitovich et al. (2005) modeled the evolution
of gene expression on phylogenetic trees assuming a single
nonrecombining causal locus but allowed for an arbitrary
distribution of mutational effects. This model detected devi-
ations from normality consistent with asymmetries in the
mutational distribution of gene expression in great apes.
More recently, Schraiber and Landis (2015) developed a sim-
ilar model for trait evolution within populations based on the
coalescent and allowing for any number of causal loci. They
derived the characteristic function for the distribution of phe-
notypes in a sample and showed how they can deviate from
normality when the number of loci is small or the mutational
distribution has heavy tails.
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Schraiber and Landis (2015) derived their results for a
panmictic, constant-size population. Natural populations
rarely have stable population sizes and show considerable
spatial structure. It is unclear how these violations of the
constant-size, panmictic model influence deviations from
normality. We take advantage of the ability of coalescent
theory to handle nonequilibrium demographies and popula-
tion structure to relax these modeling assumptions.

Extending coalescent models of quantitative traits to
structured populations is important because the analysis
of structured populations provides an opportunity to infer the
incidence of local adaptation or stabilizing selection. In struc-
tured populations, the neutral divergence in suitably normal-
ized trait values among subpopulations has approximately the
same expectation and variance as the neutral divergence in
allele frequency at a single site (Rogers and Harpending 1983;
Whitlock 2008). The Qgr/Fsr paradigm was developed to test
whether trait divergence in structured populations could be
explained by genetic drift alone (Spitze 1993; Whitlock
2008; Leinonen et al. 2013). Qgr, defined as the ratio of the
trait variance between subpopulations to the total trait vari-
ance, is compared to Fsr, which measures the same property
for genetic variation at neutral markers. It is concluded that
natural selection has acted if the observed Qsr is sufficiently
far from the neutral expectation. Ovaskainen et al. (2011)
developed a modern extension of the Qgr/Fsr paradigm for
genetic values measured in breeding experiments, and Berg
and Coop (2014) also extended the paradigm to make use of
genetic values computed from GWAS summary statistics. Un-
derstanding the neutral distribution of trait values is neces-
sary for the development of goodness-of-fit tests that are
applicable to populations with complicated histories and
traits with sparse genetic architectures.

We generalize the work of Schraiber and Landis (2015) by
deriving the form of the mgf for arbitrary distributions of
coalescent times, and, therefore, arbitrary population histo-
ries. The key result of Schraiber and Landis (2015), the char-
acteristic function of the distribution of trait values, is a
special case of this general result. We then show how a nor-
mal model arises by taking an infinitesimal limit where the
effect size per mutation becomes small as the number of loci
potentially affecting the trait becomes large. We then calcu-
late the third and fourth central moments of the trait distri-
bution in panmictic populations to illustrate how departures
from normality depend both on genetic parameters and ge-
nealogical distributions. For instance, in exchangeable pop-
ulations the expected third central moment is proportional to
the third noncentral moment of the mutational distribution
times the expected time to the first coalescent event in a
sample of sizen = 3.

Finally, we discuss the consequences of these results for Qs
tests and the inference of genetic parameters. We find that
using the normal distribution that arises in the infinitesimal
limit gives an improved null distribution of Qsr. Additionally,
we show that it is likely not possible to infer useful features of
the mutational distribution using only sampled trait values.



Future work will be necessary to develop tests for selection
that take into account both demography and genetic param-
eters, but the model developed here provides the ground-
work for such an undertaking.

Model

We consider a trait controlled by L potentially causal loci
(shown schematically in Figure 1). Loci are unlinked and
the effects of recombination are not explored. Following
Kimura (1969), an infinite number of mutations are possible
within each locus (though the number of loci is finite) and
mutations affecting the trait (causal mutations) arise at rate
¢. That is, § is the rate for one entire locus and not per nucle-
otide. An approximation restricting the number of mutations
per locus to at most one is considered below. Mutations re-
ceive values from a distribution of effect sizes. This distribu-
tion is described by its mgf, ¢, and its noncentral moments,
m;. Individuals are haploid and their trait values are deter-
mined by summing, both within and between loci, the effects
of all mutations occurring since the most recent common
ancestor. Environmental effects are not included. An exten-
sion to diploidy would be straightforward but is not consid-
ered here.

The genealogy at a locus is represented by the random
vector of branch lengths, T. An element T,, of T is the branch
length subtending only individuals in the set w. For example,
T1(q,py is the length of the branch ancestral only to individuals
a and b. If such a branch does not exist for a given geneal-
ogy, Tiqpy is set to zero. In this way, T encodes both the
branch lengths and topology of a genealogy. () is the set
of all possible branches. For three sampled individuals,
a, b, and ¢, Q= {{a},{b},{c}, {a,b},{a,c},{b,c}} and
T= (T{a}, T{b}, T{C}, T{a,b}v T{H,C}v T{b,c}) . The distribution of
genealogies is also described by its mgf, ¢;. Genealogies
are independent between loci because of the lack of
linkage.

Phenotypic trait values are random quantities of ultimate
interest, and are hereafter referred to simply as trait values.
The vector of trait values in the sampled individuals is Y. If we
had sampled individuals a, b, and ¢, then Y = (Y,, Y}, Y;). The
contribution to the trait values from a single locus is the
change relative to the value in the most recent common an-
cestor (MRCA) of the sample at that locus. Y is the sum over
contributions from L loci, each measured with respect to an
arbitrary ancestral value. Since we do not know the ancestral
value, we cannot directly observe Y. However, Y determines
measurable quantities such as differences in trait values be-
tween individuals as well as the sample variance. The distri-
bution of trait values is also studied through its mgf, ¢y.

We call those quantities not influenced by the genealogical
process (L, 4 and ) the genetic parameters of the trait.
Another quantity useful for describing a trait is its sparsity.
Sparsity should reflect the number of segregating mutations
that influence the trait, with a more “sparse” trait being af-
fected by fewer segregating mutations. Formally, we measure

Figure 1 How trait distributions arise from genealogical and mutational
processes under the model. L causal loci potentially affect the trait in a set
of individuals and have independent genealogies. Mutations occur within
loci as a Poisson process and act additively to determine individual trait
values. Many loci with the potential to affect the trait may receive no
mutations.

sparsity as the average number of pairwise differences be-
tween two randomly chosen haplotypes at loci affecting the
trait. A trait with fewer causal pairwise differences is more
sparse. Sparsity thus depends both on the genetic parameters
through the mutation rate and the number of potentially
causal loci, and on demography through the distribution of
coalescence times. A trait with fewer causal loci in a larger
population may therefore have lower sparsity than a trait
with more causal loci in a smaller population.

In populations of exchangeable individuals, a useful way to
summarize the distribution of genealogies is through the
moments of Ty ,, which denotes the amount of time that k
lineages remain in the genealogy of a sample of size n. The
pairwise coalescent time between a lineage in individual a
and a lineage in individual b is written as 7 5. When consid-
ering structured populations, 7, is also used to denote the
coalescence time between a randomly chosen lineage from
subpopulation a and a randomly chosen lineage from sub-
population b. Table 1 provides a reference for the notation
used in this article.

Data availability

All code used in computer algebra, simulation, and figure
generation for this paper is available at https://github.com/
emkoch/trait mgf math. Supplemental material available at
Figshare: https://figshare.com/s/f8f38ce72d0218aa34c6

Results
The mgf for the distribution of trait values

We first derive the mgf of the distribution of trait values,
following closely the approach of Khaitovich et al. (2005) and
Schraiber and Landis (2015), but generalizing to arbitrary
demographies and population structure. We consider the dis-
tribution of trait values over evolutionary realizations of the
combined random processes of drift and mutation. The prob-
ability distribution for a trait is complex in its general form.
There is a point mass at zero corresponding to the possibility
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Table 1 Notation used in this article

Type of quantity Symbol Description
Genetic parameter v Mgf of the mutational effect size distribution
¢ Per-locus mutation rate in units of coalescent time
mj ith noncentral moment of the mutational effect size distribution
S Rate that mutational bias shifts trait values in the infinitesimal limit
Sma Rate that variance accumulates in the infinitesimal limit
L Number of potentially causal loci
Genealogy value Q Set of all possible branches in the genealogy of a given sample
[3) A particular branch in a genealogy, defined by all individuals that branch
subtends
T Random vector of branch lengths representing the entire genealogy at a
locus
To Length of branch w
Thirca Time to the most recent common ancestor at a particular locus
or(s) Mgf of the genealogy distribution
s Vector of dummy variables for the length of each possible branch
Se Dummy variable for branch length T,
Ten For a sample of exchangeable lineages, the amount of time that k lineages
remain in a sample of size n
Tab Pairwise coalescent time between a lineage sampled from a and a lineage
sampled from b, depending on the context, a and b may be either indi-
viduals or subpopulations
Tath Sum of all branches ancestral to individuals a and b
Trait value Y Random vector of trait values
Y, Trait value of individual a
oy (k) Mgf of the trait value distribution
k Vector of dummy variables for each individual trait value
ks Dummy variable for the trait value of individual a
M; ith central moment of the trait value distribution in the entire population
cw Coefficient of variation of trait variance over evolutionary realizations of a

population

that no mutations occur, and mutational effects could be
drawn from discrete or continuous distributions. Correlations
between individuals arise because of shared history in gene-
alogies at individual loci. Deriving the cumulative distribu-
tion function for trait values may be possible in some
instances, but the difficulty of integrating over mutational
configurations makes it practically impossible for most cases.
However, we can use the mgf approach to study the
distribution of trait values. Following the definition of the
mgf for a vector-valued random variable (Ross 2010), the mgf
for a trait controlled by a single nonrecombining locus is

oy(k) =E[Y] = / YP(Y = y)dy. @)
The vector k contains dummy variables for each individual,
and the whole operation is an integral transform of the prob-
ability distribution of trait values. Equation 1 can be rewritten
by conditioning on the genealogy to give

oy (k) = /Y ey /T P(Y = y|T = t)P(T = t)dtdy

2)
_ / / KYP(Y = yIT = t)dyP(T = t)dt.
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To proceed, assumptions about the mutational process must
be made. The first is that mutations occur as a Poisson process
along branches, and the second is that mutations at alocus are
additive. The changes in the trait value along each branch are
then conditionally independent given the branch lengths.
Khaitovich et al. (2005) and Schraiber and Landis (2015)
noted that this describes a compound Poisson process. The
mgf of a compound Poisson process with rate A over time ¢ is
exp (At(yp(k) — 1)), where ¢ is the mgf of the distribution of
jump sizes caused by events in the Poisson process (Kingman
1992). Here, jump sizes are the effects on the trait value
caused by new mutations. Using the mgf of a compound
Poisson process, along with the fact that the mgf of the joint
distribution of two perfectly correlated random variables
with the same marginal distribution is o, x,(k1,k2) =
¢x, (k1 + k2), we can rewrite Equation 2 as

oy(k) = / [Texp <gtw (w(;m) - 1>)P(T

we)
Equation 3 is the mgf of T with the dummy variable s, for
branch T, set to § ((3",c.ka) — 1). This implies that

t)dt.

(3



(PT(S)L _

)

(#(3, k) 1) @

Thus, if the mgf of the distribution of branch lengths is known,
Equation 3 allows us to obtain the mgf of the trait values
through a substitution. When the trait is controlled by L in-
dependent loci, the full mgf is obtained by raising Equation 4
to the power L. This result obviates the need for separate
derivations for particular models of population history and
structure. Lohse et al. (2011) derived the mgf of the geneal-
ogy in various population models including migration and
splitting of subpopulations. Using their result for a single
population we can obtain equation (1) of Schraiber and
Landis (2015) using equation (4) and equation (5) of
Lohse et al. (2011) (see Appendix A).

[SIEY

The infinitesimal limit

This model converges to a normal distribution when we take
an infinitesimal limit. We accomplish this by substituting
Taylor series for the genealogical and mutational distributions
in Equation 3 and taking appropriate limits. The infinitesimal
limit lets mutation effect sizes become small as the number of
loci becomes large. The resulting distribution of a trait value
Y is multivariate normal with expectation E[Tyrca] %ﬁh and
variance E[Tyrca] g;uz. The covariance between trait values in
individuals a and b is E[rq,p] %V«z: where 7., is the shared
branch length between a lineage sampled from individual a
and a lineage from individual b. E[Tyrca] is the expected time
to the most recent common ancestor. 4, is the per genome
rate that mutational bias shifts the mean, and 4y, is the rate
per genome that variance accumulates. The infinitesimal
limit requires that the products of L, and moments of the
mutational distribution = 3, go to zero. This can be thought
of as requiring the mutational distribution to not be ex-
tremely skewed or heavy tailed. Derivation details are given
in Appendix B.

Interestingly, the rate of variance accumulation is propor-
tional to the second moment of the mutational distribution
instead of the variance. We can see the intuition for this by
considering a degenerate distribution where each mutation
has the same effect. We still expect variation among individ-
uals due to differences in the mutation count each individual
receives, even though the variance of the mutational distri-
bution is zero. The variance among individual trait values thus
has one component due to differences in the number of
mutations and an additional component due to differences
in the effects of these mutations. The first component is
proportional to the square of the mean mutational effect,
while the second is proportional to the mutational variance.
Therefore, the sum of the two components is proportional to
mo, the mean squared effect.

Since the trait values are normally distributed, any linear
combination of sampled trait values will be as well. This
includes observable quantities like the differences in trait
values from a reference individual or from a sample mean.
The distribution of trait differences between individuals is

multivariate normal with mean zero and covariance between
any pair of trait differences given by

0
Cov[Ya ~ Yp, Ye ~ Yq] =t (E[Tad] +E[Ts]

)

—E [Ta,c] —E [Tb,d] )7
where 74, = 0 if a = b. Classical theory in quantitative ge-
netics uses a univariate normal distribution of phenotypes
in a panmictic population. We can recover this by consid-
ering a population of exchangeable individuals. In this case,
E[7 qp) = E[T22] for all pairs a # b. Multivariate normal the-
ory can be used to show that individual trait values are then
conditionally independent given the mean value in the pop-
ulation and are normally distributed with variance E[T5 2] $u,
(see Appendix B).

The normal model in the infinitesimal limit provides addi-
tional theoretical justification for studies using normal models to
look for differences in selection on quantitative traits between
populations (Ovaskainen et al. 2011; Praebel et al. 2013;
Robinson et al. 2015). Additionally, Equation 5 implies that a
covariance matrix based on mean pairwise coalescent times
rather than population split times should be used in phyloge-
netic models of neutral trait evolution (Mendes et al. 2018).

Low-mutation-rate approximation

A useful simplification of the model is to ignore the possibility
of more than one mutation per locus, thus breaking the infinite
sites assumption within loci. This approximation is reasonable
as long as nucleotide positions affecting the trait are loosely
linked throughout the genome. The mgf of the trait distribu-
tion is greatly simplified by grouping terms of order two and
above in Equation 3:

1+ g > [T (w (Zka> —1) +0(6?)

we) acw

L
Py (k) ~

©

Derivation details are given in Appendix C. Ignoring the O(6?)
terms corresponds to allowing at most one mutation per lo-
cus. Conveniently, the mgf of the trait then depends only on
the expected branch lengths E[T,], whereas Equation 3 re-
quires higher order moments of branch lengths (e.g.,
E[Ty,Ta,)). It is therefore no longer necessary to know the
mgf of the genealogical distribution, and we can express mo-
ments of the trait distribution using expected branch lengths
calculated from coalescent models.

Moments of the trait distribution

For most population genetic models and for sample sizes
greater thann = 3, the recursive nature of ¢y makes it com-
putationally infeasible to obtain general solutions. However,
it is possible to derive moments of the trait distribution in
terms of moments of branch lengths and mutational effects
without an expression for the full mgf. Under the low
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mutation rate approximation, moments can be calculated by
differentiating Equation 6. Even without this approximation,
moments can be calculated using Equation 2 and only con-
sidering terms in a Taylor expansion contributing to the de-
sired moment’s order. We implemented a symbolic math
program to calculate trait moments, which can be found at
https://github.com/emkoch/trai mgf math. Details of the pro-
cedure are given in Appendix D. The normal distribution is
completely defined by its first two moments, and the extent to
which a trait distribution deviates from normality can be mea-
sured by the extent to which its moments deviate from those of a
normal distribution with the same mean and variance.

Considering the distribution over evolutionary realiza-
tions, the expectation of Y, is L gmlE[TMRCA], and the variance
is L2moE[Turea) + L(m18)*Var([Twrea]. Although simple to
derive using computer algebra, expressions for the higher
central moments of Y, are complicated even under the low
mutation rate approximation, and not much is gained by
showing them here.

In a given evolutionary realization, there will be a distribu-
tion of trait values within the entire population, which can also
be described by its moments. Since this distribution is itself
random, the moments of the within-population distribution are
random as well. Since Y, is defined relative to an unobservable
value, the expected central moments within the whole popu-
lation offer more insight. We are particularly interested in how
trait distributions deviate from normality. Schraiber and Landis
(2015) computed the expected first four central moments of a
constant-size population. We derive the same expectations for
an arbitrary demographic history,

In the infinitesimal limit, Equation 7b and the second two
lines of Equation 7c go to zero. To give more insight into
Equation 7, some moment calculations done by hand under
the low mutation rate approximation are presented in Appen-
dix F.

Equation 7a gives the expected variance in the population,
but this will vary over realizations of the evolutionary pro-
cess. The variation in the population variance depends on the
expected sparsity of the trait (LE[T,5]) and the number of
causal loci. The variation in the variance can be quantified
using its coefficient of variation (CVV): the SD of the variance
divided by its expectation. For a constant-size, panmictic
population

41 1 m4/m%

W= 3L ' 6L6E [szz]'

®

Equation 8 has a contribution due to linked mutations occur-
ring at a single locus (% 1) and a contribution due to sparsity

2
and mutation (} %) Even when the sparsity is low, i.e.,

when a large number of variants affect the trait, if the trait is
controlled by only a single locus there will be considerable
variation in the within-population variance (CVV = /% ).
On the other hand, the CVV of a sparse trait controlled by
many loci will depend on the ratio of the fourth and squared

second noncentral moments of the mutational distribution
(mq/m3).

Comparison to normal distribution

Deviations of the within-population distribution from normal-

0
E[M;] = LEE [T22]ma (7a) ity depend on the distribution of coalescent times and
the genetic parameters. One natural way to quantify a dis-
0 tribution’s deviation from normality is using its kurtosis. The
E[Ms] = LEE [T&B} ms (7b) kurtosis, defined as M, /M2, measures the tendency of a dis-
tribution to produce outliers (Westfall 2014). However,
0 2 0 2 since the kurtosis is a ratio of two random variables, its ex-
EMy] =3 (L 3 E[T,2] m2> +3L (5’“2) Var|Ts,] pectation is challenging to calculate. Rather than attempt this
9 calculation, we compare the expected fourth central moment
+ 1L <§m2) (E E [T% 4} — lE [’ﬂ‘z‘ 4T3, 4} itself to that expected under normality. This approach quali-
3 \2 9 7 3 (7¢)  rtatively identifies the factors influencing deviations from
1 0 i
~ B3] ) + Lmag (E[Tao] rormaliy . R
4 ' 2 Using the low mutation rate approximation, the ratio of
1 2 ity simpli-
" s E[Ts4] + : E[T2.4)). ;-}:Z (:.())(pected fourth moment to that under normality simpli
-1 2 4
E[M,] 1. M (6L s 2}) 2E[T44] +3E[T34] +4E[T24] ©
3(L3E[T2 Z}mz)z m3 2 7 E[T2 ;]
mutation sparsity demography
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Figure 2 The effects of demography on deviations of the expected fourth central moment of the population trait distribution from normality. Q
measures the effect due to demography on the expected fourth central moment (Equation 9). (A) Q increases as the exponential growth rate increases
relative to the current population size. \ is the growth rate and Ny is the initial effective population size. (B) Q values when the population undergoes an
instantaneous step change at some point in the past. The time and magnitude of this change are given in units of the current effective population size.

Q increases when the population grows and decreases when it declines.

The expected excess in My, relative to normality, increases
with sparsity and with m4/m2. m4/m3 is equal to the kurtosis
of the mutational effect distribution when mutations are un-
biased and reflects its propensity to produce large effect mu-

tations. The excess depends on demography through the

OB [Ty 4] +2E[T3 4] 14
factor Q = 2 4'4]+3EE[%r:5]+9

raphy increases or decreases deviations from normality can
be investigated by calculating Q in different models. In a
constant-size, panmictic population, Q = 1. In unstructured
populations, E[T ] can be calculated numerically using ex-
pressions from Griffiths and Tavaré (1998) or Polanski and
Kimmel (2003). Values of Q in an exponentially growing
population are shown in Figure 2A. Holding sparsity and
the mutational distribution constant, a population that un-
derwent exponential growth will have a greater expected
deviation from normality in its trait distribution. Another
example demography is a population that goes through a step
change at some point in the past. Figure 2B shows that when
the population size increased at some point in the past, Q is
increased similarly to the exponential growth scenario. When
the population experiences a bottleneck, Q is decreased
to < 1. Q also appears more sensitive to population growth
than to decline.

For a more concrete example, we consider the differences
in the expected fourth moment produced by demographic
histories in different human populations. In the demographic
model fit by Tennessen et al. (2012), the generic European
population experiences an out-of-Africa bottleneck followed
by recent growth, while the generic African population expe-
riences a more stable history, also with recent growth. Differ-
ences in demographic history between the two populations
has resulted in a lower heterozygosity in European popula-
tions due to the out-of-Africa bottleneck (Yu et al. 2002).

E24 The extent to which demog-

For a given sparsity, the African population model predicts a
smaller deviation from normality than the European model
(Figure 3). The expected fourth moment in constant-size
populations with the same heterozygosity as the African
and European models is lower for the African model and
higher for the European model. This is because the African
model is dominated by population growth that leads to a
Q >1, while the European model is dominated by a bottle-
neck event that leads to a Q <1 (Figure 2). However, differ-
ences due to demography are small and deviations from
normality are driven mostly by differences in sparsity.

Even though recombination is not modeled, we can spec-
ulate on how linkage impacts deviations from normality. Line
two of Equation 7c corresponds to the contribution from
two mutations occurring at a single locus. The first quantity
indicates that the expectation of the fourth moment in-
creases with the variance of the pairwise coalescence time.
The second part does not have a clear interpretation. If the
sum of these two terms is positive this agrees with the in-
tuition that linkage disequilibrium increases deviations
from normality by reducing the effective number of inde-
pendent loci.

Simulations of the kurtosis itself show substantial variance,
with about a quarter of simulated populations having a
value <3 (that of a normal distribution) even as the mean
kurtosis increases to almost 9 (see Appendix E and Supple-
mental Material, Figure S1). This high variance in the kurto-
sis is likely due to a high variance in both the variance and
fourth moment. This, along with the fact that deviations from
the infinitesimal model inflate the fourth moment (Equation
9), leads to a situation where the kurtosis increases with
trait sparsity but the variance is high across evolutionary
realizations.
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European model. The mutational kurtosis is set to six. The darker lines
show the predicted relationship for populations with the same heterozy-
gosity as the European and African models but with constant size.

Trait divergence in structured populations

To demonstrate the utility of the normal distribution arising in
the infinitesimal limit (Equation 5), we use simulating from
the null distribution of Qsr, a measure of divergence in trait
values between groups in structured populations. Qgr is de-
fined as the variance between group means divided by the
total variance in the population (Spitze 1993). In a haploid

— Vbetween
model, Qsr = Vbetween +Vwithin’ where

1 -
Vbetween = K Z(Yi—Y)Z

1

and
Viwithin = L > N (1Y)
Zka ij

Here, Y;; is the trait value of individual j in population i, K is
the number of subpopulations, and N is the size of subpop-
ulation k.

Since all Y;; are normally distributed, ¥; — Y and Y;; — Y;
are as well. When population sizes are large, individual de-
viations from population means are nearly uncorrelated, as
are Vperween and Viyithin. Viwithin iS Nearly constant across evo-
lutionary realizations and is approximately >, NiE[7T«x]/
> Nk because the within population variances are approxi-
mately uncorrelated and constant. While we do not have an
explicit form for the density function of the between-group
variance, we can simulate from its distribution by drawing
Y; — Y values from a multivariate normal distribution with
mean zero and covariance
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Cov[Ya =¥,y — V] =pigg (E[Ta.] +E[Ty] ~E[T]

—E[Tqp))
(10)

between populations a and b. To simulate from the null dis-
tribution of Qsr, w, and % are unnecessary because the scale of
the trait cancels in the Qgr ratio. All that is needed to simulate
Qsr are the relative expected coalescent times within and
between populations, which can be estimated using pairwise
nucleotide differences. No further information about popula-
tion structure, history, or mutation rate is needed.

This simulation procedure could be useful in testing
whether an observed Qgr is unlikely under neutrality. Current
goodness-of-fit tests either compare Qsr to an empirical dis-
tribution of Fsr values or to a x? distribution (Leinonen et al.
2013). In the second case, a distribution developed by
Lewontin and Krakauer (1973) for single-locus neutrality
tests is used as the null distribution for Qsr. The x? testing
procedure was suggested by Whitlock and Guillaume (2009),
and is implemented in the program QstFstComp (Gilbert and
Whitlock 2015). The Lewontin-Krakauer (LK) distribution
assumes independence between subpopulations and pro-
vides a good approximation in populations without spatial
structure, such as in a symmetric island model (Figure 4).
When subpopulations are strongly correlated, such as in a
one-dimensional stepping-stone model, the LK distribution
is a poor approximation. Even when the distributions appear
qualitatively similar, there are substantial differences in tail
probabilities (Figure 5).

Nearly identical issues to these were raised with the LK test
(Nei and Maruyama 1975; Robertson 1975). However,
while the neutral distribution for Fs; depends on the precise
details of population structure and history, the Qsr distribu-
tion depends only on coalescence times within and between
subpopulations. The point here is not that the LK distribu-
tion is particularly bad, but rather that an improved neutral
distribution is easily obtained using the infinitesimal
limit. This distribution is similar to the extension of the
LK test developed by Bonhomme et al. (2010) to account
for the correlation structure between subpopulations. The
Bonhomme et al. (2010) method treats allele frequencies as
multivariate normal with covariance matrix parameterized
by coancestry coefficients. Ovaskainen et al. (2011) and
Berg and Coop (2014) use normal models for phenotypes
also with covariance matrices based on coancestry coeffi-
cients. When phenotypic and genetic divergence is mostly
driven by changes in allele frequency, the coalescent and
coancestry based models should be very similar. However,
the coalescent model is ultimately preferable since it is the
correct neutral model at any scale of population divergence
in the infinitesimal limit. A coancestry model is the only op-
tion if only allele frequency data are available, but it is still
better to use the full matrix of coancestry than to use a single
value of Fgr.
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Fsr/(ng — 1) times a chi-square distribution with ny — 1 degrees of freedom (Qsr ~ FgTX%EH /(ng — 1)), where ny is the number of subpopulations.
The neutral distributions for Qsy become increasingly different as the number of subpopulations over which the genetic divergence is spread

increases.

Treating Qg7 as a random variable also lets us reexamine
the classic result in evolutionary quantitative genetics that
Qst = Fst (Whitlock 1999). Fsr, in this context, refers to a
population parameter. In particular, Fgr = - }E", where t is the
expected coalescent time for two loci sampled at random
from the entire population, and t; is the expected coalescent
time for two loci sampled within a subpopulation (Slatkin
1991). This value is constant over realizations of the evolu-
tionary process. Qs can refer to either the state of the pop-
ulation or to an estimate of this state. Qsr, as a state of the
population, varies across evolutionary realizations. Thus,
there is no sense in which Qsr can be defined as a constant
parameter in the way that Fsr can. The expectation of Vpetween

is t — tp, and the expectation of Viyiwi, is to. % is
equal to Fsr. Due to Jensen’s inequality, the expectation of
this ratio (E[Qsr]) is never greater than Fsr. This was previ-
ously shown by Edge and Rosenberg (2015) for a slightly

different trait model.

Inferring genetic parameters

Schraiber and Landis (2015) suggested the possibility of es-
timating moments of the distribution of mutational effects for
traits that deviate from normality. These moments would be
informative about the shape of the mutational distribution.
Using the expected trait moments (Equation 7), we can at-
tempt to derive a method of moments estimator for the
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moments of the mutational distribution. The system of equa-
tions for the first three central moments is

My = Dg2Lmy
N 1.
M3 = §D373Lm3

Mo =308 + (Dya-t as+ 50as Jims, (D
where ﬁkﬁn is an estimator of%E[’JI‘kﬁn], and the low mutation
rate approximation has been used. The moments of the trait
distribution only enter through products with the number of
loci potentially affecting the trait (Lm;). If we have the esti-
mates 1;1.1\2, L/rrT;;, and L/n;;, it is possible to estimate the ratios
my/my and mg/my for the mutational distribution. These
ratios are meaningless on their own because any value could
be obtained by changing the measurement scale of the trait.

The identifiable quantity in this system of equation is the
m3

compound parameter .-,

This quantity reflects the degree

of mutational skew relative to the spread of the distribution,
but it is not possible to distinguish sparsity from skewed or
heavy-tailed distributions of mutational effects.

Discussion

Neutral models of quantitative trait evolution are important
for establishing a baseline against which to test for selec-
tion. Schraiber and Landis (2015) recently analyzed a neu-
tral model of trait evolution that made few assumptions
about the number of loci potentially affecting the trait and
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the distribution of mutational effects. However, they only
derived results for constant-size, panmictic populations.
We extend their results to populations with arbitrary dis-
tributions of coalescent times and therefore arbitrary de-
mographic histories and spatial structures. A key result of
Schraiber and Landis (2015) is the characteristic function
of the distribution of trait values in a sample. We work
instead with the mgf, but the two approaches are inter-
changeable as long as the mgf of the mutational distribu-
tion exists (which it will if the moments of the mutational
distribution are all finite). Our main result (Equation 4)
shows that the characteristic function from Schraiber and
Landis (2015) is a special outcome of a general procedure
whereby the mgf for a trait can be obtained by making a
simple substitution into the mgf for a distribution over
genealogies. The mgfs for many demographies of interest,
and for sample sizes greater than n = 3 are complex re-
cursions that are impractical to solve (Lohse et al. 2011).
However, progress can still be made by deriving moments
of trait distributions in terms of moments of the genealog-
ical and mutational distributions.

This result extends previous work using coalescent theory
to investigate neutral models of quantitative traits (Whitlock
1999; Schraiber and Landis 2015). Ours is the most general
model yet analyzed. As a natural first step, we show that the
infinitesimal limit suggested by Fisher (1919) leads to a
model where phenotypes are normally distributed as the
number of loci becomes large and the magnitude of effect
sizes becomes small. In the limiting distribution, the vari-
ance of the difference between two individuals is propor-
tional to the expected pairwise coalescent time between
them, and the covariance between a pair of differences
is COV[Ya -Y, Y. — Yd] o« E[Ta_’d] + E[de - E[Ta‘c} - E[de}.
The resulting covariance matrix completely specifies the neu-
tral distribution in the infinitesimal limit. This is similar to
classic models in evolutionary quantitative genetics for the
neutral divergence of trait values after population splits
(Lande 1976; Lynch 1989) but holds regardless of the precise
details of population structure and history. Schraiber and
Landis (2015) derive essentially the same distribution using
a central limit theorem argument.

Mendes et al. (2018) point out several problems caused
by incomplete lineage sorting when a covariance matrix
based on species split times is used in phylogenetic com-
parative methods. The normal model arising in the infini-
tesimal limit is not subject to these problems because it is
explicitly based in the coalescent. A matrix based on aver-
age pairwise coalescence times takes into account the ef-
fects of all lineages at causal loci, even those that do not
follow the species topology. The covariances specified by
Equation 5 could also be used to generate within-species
contrasts in a similar manner to the method suggested by
Felsenstein (2002).

We derived the first four expected central moments of
sparse traits and compared them to those expected under
normality. This showed how demography and genetics



separately influence the expected deviation from normality.
For a fixed expected sparsity, population growth produces
greater deviations in the fourth central moment while pop-
ulation bottlenecks produce lower deviations (Figure 2).
However, for realistic demographic scenarios, we find that
the effects attributable to demography are small (Figure 3).
We only analyzed cases with exchangeable individuals, but
adding population structure would increase deviations from
normality as drifting trait means between subpopulations can
yield multimodal distributions.

We next investigated two simple problems where a co-
alescent perspective on the neutral distribution of a quan-
titative trait provides useful intuition. The first is the
question of the appropriate null distribution for Qs at
the population level. We show how to easily simulate from
the null distribution in the infinitesimal limit, providing a
much better approximation when subpopulations are cor-
related than previous approaches (Whitlock and Guil-
laume 2009) (Figure 4). For the second we show that the
shape of the mutational distribution is largely confounded
with the number of loci affecting the trait, with only one
compound parameter identifiable. This makes it unlikely
that mutational parameters could be inferred from trait
values sampled from a population.

Even though we have broadened the model space for
neutral traits, many features of real populations have not
yet been incorporated. Linked loci are a particular concern
as there is substantial linkage disequilibrium between
causal SNPs (Bulik-Sullivan et al. 2015). Lohse et al.
(2011) derived the form of the mgf for genealogies at
linked loci and future work will attempt to incorporate
recombination using Equation 4. In particular, it will be
important to show how linkage affects the distribution in
the infinitesimal limit. Diploidy, dominance, and epistasis
have also been ignored thus far. The qualitative effects de-
scribed here should hold under additive diploidy, but hav-
ing trait values within individuals summed over loci from
two copies of the genome will decrease deviations from
normality. Dominance will also produce a normal distribu-
tion within populations because individual trait values are
generated by summing genotypic effects from many inde-
pendent loci. A relationship between dominance and mu-
tational effects can skew the distribution of trait values at
individual loci, thereby slowing convergence, but the cen-
tral limit theorem will ultimately ensure a normal marginal
distribution of individual trait values. The same argument
used for the haploid model also shows that the within-
population distribution will be normal under dominance
(see Appendix B). Analogous to the haploid within-population
variance of E[T,»]%u,, the diploid variance also depends
on the genealogical, mutational, and dominance distribu-
tions, and could be derived with an approach similar to that
used here. An analysis of dominance in the infinitesimal
limit would be a useful next step as previous work has found
that dominance decreases mean Qsry (Goudet and Biichi
2006).

Barton et al. (2017) recently performed a deep mathe-
matical investigation of a more formal “infinitesimal
model.” They proved conditions under which the trait val-
ues of offspring within a family are normally distributed
with a covariance matrix conditionally independent of the
parental trait values given the pedigree. Interestingly, they
found normality still holds under pairwise epistasis if it is
not too extreme. It may therefore be possible to include
epistasis in the infinitesimal limit considered here, and
thus study how epistasis affects neutral trait divergence.
In a commentary on Barton et al. (2017), Turelli (2017)
noted that at least three infinitesimal models have been
used. The first stems from Fisher (1918), and states that
a large number of Mendelian factors each make a small
contribution to the genetic variance. The second is the
model studied by Barton et al. (2017) that descendants
are Gaussian with variance independent of parental phe-
notypes. The third assumes that trait values are Gaussian
within a population and has been used to study selection
(Bulmer 1971). The infinitesimal limit considered here fits
all three definitions: (1) the limit corresponds to Fisher’s
notion of a large number of Mendelian factors; (2) the
descendants within a family have a Gaussian distribution
of trait values, as shown rigorously by Barton et al. (2017);
and (3) the distribution of trait values is Gaussian in pan-
mictic populations.

Although GWAS of many traits have shown them to be
controlled by large numbers of loci (Boyle et al. 2017), this
is not necessarily the case for every trait of interest to bi-
ologists. It has been suggested, for instance, that gene ex-
pression levels have a sparse genetic architecture (Wheeler
etal. 2016). Since there is much interest in testing whether
natural selection has acted on gene expression levels
(Gilad et al. 2006; Whitehead and Crawford 2006; Yang
et al. 2017), well-calibrated goodness-of-fit tests will need
to take into account the complications that arise when trait
distributions deviate from normality (Khaitovich et al.
2005). Direct measurements of mutational distributions
(Gruber et al. 2012; Metzger et al. 2016) could aid calibra-
tions. Generally, more work is needed to develop neutrality
tests robust to the details of genetics and population his-
tory, and to investigate whether anything about mutational
processes can be learned using statistical models that share
information across multiple traits.
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Appendix
Appendix A: Rederivation of Equation (1) of Schraiber and Landis

This appendix shows how the main mathematical result of this study connects to previous work by Lohse et al. (2011) and
Schraiber and Landis (2015). Lohse et al. (2011) showed how the probability distribution of genealogies at a locus can be
represented using a generating function. Schraiber and Landis (2015) took a similar approach to a different problem, and
derived the characteristic function for the distribution of quantitative traits in a panmictic population. Equation 4 of this paper
demonstrates a fundamental connection between the mgfs of traits and of genealogies. If this connection holds we should be
able to reproduce equation (1) of Schraiber and Landis (2015) (the panmictic trait mgf) using Equation 4 of this paper and
equation (5) of Lohse et al. (2011) (the genealogy mgf).

We go through this derivation rewriting equations in the notation of this paper. Equation (5) of Lohse et al. (2011) is a
recursion for finding the mgf of a sample of size n lineages from a panmictic population:

1 _
Pr(s,Y) = m( z;ey(p% ! <S7C(Y,wiawj))- 12)
Wi, wj

Here, Y is the set of all external branches of the genealogy, and C(Y, w;, w;) is an operator that removes w; and w; from Y and
adds ; U w;. Following Equation 4, we make the substitution s, = § (y(3";.,ki) — 1) to get

n _ 2 n—1 Lo
) = 1y k) ) e (500, sy )y as
Next we can write
o ! (SaC(Y» (,()i,(l)j)) Lw:% (S k)-1) = o§ 1 (C(k, 1,]). 14)

The operator C(k, i,j) removes the ith and jth elements of k and adds the term k; + k;. We can use this simple operator because
the order of elements in k does not matter for a panmictic population. This yields

, 2
(PY(k) ( )+0(Zu 1‘:0( Z (PY kal>J)) (15)

J<nl7é1

This recursive expression is equivalent to equation (1) in Schraiber and Landis (2015).

The complicated appearance of Equation 15 is mostly due to the need for novel notation. A simple example for a sample of
three lineages shows how the substitution process works, and better demonstrates the utility of Equation 4. The mgf for a
genealogy of sample size three from a panmictic population is

0 1 y ( 1 . 1 . 1 )
T — 3
3=t 7Sy ~Sty \L7S(ab) TSt 17 Spag TSy 1S TS

and the mgf for the trait distribution after substitution is
1 1
] +
1 1 =5 (Wlka +kp) +ipke) =2) 1= 5 (lka +ke) + (k) = 2)
X
=5 (W(ka) + th(kp) + P(ke) — 3) 1

(W(ky +ke) + ¢(ka) —2)

NIQ:

MIQ:

_0
2
Appendix B: The Infinitesimal Limit

This appendix describes in detail how taking an infinitesimal limit where the number of loci becomes large as the effect size per
mutation becomes small, yields a multivariate normal distribution of individual trait values. The resulting normal model leads to
Equation 5, which gives the covariance in individual trait differences. Equation 5 is later used to simulate from the null
distribution of Qgr in the main text section on trait divergence in structured populations. The first section of this appendix
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describes a full central limit theorem argument for obtaining the means, variances, and covariances that are given in the main
text section on the infinitesimal limit. The second section provides a heuristic derivation of the same means, variances and
covariances. The third section explains how these results for the joint trait distribution in the infinitesimal limit relate to trait
distributions in panmictic populations where individuals are exchangeable.

A central limit theorem derivation

The mgf for the distribution of trait values from a single locus is

oy (K) = / exp(sttw> P(T = t)dt L
ot 6,0 1)
If we substitute in the Taylor series expansions for the mgf of the trait value distribution we get
0
/ [ [exp [twi (Z (Zka> ﬂ = t)dt.
Q = acw

If we then write the Taylor series of each exponential function we get

s (S

P(T = t)dt,

which is equivalent to

1+§E[ m—.(2k> iﬁ%(Zka)nJr...

acw; aAcwy

l\)lQ:w
N D

n=1 acw

Zn_<2k ) +Q><QEE TwlTwZ ;

This is raised to the power L for a trait controlled by L loci. We want the limit as the number of loci increases while the size of
mutational effects decreases. This can be expressed by the limits Lm; — u,, Lmy — u, and Lm; — 0 for i > 2 as L — . Knowing
we will not be retaining ms and above we can rewrite the mgf as

(H%E[T <mla;ka (g) ))

exp(ZE Tuly <ulzka+“2 (Zk> )) (16)

wel) acw acw

The result of taking these limits is

This is multivariate normal distribution with mean equal to E[Tygca] %Mv variance equal to E[Twvrca] %,uz, and covariance
between Y, and Y, equal to E[rq.) §u,. This can be seen from Equation 16 by noting that in the mgf for a multivariate normal
distribution the coefficient in the exponential of k, is the mean of Y, and the coefficient of kqk; is 2Cov[Y,, Y3] if a # b and
Var[Y,] if a = b.

These Y values are not directly observed because in the theory presented here they are measured as the sum of
differences since the Tyrcas at the causal loci affecting the trait. Rather, differences between individual trait values
are what analyses would be based on. Since the Y are normally distributed differences between trait values such as
Y, — Y, will be as well.

Var[Y, — Yp] = Var[Yq] + Var[Y},] — 2Cov[Yy, V3]
= 2(E[Tmrcal = E[ra1b]) 1o
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The same argument is used to arrive at Equation 5 in the main text. The covariance between all pairs of differences in trait values
determines any observable statistics in the infinitesimal limit.

A heuristic derivation: A much simpler heuristic derivation of the limiting normal distribution can be done by calculating the
variance and covariance at a single locus. This derivation is very similar to that done by Schraiber and Landis (2015). Using the
law of total variance we can write

Var[Y] = E[Var([[Y]|T]] + Var[E[Y|T]]

The variance conditional on T can be calculated again using the law of total variance and conditioning on the number of
mutations at the locus.

Var[Y|T] = E[Var[Y|M]|T] + Var[E[Y|M]|T]
= E[M(my — m?)|T] + Var[Mm,|T]

0 6

- ET(mz -mi) + ETm%
0

=T
2 M
0

E[Y|T] = = Tm,
2
0 2
Var[-Tm;| = (§m1> Var|T|
Therefore we have
0 0 \?
Var[T] = Esz[TMRCA] + Eml Var[TMRCA]. a7

The same procedure can be done for the covariance.
Cov[Yq, Yp] = E[Cov[Yq, Y}|T]] + Cov|E[Yq|T], E[Y3|T]]

We can break Y, and Y}, into a shared part, Y5 and unshared parts for each, Ys, and Ysp.

0
COV[YS + Ys5q,Ys + ng‘T] = Var[Ys|T] = §7a+bm2.

0

0
E |:§Ta+bm2:| = Esz[7a+b]

2
CoV[E[Y4|T], E[Y|T]] = Cov E Tml,ngl] = (gm1> Var|[Tyrca)

Therefore we have

0 0 \?
COV[YmYb] = EmZE[7a+b} + (Eml) Var[TMRCA]. (18)

The terms proportional to the variance of the Tyrca disappear because Lm? —0 as L— o
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Within-population trait distributions

The above theory considers the distribution of trait values over realizations of the neutral evolutionary process and shows that
this is multivariate normal. As discussed in the main text section on the infinitesimal limit, we also intuitively expect that the
distribution of trait values within a randomly mating population will be univariate normal. These two perspectives are easily
reconciled using multivariate normal theory. In a population of size N, the trait values Y = (Y1, . .., Yy) are exchangeable normal
random variables. They are therefore jointly multivariate normal with a common mean M, common variance V, and common
covariance D (Tong 1990). If the mean value in the population is Y = }VZIL ,Y;, then

E[Y; - Y] =0, 19

Varly; - 7] =V -2 V-D, (20)

(N-)D+V NN-1D+NV
N N2 -
and

CovlY; —V,Y;—¥]=D—2 0. (@30

(N—1)D+V+N(N—1)D+NVN
N N2 =

The within-population trait value are therefore approximately i.i.d. normal around the population mean. In the infinitesimal
limit we have V =E[Turcal§u, and D = E[rqp)u,. The within-population variance is therefore E[Twygrcalgus —
E[Ta+b]%ﬁ’«2 = E[TZZ]gMz-

The reasoning here applies to any situation where the marginal trait values are normal and individuals are exchangeable. As
mentioned in the discussion, a situation of particular interest is the case of dominance. In a diploid model with dominance we
would also get a marginal normal distribution when summing over independent loci. Equation 20 would therefore still apply
and we would get a within-population variance analogous to E[T5]Su, that depends on moments of the genealogical,
mutational, and dominance distributions.

Appendix C: Derivation of the Low-Mutation-Rate Approximation

This appendix gives the derivation of the low-mutation-rate approximation to the trait mgf given in Equation 6. This approx-
imate mgf is derived starting with Equation 3 and only allowing for the possibility of one or zero mutations at each locus.
Using Equation 3, and taking a Taylor series approximation to the exponential function, we get

py(k) = / I +gtw (w(Zka> - 1) + 0(02)]P(T = t)dt. (22)

we) acw

The O(6?) term captures events where more than one mutation occurs on the same branch of the genealogy. Events corre-
sponding to more than one mutation occurring on different branches can also be absorbed into this term to give

oy(k) =1 +§ZEM (w(Zka) - 1) +O(62)) (23)

wel) acw

This is the mgf for a trait controlled by only a single locus, and raising it to the power L to account for multiple independent loci
gives the Equation 6 given in the main text.

Appendix D: Automatic Moment Derivations

Equations 7a-c in the full text were derived using a symbolic math program written using sympy (Meurer et al. 2017). This
appendix describes the basic idea behind this program. A python module and ipython notebook used to make calculations are
available at https://github.com/emkoch/trait mgf math.

Moments of the trait distribution can be calculated by differentiating Equation 3. To derive moments for an arbitrary
distribution of coalescent times we take a Taylor series of the mgf of the mutational distribution to get

</ I;Iexp {twg( i%<;k))} B(T = t)dt)L' 24
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We then also Taylor expand the exponential function appearing in this integral to get

(1+;E[Tw]92 <a€2wka> +%E (%:ngz (Zka) ) <;ng2 <Zka> >

acw acw

1 L
—E R
i1 )

(25)

Of course, the infinite sums appearing in this expression pose a problem. To calculate a particular moment, we only consider
terms that will contribute terms of that moment’s order when Equation 25 is differentiated and zero is substituted for all dummy
variables. For example, to calculate E[Y, Y, Y.] we only want terms that contain an order three product of k when the polynomial
in Equation 25 is expanded. For a moment of order m, we only need consider terms of size m and less in the series expansion of
the exponential, and within the expansions of the mutational mgf we only need consider terms up to order m — m; + 1 where
m; is the order of the exponential term being considered.

Appendix E: Kurtosis Simulations

This appendix investigates how the kurtosis, rather than the expected fourth moment of the within-population trait distribution
responds to demography and sparsity. Equations 7a—c and Figure 2 only show the response of the fourth moment. The kurtosis
proves difficult to deal with analytically. A first order approximation proves to be poor and simulations show high variance of
the within-population kurtosis.

Entire populations were simulated using msprime (Kelleher et al. 2016) and mutations were assigned effects from a standard
normal or Laplace distribution. The effective population size and mutation rate were kept constant and the expected number of
pairwise difference was increased by increasing the number of loci affecting the trait.

A first order approximation to the kurtosis is

E[T44] — £ E[Ts4] — $E[Ts4]
my /m3 ['Jl‘z y

[T2.4]+¢E[Ts4]"
LYE[Ty o] + my/mZeiilz e hTsa) T

Kg/l) =3+ (26)

Although this expression suggests that the expected ky will be greater than under normality when external branches are longer
(E[T4.4] > ¢E[T34] + $E[T24]) and less than under normality when they are longer (E[T4 4] <%E[Ts3 4] + $E[T24]), simulations
show that the approximation is actually quite poor (Figure S1).

Appendix F: Additional Moment Derivations

This appendix provides full derivations of some moments of trait distributions to show how things would proceed without the
assistance of computer algebra. The first section derives the variance and kurtosis of a single trait value, Y,. This is the variance
and kurtosis that would result if we were to rerun the evolutionary history leading to that individual many times. The second
section derives the expected fourth central moments of the within-population trait distribution under the low-mutation-rate
approximation. This result should be compared with that in Equation 7c.

First and second trait moments
We can use the low-mutation-rate approximation to the mgf to calculate moments of the distribution of trait values. In what
follows, let 74 be the sum of all branches ancestral to both a and b, and 7, /b be the sum of all branches ancestral to a but not b.
Extensions of this for more than two individuals are also used. The same notation is used when referring to sets of branch
indices. So €443 and {4/, would be the sets of branches added to get 74,5 and 75, respectively.

We will start by calculating the first and second moments. First, as was done when deriving the normal distribution, substitute
the Taylor series of the mutational mgf:

1+ ) E[T) (lek + 50 <Zk) +—<Zk> +m—f‘(Zka)4...)r. 27)

ey (k)
we) acw acw acw acw
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We can expand this out using multinomial coefficients to get

py(k) ~ 1 +Lg > E[T.)] (mlzka +";2(Zka)2 +. )

weO acw acw

y D (g)zzmmz (mlzka + ?(Zka)z ;.. .)2 28)

we) acw acw
0\ 2
+ L(L- 1)<§> > E[Twl]E[TwZ](mlzkavL...) <mlzka +> +....
w1,w2€0 acw; acw,
The first coefficient is ( L ) the second is ( L ) and the third is < L ) . To calculate the moments of
L-1,1,0)’ L-2,2,0)’ L-2,1,1,0

this distribution one takes the partial derivatives of the mgf and sets the dummy variables to zero.

B[y ... Y" otk 2
[1--~ n]—mfps{( )|k:0 (29

Using this to calculate the first moment of the trait distribution, we get

0
E[Ya] ~ Loms > E[T,]. (30)

we,

The second moment is more complicated because there are k2 terms in all three lines of Equation 28.

E[Y?] ~ L gmz > E[t)

wel),

_ 2

w€el),

2
+LL- 1)(%) mi Y 2E[T,JE[T.,]

wl,wzeﬂa b

Terms with (g)2 are kept because they also include a second order term of L in front of them. We can now calculated the
variance using Var[Y] = E[Y?] — E[Y]?. The squared first moment can be written as

2 2 2
<L gml ZE[Q,,]) =12 (g) m3 ZE[Tw]Z + I2 <g> m? Z E[Tw,|E[Tew,)- (32)

we, wel), 1,020,
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Subtracting this from the second moment gives

0
Var{Yy] ~ Loms > E[T.]

wel),

1(2) w3 pim

wel),

0 2
_2L<§> mi Y E[T,E[Ty,]
©1,02€Qq4p (33)

2
= Lgmz > E[T,] L (gm1 > E[Tw])

e, wel),

6 6 2
=L EmZE[TMRCA] —-L <§m1E[TMRCA})

0
~ L isz[TMRCA}.

Due to the large number of terms we only derive the fourth moment of the trait value distribution for the case when the mean
mutational effect is zero. The terms of (27) appearing in the fourth moment after we apply (29) are

L (g) rzn—: w%;aE[Tw] (Zka) 4

acw

for the fourth moment along one branch,

(1-220)(3) (3) 2o om(2e)

wel), acw

for the second moment of the same branch chosen twice, and

(L—Z,L1,1,0><g>2(%)224 > EWwJE[TmJ(Zka)z(Zka)Z

01,02€0q:p acw; acwy

for the second moments on two different branches. Taking the fourth derivatives of these in terms of the desired branch, we get
0
E[Yj] =L §m4E[TMRCA]

2 (3 g

we,

+L(L—1)(Z)2(Tr;>224 Y ElTu)E[Ts,]

01,026 0q4p

(34

0 0 2
= LomgE[Tyrea) +3L(L—1)( sma Y E[T,] ) x
2 2 we,

0 0 2
= L§m4E[TMRCA] + 3L(L - 1) <§m2E[TMRCA]>

0 0 2
~L §m4E[TMRCA] +3 (L §m2E[TMRCA]> .
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The variance and the fourth moment derived in Equations 33 and 34 can be used to derive the kurtosis of Y,. The kurtosis of a
random variable X is defined as
E[(X—E[X])"]

K = e PP

This is the fourth central moment divided by the variance. It is possible to calculate the kurtosis of a single trait value over
evolutionary realization. For ease of calculation, we will examine this in the case where the mean mutation effect (and therefore
trait value) is zero. If we plug (33) and (34) into the expression for the kurtosis we get

0
LomaE[Tvreal  31(1 - 1)(@maE[Tyirea])®

KurtY,] =
(L4moE[Tnreal)? (L 8moE[Tmrea))?
m 3(L2-1L
om0
2 L
L szE[TMRCA}
K 1
i E— +3(1 - Z).
L 3 E[Tmrcal

The expected fourth central moment of the within-population trait distribution under the low-mutation-rate
approximation

To derive the expected fourth central moment of the within-population trait distribution, we first calculate some additional
moments that have less clear interpretations but which are necessary. The first of these is E[Y2Y}]. The terms of (27) appearing in
this are

6\ m
L(§)2—24k2kb > E[T.]

©€Qqyp

and

LL-1) <g %)zkﬁ X 2kaky ( 3 E[Tw]> ( S E[Tw]) .

0€Ngip wel),

This ultimately gives

2
BIV3Y:] = Lgmalre-s] + 31(L — 1) (3ma ) BlTuecalEfracsl (35)

The next fourth moment of interest is E[YfoYC]. The terms of (27) are
0 mgy

Ly g 12kzkoke > E[T.),
©0€Qq1b1c
(%] mo 2
b-1) (5 22) < 2ok (S BIn ) (3 B ).
weEN, w€Ng1p

and

LL - 1)(% ”;)221«(,1% ><2kakc( 3 E[Tw])( 3 E[Tw}).

(4)69.,1+b WEWp
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Taking the appropriate derivatives of these gives

0 o \? o \?
L§m4E[7a+b+c] +L(L-1) (Emz) E[TvmrcalE[Tpic] + 2L(L — 1) (Emz) E[Tq1p]E[Tatc)- (36)

Individuals in the population are exchangeable as long as it is not structured. The pairwise expected shared branch lengths are, in
that case, all equal, and we can write (36) as

) 0 \2 0 \2
LgmaBlresoecd +10 = 1) (gme ) ElTumealBlra.s] + 2000~ 1) (5ma ) Blrass @37)

The final moment we will look at is E[Y,Y,Y,.Y,] which has relevant terms

0 mgy
L§2—424kakbkckdwd; dE[Tw],
2
LL- 1)(% %) 2kakp X Zkad< 3 E[Tw}> ( 3 E[Tw}>,
®w€Nqp W€D q
B 6 my 2
L(L 1)(5 7) 2kake X 2kpkg <w€§ﬂ: E[T,,J) (we%: iE[T,,J),

and

LL—1) (g ”;)zzkakd X 2kbkc< 3 E[Tw]) ( 3 E[Tw]).

a)EQ‘Hd WEWpc

When the appropriate fourth order partial derivatives are taken, we get
0
LomaElTabierd]
0 2
+L(L—-1) <§m2) E[7q.p]E[rc1d]

2
+LL-1) (gmz) E[7a1c]E[Tpd]

2
+1(0= 1) (G2 ) Blras Bl

We can again simplify this expression for populations if we assume that individual are exchangeable. This gives

0 o \?
L§m4E[Ta+b+c+d} + SL(L - 1) (Emz) E[’Taer]Z. (38)

The expected kurtosis in the population is a quotient of random variables and calculating a second order approximation
requires calculating eight order moments of the trait distribution. Instead, we will calculate the expected fourth central
moment.

N\ 4
EMysy] = E[]lvz (Yi—%> . (39)
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Examining the sum inside the expectation, we see that

E [(Yi—ZNY’ﬂ — B[Y{] - 4E {Y?ZNYJ v? (Z Y) [Yi <ENYJ) (Z Y))

N
= E[Y{] - > _E[Y}Y] +W;E[Yi Y;Yi - ZW;E[YYWZ = kz [V;YiY1Yq).
J Js J:K,

+ 6E

(40)

In calculating these expectations, we have to remember that the value depends only on the number of times each variable appears
in the expectation. That is, E[Y2Y,Y3] is equivalent to E[Y;Y3Y3] as long as all individuals in the population are exchangeable.
The resulting expansion of (40) can be simplified by only considering terms of order one. Other terms can be ignored since we
are assuming there are a large number of individuals in the population. This yields

(Yi—¥) 4} = E[Y}] - @E[Y?Yj] + ME[Y?’YYU

E i n2

_4(n—-1)(n—2)(n-3) E[Y;Y;Y1Y)] @0

(n—1)(n—-2)(n—3)(n—4)
n4
~ E[Y{] - 4E[YY]] + 6E[Y}Y;Yi] - BE[V;Yj1iY].

+ E[Y;Y;Y;Yg) +O0(n~ 1)

The first term, E[Y;] was derived in Equation 34 as

0 0 2
L§m4E[TMRCA] + 3L(L - 1) (imZE[TMRCA}) .

The second term, E[Y?Y;] was derived in Equation 35 as

0 o \?
L §m4E[7—a+b} + SL(L - 1) <§m2> E[TMRCA}E[Taij]-

The third term, E[Y?Y;Y)] was derived in Equation 36 as

) o \?2 o \?2
Lgmalrass:o] + 100~ 1) (Gma ) BlTmcalBlross] + 200 ~ 1) (e ) Blrs

The fourth term, E[Y;Y;YY;] was derived in Equation 38 as

0 o \?
L§m4E[Ta+b+c+d} + SL(L - 1) (57712) E[’Taer]z.

Plugging these into (41) we get
0
E[M4] ~ L§m4(E[TMRCA] —4E[rq1p] + 6E[Ta b i) = 3E[Taybicral)
(42)

2
+3 (L gmz) (E[TMRCA}—E[Taer])Z-
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With some simple manipulation this can be rewritten in terms of Ty, to give

0 0 1 2
E[M,] = 3(L E13[1r272]rnz)2 + Lmyg (E[T474} +3ETsq] +5 E[’IFZA]) . (43)

This expression should be compared to Equation 7c in the main text. We get the same result if we ignore terms of
order L(§)*
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