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ABSTRACT Accurate estimation of recombination rates is critical for studying the origins and maintenance of genetic diversity. Because
the inference of recombination rates under a full evolutionary model is computationally expensive, we developed an alternative
approach using topological data analysis (TDA) on genome sequences. We find that this method can analyze datasets larger than what
can be handled by any existing recombination inference software, and has accuracy comparable to commonly used model-based
methods with significantly less processing time. Previous TDA methods used information contained solely in the first Betti number (b1)
of a set of genomes, which aims to capture the number of loops that can be detected within a genealogy. These explorations have
proven difficult to connect to the theory of the underlying biological process of recombination, and, consequently, have unpredictable
behavior under perturbations of the data. We introduce a new topological feature, which we call c, with a natural connection to
coalescent models, and present novel arguments relating b1 to population genetic models. Using simulations, we show that c and b1

are differentially affected by missing data, and package our approach as TREE (Topological Recombination Estimator). TREE’s efficiency
and accuracy make it well suited as a first-pass estimator of recombination rate heterogeneity or hotspots throughout the genome. Our
work empirically and theoretically justifies the use of topological statistics as summaries of genome sequences and describes a new,
unintuitive relationship between topological features of the distribution of sequence data and the footprint of recombination on
genomes.
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RECOMBINATION is a fundamental source of genetic var-
iation in many natural populations. By bringing existing

mutations into novel genomic backgrounds, recombination
can accelerate the rate at which adaptation occurs, as well as
prevent the buildup of deleterious variants that occurs in
asexuals via Muller’s ratchet (Felsenstein 1974; Hill and
Roberston 2007; McDonald et al. 2016). It is therefore crit-
ical to measure the rates of recombination in order to under-
stand rates of adaptation. Resolution along the genome is also
an important factor, as recombination rates are known to vary
substantially along chromosomes. In particular, hotspots of

recombination have been found associated with a variety of
sequence and structural motifs in natural populations (Coop
et al. 2008; Baudat et al. 2010; McVean and Myers 2010;
Parvanov et al. 2010; Comeron et al. 2012). In addition to
hotspot detection, better estimation techniques for recombina-
tion rates can also improve our understanding of observed
levels of linkage disequilibrium in genome data (Stumpf and
McVean 2003), and, consequently, the expected signatures of
various evolutionary phenomena such as selective sweeps
(Neher and Shraiman 2009).

In practice, detecting genome-wide heterogeneity in re-
combination rates is challenging. Empirical approaches re-
quire building linkage maps through involved procedures
such as sperm typing or multi-generational genetic crosses
(Hubert et al. 1994). While these are often the most powerful
methods for detecting recombination, they are costly and
time consuming. With the recent influx of large-scale se-
quencing data, alternative algorithmic approaches to infer-
ring recombination rates from bulk genomic data have
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become a focus of attention. These methods, while often
faster, come with their own set of technical challenges. In
order to detect patterns and rates of recombination along a
genome, model-based algorithms infer properties of the an-
cestral recombination graph (ARG)—an exercise which can
be prohibitively computationally expensive on large datasets
(Fearnhead and Donnelly 2001). This problem has driven the
development of methods that use either a variety of summary
statistics built on quantities such as the distribution of pair-
wise differences (Wakeley 1997), or only compute partial or
composite likelihoods, such as LDhat and its sister LDhel-
met—two of the most widely used model-based methods
(Auton and McVean 2007; Chan et al. 2012). Even with this

relaxation, these methods can take a matter of days to run on
realistically sized sequence data.

In this paper, we present a method that takes advantage of
novel summary statistics based on topological features of the
genomes in a given sample to quickly and accurately provide
estimates of recombination rate heterogeneity. Our method
differs from existing model-based methods in that it is based
solely on distances between sequences and consequently
scales significantly better on large datasets. We find that a
topological data analysis (TDA)-based approach greatly in-
creases feasibility of the inference problem and implicitly ties
genetic distances to modern models of population genetics
via the coalescent (see Coalescent Intuition for Topological
Statistics).

Figure 1 Persistent homology applied to genealogies
in the absence and presence of recombination. (a)
Sample genealogy without recombination and corre-
sponding dimension-0 barcode diagram for sequences
at the terminals, with the time to a coalescence event
given three and two remaining lineages labeled. (b) A
sequence of complexes for increasing distance param-
eter choices on a set of arbitrary data. (c) Sample ARG
with recombination event represented by the loop in
red, and corresponding dimension 0 and dimension
1 barcode diagrams, assuming sampling throughout
the graph rather than just at the terminals. We note
that the H0 bar lengths no longer have a straightfor-
ward coalescent interpretation under this sampling
scheme.

1192 D. P. Humphreys et al.



Recently, Camara et al. (2016) demonstrated the utility
and efficiency of TDA to inference of recombination rates,
benchmarked against the methods of Hudson and Kaplan
(1985), Myers and Griffiths (2003), and Chan et al. (2012).
They focused on a topological feature known as the first Betti
number (b1, explained in Motivation for TDA), which cap-
tures the number of cycles in an ARG, the canonical graphical
representation of recombination events. We have found that
another topological feature of lower dimension, which we
call c, is a better predictor of recombination rate in genomes.
Moreover, c and b1 used in tandem provide much more ac-
curate estimates than previous TDA-based methods. We
investigate these two topological features and their relation-
ships to evolutionary quantities of interest—including recom-
bination rate as well as coalescent tree length—and describe
a method of estimating recombination rates from genome
samples using these features. We then compare the perfor-
mance of our estimator on whole-genome data to LDHelmet;
we find that our results justify the use of the TDA estimator as
a rapid approximation method.

Motivation for TDA

Weare interested in accessing informationabout the structure
of the ancestral recombination graph held in the Hamming
distances between sampled sequences, given thatwe can only
sample lineages at the present time.

This structure has a natural connection to TDA—a new
branch of statistics that applies tools from algebraic topology
to describe the shape of data (Carlsson 2009; Zomorodian
2009; Edelsbrunner and Harer 2010; Ghrist 2014; Chazal
et al. 2016). Here, we will provide a brief motivation for this
technique, with a precise discussion in Appendix A: Back-
ground on TDA. TDA has been applied successfully to a range
of applications in biology, including the study of breast cancer
transcriptional data for the discovery of a cancer subgroup
(Nicolau et al. 2011), the construction of phylogenetic trees
for analyzing tumor evolutionary patterns (Zairis et al. 2014),
and the detection of intrinsic structure in neural activity
(Giusti et al. 2015).

In particular, we use a mathematical invariant called per-
sistent homology, which quantifies the connected compo-
nents, holes, and higher dimensional voids at different
“resolutions,” or filtrations of the data. This is analogous to

expanding spheres around each of the points in a dataset and
considering the properties of the object generated by the
union of these spheres at different radii.

This process has a direct coalescent interpretation in the
case of a single genealogy—as we expand spheres around our
sampled sequences, we are exploring the possible ancestral
states along a coalescent tree, with the contact point between
the spheres corresponding to the most parsimonious se-
quence of the common ancestor of the samples in question.
Just as we lose a lineage backward in time at each coalescent
event, we lose a distinct connected component in our graph
of persistent homology (see Figure 1a). This process of keep-
ing track of the “lifetime” of these components is represented
using a barcode diagram, a collection of bars associated to
each of the features with length equal to the difference be-
tween the radii at which it appears and is lost (see Figure 1b).
These bars can be sorted by the dimensionality of their cor-
responding homology group. We focus on H0, the zeroth
homology group or set of connected components, and H1,
the first homology group or the number of holes in the data.
The counts of the elements in each homology group are cap-
tured by the Betti numbers, defined such that bi is the num-
ber of bars in a barcode diagram of Hi. Note that dimension
0 persistent homology is closely related to single linkage
clustering, where b0 corresponds to the number of points
and the lengths of the bars in the resulting barcode diagram
of H0 correspond to the branch lengths in the clustering den-
drogram (Carlsson 2009).

When there are multiple gene genealogies within the
sample, as is the case when there is recombination, the re-
lationship between coalescent and topological quantities
changes as thedistances between sequences arenowaverages

Table 1 Symbols used throughout the text

Symbol Meaning

r population-scaled recombination rate
r̂ TREE estimate of r
rph Camara et al.’s estimate of r
c Mean bar length in dimension 0
bi ith Betti number
u Watterson’s population mutation rate
Hi ith homology group
F variance in c

Figure 2 By averaging over multiple genealogies, the barcode of H0

features approaches identical bars of length equal to the expected pair-
wise coalescence time. (a) The C̆ech complex for these points at the
drawn radius is a graph with a cycle (shown with the dotted lines), as
the triple intersection is empty. (b) An ARG with lineage b inheriting p
proportion of its genome from the lineage leading to a.
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over multiple trees. In addition, H1 will now show features
loosely corresponding to loops in the ARG (see Figure 1c).
This has particular consequences for how we expect TDA-
based summaries to behave when recombination occurs,
which are detailed in Coalescent Intuition for Topological
Statistics.

Methodological Overview

Wesought to identify topological summary statistics (usingb1
as a baseline for comparison) that can serve as features for
algorithms to perform recombination rate inference. Utilizing
simulated data, we computed a variety of topological sum-
maries of dimensions 0, 1, and 2 from the Hamming distance
matrix between sequences.

The results of our LASSO regression indicated that the
topological features with the highest predictive power for
recombination rate are, in order: (1) the average dimension
0 barcode length (c), (2) the first Betti number (b1), and (3)
the variance of the dimension 0 barcode lengths (F).We then
used a nonlinear combination of these three topological sta-
tistics to build a novel TDA-based model for recombination
rate inference, the Topological REcombination Estimator
(TREE). We used simulated data to perform an initial valida-
tion of the model. For a more serious validation, we applied
TREE to 22 full genome assemblies from the RG Drosophila
population (Pool et al. 2012) (see Methods for more details)
and compared its performance to rph, the recombination rate
estimator introduced by Camara et al. (2016), and to LDhel-
met. We also benchmarked TREE on a much larger dataset of
Arabidopsis genomes, consisting of 1135 individuals and up
to 50k SNPs.

Notation and symbols

Throughout the text, we refer to various quantities. We list
them here (Table 1) in addition to where they are first
defined.

Coalescent Intuition for Topological Statistics

Themain topological statistics of interest here are b1, the first
Betti number, and c, the mean bar length in the dimension
0 barcode diagram. In order to relate these to the biological
process of recombination, we will use the language of coa-
lescent theory. For a detailed introduction to the field, see
Wakeley (2009). We note that our approach differs from
the recent considerations of Lesnick et al. (2018) in that we
consider a coalescent model with branch lengths and model
H0 behavior. Furthermore, we assume a more restrictive sam-
pling regime where only sequences at contemporaneous ter-
minals of the graph are known, as opposed to sequences all
along the genealogy.

Explainingc:Weprovide a heuristic argument that the value
of c is elevated in the presence of recombination by demon-
strating the desired behavior at the recombination rate ex-
tremes. First, we claim that in the absence of recombination,
the distribution of H0 feature lengths corresponds to the mu-
tation scaled distribution of branch lengths in the coalescent
tree of the sample, as shown in Figure 1a. Since there is a
single, fixed genealogy that describes all positions within the
sequence, it is sufficient to calculate the expected length of
the coalescent tree and divide by the sample size. Assuming a
large idealized diploid population of size N, from which we
sample K individuals with K sufficiently small relative to N,
the expected waiting time between coalescence events is

4N
kðk21Þ generations (Watterson 1975; Tavaré 1984), where k
is the number of remaining lineages. The full coalescent tree
is then made of each kth interval k times, for the number of
remaining lineages at that time. Summing over all these seg-
ments and dividing by the sample size gives us the following:

E
��c�� ¼ 4Nm

K

XK21

k¼1

1
k
¼ O

 
logðKÞ

K

!
;

where m is the per-generation mutation rate. Notably, this is
equivalent to the expected number of segregating sites

Figure 4 A genealogy with two recombination events, with the three
resulting gene trees overlaid. A loop will be formed in the C̆ech complex
of A; B;C when the radius is equal to the time to the MRCA for A and C,
since B is now further from that node than either A or C.

Figure 3 Given the true coalescent distances between the terminals
a; b; c, a recombination cycle will not be detected in the manner shown
in (a), and so will not generate an H1 feature in the C̆ech complex at any
radius. This example motivates the need for topological summaries be-
yond b1 for recombination estimation.
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divided by the sample size per Watterson’s estimator
(Watterson 1975).

We now show that in the infinite recombination limit, the
expectation forc is strictly larger than in the case where there
is a single fixed genealogy. If there is free recombination,
every site in the sample has an independent genealogy, which
we will average over, so all the bars must be of the same
length (Figure 2). In other words, the expected value of c
becomes the scaled average coalescence time for two ran-
domly sampled individuals in the current generation. This
is simply 2mN. All that remains is to show that 2

K

PK21
k¼1

1
k


is ,1. Since the partial sum is bounded by logðK2 1Þ þ 1;
this holds for all values of K .5. This additionally suggests
that the variance in the length of the H0 barcodes features
should decrease as the recombination rate increases, which
we observe in simulations. By integrating information about
both the length of the coalescent tree and the distribution of
pairwise differences averaged over multiple topologies, c can
be viewed as capturing distortions in the expected amount of
independent evolution between samples that occurs when
sequences contain multiple discordant gene genealogies.

Explaining b1: We suggest, in addition, that the standard
intuition for the use of b1 to detect cycles in the ARG [pre-
sented in Chan et al. (2013), Camara et al. (2016), as well as
here in Appendix A: Background on TDA], potentially over-
simplifies the relationship between recombination events
and features in the H1 barcode. For this, we will consider
C̆ech complexes, rather than Vietoris-Rips complexes (which
we use in the actual analyses). These are closely related
(Ghrist 2014), but the C̆ech complex construction allows
holes to be formed given only three points (see Figure 3a),
which lets us consider only three terminals. Given the graph
in Figure 3b, it is clear that if one were to sample the

sequences at every node, there would be an H1 feature ob-
served that corresponds precisely to the hole in the graph.
However, in many genetic studies, samples of the common
ancestors of present-day sequences do not exist. If we restrict
our data to the sequences at the terminals, single cycle de-
tectionwith b1 becomes a function ofmutation heterogeneity
along the graph, and any single recombination event cannot
be detected if we are given only the true coalescent distances
between samples along the genealogy. To see this, take ter-
minals a and c from the graph. By hypothesis, the amount of
time between them and their most recent common ancestor
(MRCA) is the same, which we will call L. It follows that
the minimum radius such that balls around these points
would intersect is L. Then, for the triple intersection of balls
around the terminals to be empty, b must be a distance
greater than L from the MRCA. However, each portion of its
genome has certainly experienced the same amount of time
since the MRCA regardless of recombination history. There-
fore, we require that there be a more than expected amount
of mutations generated along the path to b in order for this
event to be detected, given the actual sequence data.

However, if we take into account multiple recombination
events, certain configurations ofmultiple eventswill generate
H1 features even if we know the true coalescent distances.
This is becausewe can now introduce additional independent
evolution in one of the tips by having recombination occur
both within a clade and with an outgroup lineage (see Figure
4). We note that b1 is nonzero only in the presence of re-
combination events, assuming no sequence convergence and
infinite sites, but the sampling realitymay biasb1 detection in
subtle ways. This also implies that the length of the H1 bar
will not necessarily be indicative of features of the actual
cycle in the graph, as it will increase in length as additional
mutations are placed on the lineage leading to b, even if the
cycle itself is untouched. We find via simulations (see Sup-
plemental Material, Supplement S1 section Filtering b1) that
filtering smallH1 bars only hurts our inference capabilities, as
we would then expect.

Combining c and b1: These explanations for the behavior of
c and b1 also implies differences in behavior between c and
b1 under different population models. For example, while
rapid demographic changes, such as exponential population
growth, will distort c-based estimation (Figure 5), b1 counts
features generated by recombination at a rate independent of
the underlying tree structure, since the relative distances to
the MRCA are unchanged with multifurcations. On the other
hand, we find empirically that c is very robust (especially
compared to b1) to perturbations in the form of missing data,
which serve only to minorly rescale the H0 bars on average.
These differences suggest that a reliable predictor should in-
corporate both features. A more formal follow-up to the be-
havior of these statistics under different models of
demography and selection, as well as further characteriza-
tion of the behavior of c using the sequentially Markov

Figure 5 Exponential population expansion creates multiple-merger
events and shrinks internal branches. This can give a similar signal in H0

as increased recombination, but does not change cycle detectability via b1

in the ARG.
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coalescent (SMC) model (McVean and Cardin 2005) will be
conducted in future work.

Methods

Topological data analysis

We created a pipeline that takes as input a sequence file in
FASTA format, computes aHammingdistancematrixDH, uses
DH to extract the corresponding dimension 0 and dimension
1 persistent homology barcodes, and then calculates barcode
summary statistics. The barcodes were computed using
Ripser, a publicly available C++ package for computing Vie-
toris-Rips persistence barcodes, and all other computations
were performed in Python 2.7 (Bauer 2016). The scripts are
compatible with Python 2.7 and 3.0 and are available on our
Github page at: https://github.com/MelissaMcguirl/TREE.

Simulations

We simulated over 50,000 datasets of genetic sequence data
with known recombination rates, each of length 1000 bp,
using the programs ms and seq-gen (Rambaut and Grassly
1997). Given an idealized population, we varied the param-
eters for the population recombination rate r ¼ 4Ner, sample
size n, and population mutation rate u ¼ 4Nem to capture a
variety of mutation-recombination regimes in the data. The
datasets had recombination rates varying from 0 to
1000 (that is, no recombination up to free recombination
between all sites under the population recombination model
r ¼ 1000).

For each population we computed dimension-0 and di-
mension-1 persistent homology barcodes using Ripser (Bauer
2016). We ran regression analyses to discover topological
predictors for recombination and then confirmed that our
method predicts r directly and does not predict a covariate
such as u.

Model selection

Initially, we applied polynomial regression of degree two,
linear regression, LASSO regression, polynomial LASSO re-
gression, and exponential regression using several different
combinations of barcode statistics as inputs for predicting
recombination rate using Scikit-learn (Pedregosa et al.
2011). We sought the most parsimonious model that was
able to predict recombination rate with high accuracy.

Each model was trained on a randomly selected subset of
the input data, whose size was chosen to be 30% of the total
dataset. The model was then tested on the remaining 70% of
the input data, where R2 values were computed to access the
goodness-of-fit of the resulting model. This process was re-
peated several times to test the robustness of the learned
parameters with respect to different training sets.

Based on the R2 values, we were able to focus on just three
barcode statistics, c (average dimension 0 bar length), b1
(first Betti number), and F (variance of dimension 0 bar
lengths), as inputs for an exponential regression model of
the form

r ¼ exp
�
a*c

2 þ b*b
2
1 þ g*cþ d*b1 þ e*Fþ z

�
:

The coefficients ða;b; g; d; e; zÞwere determined via ordinary
least squares from simulated training data in scikit-learn Py-
thon 2.7.

This model was tested on input data consisting of 53,461
barcode statistic files corresponding to simulations of varying
sample size, mutation rate, and recombination rate. Fivefold
cross validationwas preformed for different sample sizes, and
for the complete dataset.

Empirical analysis

We obtained 22 full genome assemblies from the publicly
available RG population (from the African survey of
Drosophila melanogaster) for our analyses. These sequences

Figure 6 The relationship between c and re-
combination rate (left), and b1 and recombina-
tion rate (right) for a simulated dataset with
fixed sample size n ¼ 50 (top) and n ¼ 140
(bottom).
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were collected from independently bred isofemale lines, and
sequenced using Illumina GA IIx. The genomes in this sample
are homozygous/haploid, so phasing was not necessary.

With these assemblies, we ran LDhelmet and TDA in
parallel and compared the mean estimates of recombination
rate r in sliding windows of 500 SNPs. Since LDhelmet
provides estimates of r between any two SNPs, whereas
our method computes r within windows of 500 SNPs, we
take the mean of every 500 r estimates from LDhelmet to
compare to our windows. Moreover, since LDhelmet
estimates r ¼ 23Ne 3 r per base pair, and TREE predicts
r ¼ 43Ne 3 r, where Ne is the population size and r is the
probability of a crossover event from ms, then we apply a
uniform normalization of 1

23#ðbase pairsÞ ¼ 1
23 500 ¼ 1

1000 to the
TREE predictions for comparison to LDHelmet.

We also ran Camara et al.’s model using only b1 as a pre-
dictor within our sliding window framework to compare this
to our method and LDhelmet. We looked at the results in
three different ways: (1) in terms of absolute estimates com-
pared to each other, (2) in terms of concordance in the
change in r across windows (i.e., do both methods predict
an increase or decrease in r in the same window), and (3) in
terms of concordance of estimates above the 75th and 90th
percentiles of the distribution of estimates.

We additionally included an analysis of 1135 publicly
available Arabidopsis genomes. We converted the raw VCF
file to FASTA using a combination of bcftools and VCF-kit’s
phylo fasta function, subsampling up to 50k SNPs in order to
run the software within the 48 hr time limit of the Texas
Advanced Computing Center’s Stampede2 cluster. We ulti-
mately used this dataset to benchmark the computational
efficiency of TREE over LDhelmet due to impractical runtimes
for LDhelmet on the larger dataset.

Data availability

The authors affirm that descriptions and results for all the
simulations necessary for confirming the conclusions of the
article are present within the article, figures, and tables. The
sequence data used are available from the 1001 Genomes
(doi: 10.1016/j.cell.2016.05.063) and the RG population of
the Drosophila Population Genomics (doi: 10.1371/journal.
pgen.1003080) projects. Supplemental File S1 contains ad-
ditional experiments and results concerning the robustness
of c with missing data, population structure, and random
noise. Supplemental material available at Figshare: https://doi.
org/10.25386/genetics.7744814.

Results

Coalescent simulations

Wesimulated data for an idealized population offixed sizeNe,
with per-generation crossover rate r and mutation rate m.
Given this, we ran regression analyses to discover relation-
ships between various topological summary statistics and
r ¼ 4Ner; the population recombination rate. The topological
statistics included were: (1) the mean and median bar
lengths; (2) the variance of bar lengths; (3) the total number
of bars; and (4) the number of bars above varying noise-
filtering thresholds for dimensions 0, 1, and 2.

Our intention was to test various topological features as
predictors of known recombination rates, and to demonstrate
comparable performance of these features to a comparator
method, LDhelmet. However, given the computational bot-
tlenecks inherent to LDhelmet, we were unable to run this
software over the full set of .3600 alignments. We are nev-
ertheless satisfied in that the parameters to be estimated are
known from simulation, and so we save the use of LDhelmet
for our empirical analyses where the truth is unknown.

As a preliminary analysis, the weight vectors of LASSO
regression models provided insight into which barcode sta-
tistics were the strongest predictors of r. The results of this
analysis showed that two key topological features, b1 and the
mean dimension 0 bar length, which we will denote as c,
correlate strongly with r given a constant sample size
n. 10. Thus, these topological summaries became the main
foci of our work. Moreover, we found no correlation between
our barcode statistics and u ¼ 4Nem; the population mutation

Figure 7 c continues to be accurate under a missing data scenario
(R2 ¼ 0:76with 10% of the data missing in large blocks) while the accu-
racy of b1 under the same scenario drops to R2 ¼ 0:036.

Table 2 R2 values for the exponential regression model for
different feature inputs and sample sizes

Sample size c b1 ðc2;b2
1;c;b1;FÞ

25 0.724 0.456 0.792
50 0.847 0.749 0.894
75 0.883 0.827 0.927
95 0.898 0.862 0.941
140 0.909 0.887 0.959
Mixed 0.414 0.164 0.851
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rate, as expected, since changes in u with a constant Ne only
linearly rescale the distances.

In studying the information content of these various sta-
tistics, we found that c stood out as an even better predictor
of recombination rate than b1, and performed better on its
own in predicting recombination rates from simulated data-
sets. Figure 6 demonstrates the relationships between r and
b1, and between r and c for sample sizes n ¼ 50 and
n ¼ 140. We note that both topological summaries exhibit
an exponential relationship with recombination rate, and
that the relationship is tighter for c than b1, especially for
smaller sample size.

As a baseline, we fit our simulated datawith a fixed sample
size of 160 to the b1 based model of Camara et al. (2016), rph
(the “ph” stands for persistent homology). This model is
given by the equation

rph ¼ g
��

1þ 1
f

�b1
2 1
�
;

where the parameters g and f are coefficients related to sam-
ple size and are independently calculated for a given dataset.
The best fit over the simulated range of recombination rates
simulated is R2 ¼ 0:86. We found a relationship between r

and c with R2 ¼ 0:90, suggesting that this new parameter
has comparable or greater power for predicting population
recombination rates.

We demonstrated that the two parameters c and b1 are
differentially stable under violations of assumptions about
the data. Notably, c is robust to large amounts of missing
data, whereas b1 is robust to rapid changes in population
size. The former we show empirically: c maintains its rela-
tionship with r with R2 ¼ 0:76 with 10% of each sequence
missing as a tandem indel, while b1 loses this relationship
quickly with R2 ¼ 0:036 under the same missing data
scheme. These results are shown in Figure 7.

The assumption of 10% missing data are somewhat con-
servative; next-generation sequencing data sets have less
missing data, but this figure is realistic for many older se-
quencing data sets. As one would expect, we note that per-
formance of each method declines as missing data become
more prevalent (See Supplement S1 section Missing Data).
However, if missing data are located randomly throughout
the genome, it is unlikely to bias relative measures of recom-
bination rates within a dataset. While b1 is expected to be
robust to rapid changes in population size since this does not
change the number of cycles in the ARG, c will be more
sensitive to these changes as rapid demographic expansion
generates multifurcations in the genealogy which converge
to the same branch lengths as in the infinite recombination
case.

TREE model

We implemented several machine learning and regression
models to build an accurate and robust model relating topo-
logical summaries to r, including LASSO, polynomial regres-
sion, exponential regression, and linear regression. We
varied model parameters and input features (subsets of the
aforementioned barcode statistics) across each learning
algorithm.

A subset of model comparison results are presented in
Table 2, where we show the R2, or goodness-of-fit measure,
values for the model r ¼ expðaT x!Þ, where x! corresponds to
a vector of different barcode statistics and aT is the trans-
posed vector of coefficients. We ran the model separately
on datasets generated with varying sample sizes, as well as
on a dataset consisting of simulations of varying population
size. An R2 value close to 1 signifies a nearly perfect model,
whereas R2 near 0 indicate that the model has low predictive
power.

The results show that c is an overall stronger predictor
than b1, and, as expected, recombination rate is predicted
more accurately for higher sample sizes. Importantly, b1 fails
as a predictor in the case of small sample size, while cmain-
tains decent predictive power for sample size as low as 25.

A thorough comparison of the different model outputs
showed that an exponential model in c2, b2

1, c, b1, and the
variance of the dimension 0 bar lengths, which we will de-
note F, is the best predictor for r. While we also tested more
topological features as inputs to different models, the in-
crease in R2 values was negligible in comparison to the in-
creased risk of over-fitting.

Figure 8 TREE predictions on testing sets com-
pared to the true recombination rate for sam-
ple size = 50 (left) and sample size = 140
(right). The dotted line corresponds to perfect
predictions.

Table 3 Fivefold cross validation R2 values for the full model

Sample Size k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5

25 0.797 0.769 0.738 0.696 0.786
50 0.857 0.901 0.905 0.884 0.881
75 0.901 0.934 0.906 0.925 0.928
95 0.938 0.934 0.944 0.936 0.952
140 0.956 0.963 0.949 0.958 0.961
Mixed 0.849 0.847 0.849 0.852 0.858
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Summarizing, we propose the following TREE model:

r ¼ exp
�
a*c

2 þ b*b
2
1 þ g*cþ d*b1 þ e*Fþ z

�
;

where

a
b
g
d
e
z

0
BBBBBB@

1
CCCCCCA

¼

0
BBBBBB@

21:7973 1024

25:9343 1025

5:53031022

1:81331022

23:7443 1024

2:248

1
CCCCCCA

Figure 8 shows TREE’s performance on blind testing sets for
sample sizes of 50 and 140. While the model preforms best
when restricted to datasets corresponding to high sample
size, TREE was trained on mixed sample size data in an at-
tempt to make the model as robust and have as little bias as
possible.

To analyze the robustness of the model, we performed
fivefold cross validation. The results, presented in Table 3,
show that the model maintains high accuracy regardless of
the training set.

Empirical analysis

We compared the performance of TREE on empirical datasets
to a widely used estimator, LDhelmet v1.9. We first bench-
marked each method on a large genomic dataset from the
Arabidopsis 1000 Genomes project consisting of 1135 sam-
ples. We used subsets of 1k, 10k, and 50k SNPs in 100 SNP
windows from the total dataset in order to test the computa-
tional speed of each program. We found that LDhelmet was
not able to process .50 samples from these datasets, failing
to complete the first step of the likelihood table computations
for the smallest of these datasets. However, TREE was able to
process each dataset in full within a reasonable time frame
(Table 4). By subsampling these data, we can illustrate one
advantage of TREE’s ability to analyze this quantity of indi-
viduals. We find that as the number of samples is increased
from 20 to 50–100% of the full set, the distribution of re-
combination events along the genome shifts such that the
top 10% of windows contain 17.4, 19.8, and 23.9% of events,
respectively, as the signal of hotspots grows more pro-
nounced. In addition, the importance of efficiency is under-
scored by the fact that as more samples are included, more
SNPs are realized in the data, and more windows are re-
quired for a full analysis. As we could not compare recombi-
nation estimates on the full Arabidopsis genome due to

LDhelmet’s processing times, we turned to a smaller
Drosophila dataset with 22 samples and.22 Mbp. For these
datasets, LDhelmet takes on the order of hours to complete a
run over a single chromosome, whereas TREE terminates on
the order of minutes and in all cases finished running in un-
der 1 hr.

Figure 9 presents the relative accuracy of TREE and Cama-
ra’s rPH with respect to LDhelmet. To quantify the results, we
first take a broad look at the relative performance of TREE to
LDhelmet on genomic datasets, looking for concordance in
predicting an increase, decrease, or no change between each
window of our analysis. We find that TREE is concordant
with LDhelmet in 69.2% of cases where r increases, and in
69% of cases where r decreases. We note that, since LDhel-
met applies a smoothing while TREE does not, we cannot
directly compare the accuracy with which TREE generates
adjacent windows of identical recombination rate (Table 7
and Table 8).

To characterize TREE’s behavior in these cases, we looked
at themagnitude of the difference between TREE’s prediction
and LDhelmet’s. We found that in the cases where LDhelmet
predicts no change in r, 72.5% of the time TREE’s predicted
change is,0.05, 18.1% of the time TREE’s predicted change
is ,0.01, and 1.8% of the time TREE’s predicted change
is ,0.001. These results suggest that TREE is good at

Table 4 Benchmarking TREE’s runtime on a large dataset
(1135 Arabidopsis individuals)

Number of SNPs Runtime (hr)

1k 0.521
10k 5.556
50k 27.866

Figure 9 Relative accuracy of TREE and Camara’s rph with respect to
LDhelmet. The blue line plot represents TREE, the red represents LDhel-
met, and the green in the second panel represents rph. Because rph
suggests orders of magnitude more rate variation than LDHelmet, we
rescale the estimate given by rph to the exact range of LDHelmet. For
TREE, we only multiply by a uniform window length conversion factor of
1

1000.

Table 5 Comparison of TREE to LDhelmet’s r estimates

Chr Kendall’s Tau P-value Spearman’s Rho P-value

2L 0.026 0.230 0.039 0.237
2R 0.178 5.7e221 0.260 8.7e221
3L 0.241 7.5e244 0.346 1.1e242
3R 0.225 1.8e236 0.326 6.1e236
X 0.067 8.0e205 0.097 1.6e24
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detecting large changes in recombination rate, and is thus
well-suited for hotspot detection. However, it can have
difficulty differentiating between subtler changes in re-
combination rate ranging in magnitude between 0 and
0.01.

Finally, we looked directly at the correlation between the
absolute predicted values of TREE and LDhelmet for the most
fine-grained comparison (Table 5). We used two measures of
correlation: the Kendall-Tau rank test and Spearman’s Rho.
With the exception of chromosome arm 2L, Kendall’s Tau
between TREE estimates and LDhelmet estimates ranges be-
tween 0.067 and 0.241 with P-values ,0.0001. Similarly,
Spearman’s Rho ranges between 0.097 and 0.346 with P-
values ,0.0002. These positive correlation coefficients and
low P-values suggests global agreement between LDhelmet’s
and TREE’s rankings of recombination rates across sliding
windows, indicating that TREE is useful in detecting global
hotspots of recombination.

The correlation coefficients for Chromosome X and arm 2L
are substantially lower and associated P-values substantially
higher than the remaining chromosome arms in the dataset
(Table 5). Despite attempts to discover why these two chro-
mosomes are outside of the average ranges of performance,
we were unable to find a compelling reason. It may be that
each of these chromosomes have many more cases of subtle
recombination rate changes between 0 and 0.1, such that
LDhelmet’s estimates are most different from TREE’s.

We also compared the model of Camara et al. (2016) to
LDhelmet in the same framework to discover its relative per-
formance and to test whether the addition of the feature c is
necessary for greater accuracy. We found that the rph model
in b1 alone is dramatically less concordant with LDhelmet
estimates across all windows than is TREE (Table 6). For each
chromosome arm analyzed using rph, the rank coefficients of
Kendall’s Tau or Spearman’s Rho are,0.01, sometimes neg-
ative, and not statistically significant. This indicates poor
concordance between the two methods, and, in some cases,
disagreement, suggesting that the addition of c to an estima-
tor of recombination rate substantially improves accuracy as
well as computation time compared to LDhelmet. We see
evidence of the differences in prediction between TREE and
LDhelmet as well as rph in Figure 9, which shows that TREE
approximates the estimates of LDhelmet across the entire
span of the chromosome without rescaling, whereas rph fails
to capture similar detail to TREE and requires an informed
recentering to the range of LDHelmet to be competitive.

Discussion

We have discovered a new feature, which we denote c, of the
distribution of genomes in Hamming space that improves the
performance of topological estimators of recombination.
While the field of TDA is in its infancy, our work provides a
novel demonstration of the power of persistent homology-
based estimators for fundamental questions in evolutionary
biology. Notably, our feature is related to biologically mean-
ingful quantities in coalescent models; this is some of the first
work we are aware of to make such a tight connection be-
tween TDA estimators and coalescent theory.

Our c-based approach to recombination rate inference is
able to quickly scan large genomic datasets for regions of
recombination rate heterogeneity. Due to its speed, it can
serve as a first-pass estimate of recombination rate variation
prior to targeted use of much more computationally expen-
sive inferencemethods.While c itself can potentially be influ-
enced by distortions to the genealogical structure of a sample,
it is naturally complemented by higher dimensional topolog-
ical features (namely b1) of the data explored in prior work
(Chan et al. 2013; Camara et al. 2016), while maintaining
accuracy in the face of missing data which confounds b1-only
methods.

Similar to how c can supplement and guide the usage of
evolutionary-model-driven methods, c can also add a degree
of finer-scale detection and biological intuition to topology-
driven methods, bringing us closer to bridging the gap be-
tween population genetics and persistent homology. The dis-
tinct behaviors of H0 and H1 derived statistics on genomic
data also point toward the potential of TDA as a source for
summary statistics that can tease apart the signatures of de-
mography, selection, or population structure, a fundamental
goal of population genetics. The behavior of c also suggests
that topological quantities could be merged with a fully
coalescent model of recombination, as a more rigorous

Table 6 Comparison of rph to LDhelmet’s r estimates

Chr Kendall’s Tau P-value Spearman’s Rho P-value

2L 0.017 0.446 0.02 0.430
2R 20.104 4.1e28 20.154 5.0e28
3L 0.005 0.754 0.008 0.745
3R 20.002 0.879 20.003 0.918
X 0.013 0.449 0.019 0.435

Table 7 Comparison of the change in r in adjacent windows
between TREE and LDhelmet

Chr Increase Decrease

2L 283/408 (69.4%) 278/394 (64.3%)
2R 407/560 (72.7%) 406/568 (71.5%)
3L 425/637 (66.7%) 427/635 (67.2%)
3R 454/632 (71.8%) 485/680 (71.3%)
X 358/546 (65.6%) 365/568 (64.3%)

Table 8 Comparison of the change in r in adjacent windows
between rph and LDhelmet

Chr Increase Decrease No Change

2L 199/408 (48.77%) 215/394 (54.57%) 8/116 (6.90%)
2R 133/560 (23.8%) 128/568 (22.5%) 64/118 (54.2%)
3L 290/637 (45.5%) 283/635 (44.6%) 12/204 (5.8%)
3R 298/632 (47.2%) 321/680 (47.2%) 3/78 (3.8%)
X 243/546 (44.5%) 262/568 (46.1%) 30/411 (7.3%)
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SMC-based modeling could make explicit predictions for the
distribution of the effect sizes of a single recombination events
onc. In addition, the ordering of theH0 features by duration of
persistence hints at additional connections between barcodes
and the look-down construction of the coalescent (Donnelly
and Kurtz 1999; Pfaffelhuber andWakolbinger 2006).Wewill
explore these avenues in a future theoretical treatment of
these statistics.

Summarizing, we have shown that a combination of TDA
and machine learning techniques can detect recombination
rate heterogeneity in biological data faster than previously
possible andwith greater accuracy than previous TDA-based
approaches. We demonstrate that while the behavior of
0-dimensional barcodes has been previously ignored with
respect to genealogical inference problems, these features
are robust and increase the overall accuracy of inference
compared to using one-dimensional barcodes alone. Our
coalescent analyses also suggest a promising future en-
deavor: buildinga fully coalescent-motivatedmodel explain-
ing the behavior of Betti numbers on distributions of genome
sequences.
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Appendix A: Background on TDA

Topology is a branchofmathematics that concerns itselfwith classifying spaces or objects that have the same “shape.”Spaces are
considered to be topologically equivalent if you can deform one into the other without breaking, tearing, or gluing. A
topological invariant of interest in algebraic topology is the homology. Note that herein, homology refers to a mathematical
concept rather than a biological one.

Homology can be thought of as a family of ways to associate a vector space to a geometric object. For the scope of this paper it
suffices to restrict ourselves to homology with ℤ=2ℤ coefficients in dimensions 0,1, and 2. For simplicity, we can think of the
dimension 0 homology group as a representative of the connected components of a topological space, the dimension 1 ho-
mology group as a representative of the loops within a topological space, and the dimension 2 homology group as a repre-
sentative of the voids within a topological space. That is, the 0-th dimension homology group of an object is a vector space
whose dimension is the number of connected components of that object, and similarly for higher dimensions.

The rank of the ith dimensional homology group is known as the ith Betti number, denoted bi, and, roughly speaking, it
encodes the number of i-dimensional holes in the dataset (Carlsson 2009; Chazal et al. 2016; Edelsbrunner and Harer 2010;
Ghrist 2014; Zomorodian 2009). For example, a Figure 8 consists of a single connected component (all the points in the
boundary of the figure are connected) and two loops, so for this shape b0 ¼ 1, b1 ¼ 2, and bk ¼ 0 for k. 1 [see Figure 1a in
Camara et al. (2016)]. In contrast, a basketball is one connected component (all points on the surface are connected) with one
hollow sphere and no loops so its associated Betti numbers are b0 ¼ 1, b1 ¼ 0, b2 ¼ 1, and bk ¼ 0 for k. 2. To see why b1 ¼ 0
for this example, consider any loop on the basketball and fix some point p on the surface of the ball. Without breaking the loop,
it is possible to slide the loop in a continuous manner (while remaining on the ball) toward p until eventually the loop contracts
to p. Consequently all loops on the basketball are trivially equivalent to a point, i.e. b1 ¼ 0.

TDA lies at the intersection of algebraic topology, statistics, and data science. The main goal of TDA is to extract descriptive
topological features from large, high-dimensional data sets, and one of the primary tools for doing so is called persistent
homology. In this section, we briefly review the relevant TDA methodology that we apply to the study of recombination. [For a
more detailed review of TDA applications in genomics, see Blumberg and Rabadan (2017).]

While shapes and surfaces havewell-definedhomology groups, computing thehomology of data is less straightforward. LetX
be a data set consisting of N data points living in somemetric space ðS; dSÞ. Observe, X itself is simply a discrete set of points and
thus it has no interesting homological properties beyond dimension 0. However, if each data point x 2 X is replaced by a ball
BrðxÞ ¼ fy : dSðx; yÞ# rg of radius r. 0 centered at x, then the union of these balls over all points x 2 X yields a new
topological space with nontrivial homology. Repeating this for a sequence of r values yields a sequence of topological spaces
for which the homology can be computed. Analyzing how the homology changes across this sequence of topological spaces is
the main idea behind persistent homology.

Algorithmically, this procedure is carried out by assigning a combinatorialmodel of a space, called a simplicial complex, to the
data for an increasing sequence of r values. Here, we will focus on defining the Vietoris-Rips simplicial complex. For any
k ¼ 0; 1; . . ., we define a k-simplex as the convex hull of k + 1 affinely independent points, i.e., the k-simplex of kþ 1 affinely
independent points is the convex polygon whose vertices are precisely the kþ 1 affinely independent points [Ghrist (2014),
Edelsbrunner and Harer (2010)]. For example, a 0 simplex is a point, a 1 simplex is an edge, and 2 simplex is a triangle, and so
on. Denote a k-simplex corresponding to the convex hull of ðxi0; xi1; . . . ; xikÞ as skðxi0; xi1; . . . ; xikÞ. Then, the Vietoris-Rips
complex of X with respect to r is the union of all k-simplices skðxi0; . . . ; xikÞ such that BRðxilÞ \ BRðxijÞ 6¼ ∅ for all
l; j ¼ 0; 1; . . . ; k. Note, another common simplicial complex is the C̆ech complex (mentioned in Coalescent Intuition for Topo-
logical Statistics), which instead requires nonempty mutual intersections of the k-simplices rather than nonempty pair-wise
intersection.

The homology is computed on the simplicial complex representation of [ 

x2X
BrðxÞ instead of the original union. Simplicial

complexes are easier to work with computationally, and there exist theoretical guarantees that make it feasible to compute the
homology of simplicial complex instead of [

x2X
BrðxÞ [See Nerve theorem in Edelsbrunner and Harer (2010)].

Lastly, we take a sequence of parameters frigNj¼1, build the simplicial complex of X with respect to rj and compute its
homology for all j. This yields a sequence of a families of vector spaces associated to X, known as the persistent homology of X.

We represent the persistent homology of X with a barcode diagramℬi for each dimension i [Carlsson et al. (2005)]. A bar
ðb; dÞ 2 ℬi represents a generator of homology in dimension i. The birth time b of the bar corresponds to the r value at which
the homological feature first appeared and the death time d of the bar corresponds to the r value at which the homological
feature collapsed. Bars with longer bar length (d–b) are of particular interest since they persist throughout the sequence of
simplicial complexes.

Note, in the above construction, computing the homology of data only requires that the data of interest lie in a metric space.
Topological changes will occur at discrete values of e when the data lie in a Hamming space or other discrete metric space,
whereas topological features may appear and disappear continuously in a continuous metric space. Regardless, persistent
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homology is suitable for any metric space and thus is a useful tool for summarizing genomic data [Camara et al. (2016),
Blumberg and Rabadan (2017), Lesnick et al. (2018)].

In this work, X is a collection of genomes and we use the Hamming distance dH to build Vietoris Rips representations of
sampled populations using BrðxÞ ¼ fy : DHðx; yÞ# rg. We then compute the persistent homology of X and extract statistics
from the corresponding dimension-0 and dimension-1 barcode diagrams as input for the TREE.

Onecan thinkofpersistent homologyasanextensionofhierarchical clustering forhigherdimensionhomologygroups,where
dimension 0 persistent homology is analogous to single linkage clustering [Carlsson (2009)]. See Figure 1b for an example of
persistent homology applied to an arbitrary dataset via the Vietoris-Rips complex.

Intuitively, in thepresenceof recombinationevents, thegenealogycontains loops that correspond todimension1homological
features. This hypothesis was explored in certain cases in Camara et al. (2016); the loops do not appear in the absence of
recombination, and, consequently, b1 can be used to predict recombination rate. This is illustrated in Figure 1c (although we
note that in the context of standard coalescent assumptions, this connection is more complicated than it appears; see
Explaining b1 for details). One of the main discoveries we describe is that in fact the mean barcode length in dimension 0,
denoted c, is an evenmore accurate predictor of recombination rate than b1. We note that each bar in the dimension 0 barcode
diagram corresponds to an individual in the sample population, and the bar lengths correlate with distance between the
individual, or cluster of individuals, and its closest neighbor in Hamming space.
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