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ABSTRACT To detect a direction to evolution, without the pitfalls of reconstructing ancestral states, we need to compare “more
evolved” to “less evolved” entities. But because all extant species have the same common ancestor, none are chronologically more
evolved than any other. However, different gene families were born at different times, allowing us to compare young protein-coding
genes to those that are older and hence have been evolving for longer. To be retained during evolution, a protein must not only have a
function, but must also avoid toxic dysfunction such as protein aggregation. There is conflict between the two requirements:
hydrophobic amino acids form the cores of protein folds, but also promote aggregation. Young genes avoid strongly hydrophobic
amino acids, which is presumably the simplest solution to the aggregation problem. Here we show that young genes’ few hydrophobic
residues are clustered near one another along the primary sequence, presumably to assist folding. The higher aggregation risk created
by the higher hydrophobicity of older genes is counteracted by more subtle effects in the ordering of the amino acids, including a
reduction in the clustering of hydrophobic residues until they eventually become more interspersed than if distributed randomly. This
interspersion has previously been reported to be a general property of proteins, but here we find that it is restricted to old genes.
Quantitatively, the index of dispersion delineates a gradual trend, i.e., a decrease in the clustering of hydrophobic amino acids over

billions of years.
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ROTEINS need to do two things to ensure their evolu-

tionary persistence: fold into a functional conformation
whose structure and/or activity benefit the organism, and
avoid folding into harmful conformations. Amyloid aggre-
gates are a generic structural form of any polypeptide, and
so pose a danger for all proteins (Monsellier and Chiti 2007).
Several lines of evidence suggest that aggregation avoidance
is a critical constraint during protein evolution. Highly ex-
pressed genes are less aggregation-prone (Tartaglia et al.
2007) and evolve more slowly due to greater selective con-
straint against alleles that increase the proportion of mis-
translated variants that misfold (Drummond et al. 2005;
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Drummond and Wilke 2008). Genes that homo-oligomerize
or are essential (Chen and Dokholyan 2008) or that degrade
slowly (De Baets et al. 2011) are also less aggregation-prone.
Aggregation-prone stretches of amino acids tend to have trans-
lationally optimal codons (Lee et al. 2010) and to be flanked by
“gatekeeper” residues (Rousseau et al. 2006). Disease mutations
are enriched for aggregation-promoting changes (Reumers et al.
2009; De Baets et al. 2015), and known aggregation-promoting
patterns are underrepresented in natural protein sequences
(Broome and Hecht 2000; Buck et al. 2013). Thermophiles,
whose amino acids need to be more hydrophobic, show exag-
gerated aggregation avoidance patterns (Thangakani et al
2012).

Here we ask whether and how proteins get better at
avoiding aggregation during the course of evolution. In the
absence of a fossil record or a time machine, biases in-
troduced during the inference of ancestral protein states
(Williams et al. 2006; Trudeau et al. 2016) make it difficult
to assess how past proteins systematically differed from
their modern descendants. We have therefore developed
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an alternative method to study protein properties as a
function of evolutionary age, one that does not rely on
ancestral sequence reconstruction.

While all living species share a common ancestor, all
proteins do not. It has become clear that protein-coding genes
are not all derived by gene duplication and divergence from
ancient ancestors, but instead continue to originate de novo
from noncoding sequences (McLysaght and Guerzoni 2015).
Different gene families (i.e., sets of homologous genes) there-
fore have different ages, and the properties of a gene can be a
function of age.

The age of a gene can be estimated by means of its “phy-
lostratum,” which is defined by the basal phylogenetic node
shared with the most distantly related species in which a
homolog of the gene in question can be found (Domazet-LoSo
et al. 2007). Failure to find a still more distantly related pro-
tein homolog (i.e., failure of a gene to appear older) can have
multiple causes. First, more distantly related homologs might
not exist, as a consequence of de novo gene birth either from
intergenic sequences or from the alternative reading frame of
a different protein-coding gene (the latter yielding nucleo-
tide but not amino acid homology). Second, apparent age
might indicate the time not of de novo birth but of horizontal
gene transfer (HGT) from a taxon for which no homologous
genes have yet been sequenced. Third, independent loss of
the entire gene family in multiple distantly related lineages
can yield a pattern of apparent gain. Fourth, divergence be-
tween gene duplicates might be so extreme that homology
can no longer be detected.

The diversity of sequenced taxa now available makes the
second possibility (HGT) increasingly unlikely, especially out-
side microbial taxa that experience high levels of HGT; here
we minimize this possibility by focusing on the set of mouse
genes. The same wealth of sequenced taxa also makes the
third possibility (phylogenetically independent loss of the
entire gene family) unlikely, given the large number of in-
dependent loss events implied. More importantly, neither
HGT nor independent loss are likely to drive systematic trends
in protein properties as a function of apparent gene age;
instead, they are likely to dilute any underlying patterns
resulting from other determinants of apparent gene age.

Most critiques of the interpretation of phylostratigraphy in
de novo gene terms therefore focus on the fourth possibility,
specifically the concern that trends may be driven by biases in
the degree to which homology is detectable (Alba and Cas-
tresana 2007; Moyers and Zhang 2015, 2016, 2017). In par-
ticular, homology is harder to detect for shorter and faster-
evolving proteins, which might therefore appear to be young,
giving false support to the conclusion than young genes are
shorter and faster-evolving. The problem of homology detec-
tion bias extends to any trait that is correlated with primary
factors, such as length or evolutionary rate, that directly af-
fect homology detection. We previously studied such a trait,
intrinsic structural disorder (ISD), and found that statistically
correcting for evolutionary rate did not affect the results, and
that statistically correcting for length made them stronger
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(Wilson et al. 2017). This suggested that the pattern in ISD
was likely driven by time since de novo gene birth, rather than
by homology detection bias.

Here we trace a number of other protein properties as a
function of apparent gene family age, including aggregation
propensity and hydrophobicity, and find a particularly striking
trend for the degree to which hydrophobic residues are
clustered along the primary sequence. This trend, as with
the previous ISD work, experiences negligible change after
correction for length, evolutionary rate, and expression, and is
thus not a result of homology detection bias. Our results point
to a systematic shift in the strategies used by proteins to avoid
aggregation, as a function of the amount of evolutionary time
for which they have been evolving.

Methods

Mus musculus proteins from Ensembl (v73) were assigned
gene families and gene ages as described elsewhere
(Wilson et al. 2017). To briefly outline this previous proce-
dure, BLASTp (Altschul et al. 1997) against the National
Center for Biotechnology Information nr database with an
E-value threshold of 0.001 was used for preliminary age as-
signments for each gene, followed by a variety of quality
filters. Genes unique to one species were excluded because
of the danger that they were falsely annotated as protein-
coding genes (McLysaght and Hurst 2016), leaving Rodentia
as the youngest phylostratum. Paralogous genes were clus-
tered into gene families, and a single age was reconciled per
gene family, which filtered out some inconsistent perfor-
mance of BLASTp. Numbers of genes and gene families in
each phylostratum can be found for mouse in Supplemental
Material, Table S1 of Wilson et al. (2017). “Cellular Organ-
isms” contains all mouse gene families that share homology
with a prokaryote. Yeast gene family and phylostratum an-
notation is taken from Table S7 of Wilson et al. (2017).

For greater resolution at shorter timescales, we used the
recently sequenced M. pahari genome (Thybert et al. 2018)
to compile a younger phylostratum, using Ensemb!’s orthol-
ogy annotation (Herrero et al. 2016) to find homologs in
M. musculus. Of the 789 putative proteins excluded in
Wilson et al. (2017) as being unique to M. musculus, 155 also
had homologs in M. pahari. Nine of these also had Ensembl
ortholog assignments among members of older gene families
and were excluded. BLASTp detected only one pair hitting
each other among the genes with E-value < 0.001; these
were placed together while each of the others was placed
in its own gene family, collectively forming the youngest phy-
lostratum to be analyzed. Note also that Ensembl ortholog
annotation is not as rigorous a filter to remove false positives
as the rat vs. mouse dN/dS measures used by Wilson et al.
(2017) for older phylostrata. We therefore do not expect this
youngest Mus phylostratum to be entirely free of false posi-
tives. This likely explains why its hydrophobicity metrics are
lower than those of Rattus. The fact that hydrophobicity is
still significantly elevated above that of controls (especially as
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measured by ISD and by predicted aggregation propensity of
scrambled sequences) suggests that the problem of contam-
ination with sequences that are not protein-coding genes is
not so profound as to exclude the phylostratum. However, it
should be interpreted with caution.

Intergenic control sequences were also taken from previous
work (Wilson et al. 2017). Briefly, one intergenic control se-
quence per gene was taken 100 nt downstream from the 3’
end of the transcript, with stop codons excised until a length
match to the neighboring protein-coding gene was obtained.
A second control sequence per gene began 100 nt further
downstream. This choice of location ensures that control se-
quences are representative of genomic regions in which pro-
tein-coding genes are found. One version of the control
sequences used all intergenic sequences for this procedure
a second used only RepeatMasked (Smit et al. 2015) inter-
genic sequences.

Aggregation propensity was scored using TANGO
(Fernandez-Escamilla et al. 2004) and Waltz (Maurer-Stroh
et al. 2010). We counted the number of amino acids con-
tained within runs of at least five consecutive amino acids
scored to have >5% aggregation propensity, added 0.5,
and divided by protein length to obtain a measure of
the density of aggregation-prone regions. TANGO scores
were Box—Cox transformed (A = 0.362, optimized using only
coding genes not controls, Q-Q plots shown in Figure S6A, B).
Box-Cox \ values were determined using maximume-likelihood
estimation (Box and Cox 1964) as implemented in geoR
(https://CRAN.R-project.org/package=geoR). Central ten-
dency estimates and confidence intervals derived from these
models were then back transformed for the plots. Paired differ-
ences in TANGO scores or Waltz scores between genes and
scrambled controls were not transformed. Results were quali-
tatively indistinguishable when runs of at least six consecutive
amino acids were analyzed instead of runs of at least five.

“Clustering” was assessed as a normalized index of disper-
sion, i.e., by comparing the variance in hydrophobicity be-
tween blocks of consecutive amino acids to the mean
hydrophobicity (Irbéack et al. 1996). Examples of high and
low clustering are shown in Figure 1. We used s = 6, with
different values of s yielding qualitatively similar results.
Where the amino acid length was not divisible by six, a few
amino acids were neglected at one or both ends, yielding a
truncated length of N, and we used the average clustering
measure ¢ across different phases for the blocking procedure.

drophobicity, and clustering of 0.69.

We averaged over all phases using the maximum number of
blocks, e.g., only one phase for values of N divisible by 6.
Results when we average over all six phases are very similar.
Following past practice, we transformed amino acid se-
quences into binary hydrophobicity strings by taking the
six amino acids FLIMVW as hydrophobic (+1) and scoring
all the other amino acids as —1. We summed hydrophobicity

scores toN a value oy for each block k=1,...,N/s
S

and M = ) oy overall (Irbdack and Sandelin 2000). Our
k=1

clustering score is a normalized index of dispersion

S N/s 1
_S i 2
k=1
where the normalization factor for length N and total hydro-
phobicity M of a protein is

NZ_MZ
K=s— " (1-2).
N2 —-N N

For randomly distributed amino acids of any length N and
hydrophobicity M, this normalization makes the expectation
of ¢y equal to 1. For clustering at the nucleotide level, blocks
of length s = 18 rather than 6 were used. Nucleotide clus-
tering values were calculated for each possible permutation
as to which nucleotides were scored as +1 and which as —1
(e.g., Gand C as +1 and A and T as —1 constitutes one
permutation). Amino acid clustering values ¢y were Box—
Cox transformed (A = —0.29 for mouse, A = —0.008 for
yeast) prior to use in linear models, with the mouse Q-Q
plot shown in Figure S6C,D.

To generate a scrambled control sequence that is paired
to each gene, we simply sampled its amino acids with-
out replacement. To generate clustering-controlled scram-
bled sequences, 1000 scrambled sequences of each protein
were produced, and the one that most closely matched
the clustering value of the focal gene was retained. This
left the average gene with a clustering value 0.0035 higher
than its matched control, with the mean difference of the
absolute deviation between a gene and its matched control
equal to 0.0057, showing a close match with little directional
bias. The mean value of each property was used across
50 scrambled sequences, but this led only to ~20% reduc-
tions in confidence interval width relative to using a single
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scrambled control. Because generating well-matched clustering-
controlled scrambled sequences is computationally expensive,
we used only a single matched-clustering scrambled control se-
quence per gene.

A protein was designated as transmembrane if TMHMM
(Sonnhammer et al. 1998; Krogh et al. 2001) version 2.0c
predicted that >18 of its amino acids lay within transmem-
brane helices.

Data availability

Source data for the statistical analyses and figures are
provided in Tables S1-S6, available at Figshare and
captioned in the main Supplemental Materials file. Code
associated with generating and analyzing these tables is pub-
licly available at https://github.com/MaselLab. Supplemental
material available at Figshare: https://doi.org/10.25386/
genetics.7597616.

Results

We assigned mouse genes to gene families and to times of
origin, and assigned a protein aggregation propensity score to
each protein on the basis of its amino acid sequence (see
Methods). No clear trend is seen in aggregation propensity as
a function of gene age (Figure 2), although all genes (black)
show lower aggregation propensity than would be expected
if intergenic mouse sequences were translated into polypep-
tides (blue). Note that intergenic sequences represent not
only the raw material from which de novo genes could
emerge, but also the fate of any sequence, e.g., a horizontally
transferred gene, that is subjected to neutral mutational
processes.

However, striking patterns emerge when we decompose
aggregation avoidance into the effect of amino acid compo-
sition (with hydrophobic amino acids making aggregation more
likely) and the effect of the exact order of a given set of amino
acids. The contribution of amino acid composition alone can be
assessed by scrambling the order of the amino acids (Figure 3,
top), revealing that young genes make greater use of amino
acid composition to avoid aggregation. The pattern is mirrored
by other measurements of the hydrophobicity of the amino
acid composition [Figure 3, middle panels on the fraction of
hydrophobic residues and on ISD, the latter previously report-
ed by Wilson et al. (2017)], with an increase in hydrophobicity
taking place over ~200-400 MY. Previously reported differ-
ences in the aggregation propensity (Tartaglia et al. 2005) and
hydrophobicity (Mannige et al. 2012) of proteomes from dif-
ferent organisms might therefore be accounted for by system-
atic variation among species in the composition of old vs.
young genes; in our analysis, all proteins were taken from
the same mouse species, removing this confounding factor.
Analyses focused on a set of ancestral reconstructed sites also
find a trend of recently increasing hydrophobicity in droso-
philid genomes (Yampolsky and Bouzinier 2010) that is ongo-
ing even for ancient gene families (Yampolsky et al. 2017),

1348 S. G. Foy et al.

although these data are subject to the bias of observing slightly
deleterious substitutions more often than the reverse (Hurst
et al. 2006; McDonald 2006).

The contribution of amino acid ordering alone, indepen-
dent from amino acid composition, can be assessed as the
difference between the aggregation propensity of the actual
protein and that of a scrambled version of the protein. We
expected real proteins to be less aggregation-prone than their
scrambled controls (Buck et al. 2013) and confirmed this for
the very oldest proteins (Figure 4, orange confidence inter-
vals for genes shared with prokaryotes lie below 0). But sur-
prisingly, the opposite was true for young genes (Figure 4,
orange values for phylostrata from Metazoa onward lie above
0). In other words, they are more aggregation-prone than
would be expected from their amino acid composition alone.

One possible source of increased aggregation propensity is
if young genes, struggling to achieve any kind of fold at all
given their low hydrophobicity (Dill 1990), cluster their few
hydrophobic amino acid residues closer together along the
sequence. Such clustering could allow proteins to evolve
small, foldable, potentially functional domains within an
otherwise disordered sequence (Uversky et al. 2000). Alter-
natively, and still more primitively, very highly localized clus-
tering could produce short peptide motifs that cannot fold
independently but acquire structure conditionally through
binding or oligomerization (Gunasekaran et al. 2004;
Davey et al. 2012). Hydrophobic clustering also increases
the danger of aggregation (Monsellier et al. 2007); indeed,
there is significant congruence between mutations that in-
crease the stability of a fold and those that increase the sta-
bility of the aggregated or otherwise misfolded form
(Sanchez et al. 2006).

We find that young genes do show hydrophobic clustering,
while very old genes show interspersion of hydrophobic amino
acid residues (Figure 5), and that this accounts for much of
the excess aggregation propensity of young genes relative to
scrambled controls (Figure 4 blue points are closer to zero
than orange points). Previous reports have suggested that the
danger of aggregation selects against hydrophobic clustering
(Monsellier et al. 2007). In other words, among consecutive
blocks of amino acids, the variance in hydrophobicity is lower
than the mean, i.e., the index of dispersion is <1 in proteins
overall (Irback et al. 1996; Schwartz et al. 2001) and in the
core of protein folds (Patki et al. 2006). In the present anal-
ysis, this holds true only for old, highly evolved proteins.
Younger proteins not only appear less evolutionarily con-
strained to intersperse polar and hydrophobic residues, but
to the contrary, their hydrophobic residues show excess con-
centration near one another along the sequence, increasing
aggregation propensity. Our results are extremely robust
when we control for protein length, evolutionary rate, and
expression level (Figure S1). Similar results, albeit not
extending quite as far back in time, are found using the nor-
malized mean length of runs of hydrophobic amino acids
FLIMVW (Figure S2) as by using the more sophisticated pub-
lished metric of the degree to which these amino acids are
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Figure 2 Mouse genes show little pattern in aggregation propensity (assessed via TANGO) as a function of age. Genes (black) show less aggregation
propensity than intergenic controls (blue). Back-transformed central tendency estimates = 1 SE come from a linear mixed model applied to transformed
data, where gene family and phylostratum are random and fixed terms, respectively. Importantly, this means that we do not treat genes as independent
data points, but instead take into account phylogenetic confounding, and use gene families as independent data points. Times to most recent common
ancestor (TMRCAs) for most phylostrata were taken from TimeTree.org (Kumar et al. 2017) on February 18, 2016 and that for M. pahari was taken May
7,2018. We used the arithmetic means of the TMRCAs of the focal taxon shown on the x-axis and the preceding taxon (i.e., the estimated midpoint of
the interior branch of the tree). Cellular organism age is shown as the midpoint of the last universal common ancestor and the last eukaryotic common
ancestor. Taxon names, some of which are omitted for space reasons, follow the sequence Metazoa, Eumetazoa, Bilateria, Deuterostomia, Chordata,
Olfactores, Vertebrata, Euteleostomi, Tetrapoda, Amniota, Mammalia, Eutheria, Boreoeutheria, Euarchontoglires, Rodentia, Mus. The gray dashed line

shows the 0 time, with control sequences to the right of it.

clustered (Irback et al. 1996; Irbiack and Sandelin 2000)
shown in Figure 5.

We investigated whether the difference might be explained
by differences in the frequencies of transmembrane proteins as
afunction of gene age. Given limited experimental annotation
of transmembrane status, we used TMHMM (Sonnhammer
et al. 1998; Krogh et al. 2001) to predict transmembrane
status on the basis of protein sequence. Predicted trans-
membrane sequences had higher clustering (effect size of
0.16 in transformed space corresponds for example to clus-
tering values of 1.18 vs. 1 as a function of transmembrane
status in the linear model, different with P < 0.0001). But
correcting for this slightly strengthened rather than weak-
ened the trend in clustering (Figure S1).

We checked whether this trend in clustering is also found
in the proteins of Saccharomyces cerevisiae (Figure S3),
which is the other species for which homologous gene fam-
ily annotation was combined with gene age annotation
(Wilson et al. 2017). The very youngest 499 putative gene
families (unique to S. cerevisiae, and which might therefore
contain noncoding sequences annotated in error, although
to minimize this problem, genes annotated as “dubious” are
excluded) had a clustering value of 1.035 (66% C.I. 1.024—
1.047; central tendency and C.I. back-transformed from the

central tendency estimate * 1 SE derived from a linear
model with gene family as a random effect). The oldest
1966 gene families (with homologs in prokaryotes) had
clustering 0.890 (66% C.I. 0.886-0.895), even lower
than clustering of 0.943 (66% C.I. 0.939-0.946) found
in mouse gene families of the same age. Among the
2467 gene families allocated to eight phylostrata of inter-
mediate age, we found no significant differences among
the phylostrata (P = 0.6, likelihood ratio test of linear
model with gene family and random effect and phylostra-
tum as putative fixed effect), which range from genes
shared only with S. paradoxus to genes shared with distantly
related eukaryotes. The clustering in all these phylostrata
was lower than we expected from our mouse results, at
0.951 (66% C.I. 0.945-0.958). These results, shown in Fig-
ure S3, suggest that low clustering evolves far more rapidly,
at least in the earlier stages, in unicellular yeast with short
generation times and large population sizes than it does in
the ancestral lineage of mice. However, just as for the mouse
lineage, saturation is not reached for gene families dating
back “only” to an early eukaryote; genes with prokaryotic
homologs have even lower clustering values than those
with homologs in distantly related eukaryotes but not
prokaryotes.

Long-Term Direction to Protein Evolution 1349
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Figure 3 Four different measures for the hydrophobicity of the amino acid content as a function of gene family age. “Aggregation” represents the
average TANGO results from 50 scrambled versions of each gene, and hence captures the effect of amino acid composition on TANGO's estimate of
-aggregation propensity. The use of scrambled genes is indicated by squares, with unscrambled genes as circles and intergenic controls as diamonds or
triangles depending on whether repeat sequences are excluded. Hydrophobicity gives the fraction of amino acids that are FLIMVW. The “oiliness”
measurement of Mannige et al. (2012), namely content of FLIV, is similar. Intrinsic structural disorder scores are as previously reported in Wilson et al.
(2017), shown here for more phylostrata, and inverted for easier comparison with other metrics. Thermophilicity represents the content of ILVYWRE, as
analyzed by Boussau et al. (2008), subjected to a Box—Cox transform with A = 2.412 prior to model fitting; thermophilicity is dominated by the same
general hydrophobicity trend as the other measures. While the trend as a function of gene age is similar in each case, the aggregation measurement
shows the most striking deviation from intergenic control sequences. Back-transformed central tendency estimates = 1 SE come from a linear mixed
model, where gene family and phylostratum are random and fixed terms, respectively; A = 0.93 is used for hydrophobicity, other transforms are
described in the Methods. The x-axis is the same as for Figure 2.

Clustering is a metric for which genes that have been  This directionality of evolution can be interpreted as a slow
evolving for longer have different properties from genes that  shift from a primitive strategy for avoiding misfolding in
are “less evolved.” There must either be along-termtrend in ~ young genes to more subtle strategies in old genes.
the clustering values of newborn genes as a function of the The primitive aggregation avoidance strategy used by
time at which they are born, or else there has been a long- young genes is simply to avoid the most hydrophobic
term direction to evolution over billions of years. We con-  amino acids (Figure 3), creating ISD (Linding et al. 2004;
sider the latter possibility more plausible than the former. = Thangakani et al. 2012; Banerjee and Chakraborty 2017;
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Figure 4 Only very old genes have aggregation propensities lower than that expected from their amino acid composition alone (orange < dashed line
expectation of 0). This puzzling finding is reduced when we account for clustering (blue is closer than orange is to the 0 dashed line) using a scrambled
sequence that is controlled to have a similar clustering value. The clustering of hydrophobic amino acids in young genes acts to increase their
aggregation propensity. 95% confidence intervals are shown, based on a linear mixed model where gene family and phylostratum are random and
fixed terms, respectively. Note that blue and orange confidence intervals should be compared only to the reference value of zero, and not to each other,
due to the paired nature of the data. For phylostrata shown in red and indicated by an orange dot, the difference between blue and orange was
significant (* P < 0.01, ** P < 0.001, *** P < 0.0001), and the percentage of deviation from 0 accounted for by the control is shown. For most
phylostrata where the difference between blue and orange was nonsignificant (indicated by a black dot and black text), the orange deviated little from
0, so there was little or nothing for the blue clustering control to account for. Results are shown for TANGO; results for Waltz trend in the same direction
but are weaker (Figure S5). Orange values come from the mean of 50 scrambled sequences per gene, blue from a single scrambled sequence with a

closely matched clustering value. The x-axis is the same as for Figure 2.

Wilson et al. 2017). Given such an amino acid composition,
young genes might form an early folding nucleus by concen-
trating hydrophobic amino acids in localized regions of the
sequence (Figure 5, right), while still keeping total hydropho-
bicity and hence aggregation propensity within tolerable lim-
its (Figure 2 and Figure 3). Such a folding nucleus would not
necessarily be an entire independently folded domain. In
particular, some origin theories posit that ancient proteins
first achieved folding by becoming structured only upon bind-
ing to some interaction partner (S6ding and Lupas 2003; Zhu
et al. 2016). In contemporary proteins, potential representa-
tives of nascent structure are found in intrinsically disordered
proteins that contain peptide-length binding motifs (small
linear interaction motifs; SLiMs), many of which become or-
dered when bound to a partner (Davey et al. 2012). We do
not, however, find that young genes have more known SLiMs
(Figure S4).

In contrast to young genes, older genes have higher hy-
drophobicity, which must be offset by the evolution of other
aggregation avoidance strategies (Thangakani et al. 2012).
For such changes to occur through descent with modification
probably happens only slowly. Under the assumption that
amino acid composition at birth does not vary systematically
as a function of the time of birth, we could conclude that
changing the amino acid composition of a protein takes

~200-400 MY (Figure 3). In contrast, changing the index
of dispersion might require such a large number of changes
that it is extraordinarily slower, with a consistent direction to
evolution visible over the entire history of life back to our
common ancestor with prokaryotes.

Note that our two youngest phylostrata, the Mus phylos-
tratum of M. musculus genes shared only with M. pahari, and
the Rattus phylostratum of M. musculus genes shared with
rats, show less clustering than other young genes, suggesting
that rapid change in the index of dispersion may be possible
(in the other direction) after all, on short and recent time-
scales. However, very young gene families are subject to sig-
nificantly higher death rates than other gene families
(Palmieri et al. 2014). With gene family loss so common at
first, it is possible that the rapid initial increase in clustering is
due to differential retention of gene families with highly clus-
tered amino acids. This interpretation of the data is consistent
with explaining how slow the later fall in clustering is, by
positing that descent with modification is constrained to
change clustering values slowly.

The youngest genes show similar clustering to what would
be expected were intergenic sequences to be translated (Fig-
ure 5, blue). Clustering of amino acids translated from non-
coding intergenic sequences is a direct consequence of the
clustering of nucleotides; indices of dispersion at the

Long-Term Direction to Protein Evolution 1351
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Figure 5 Clustering initially follows that of its raw material, and evolves rapidly upward at first, but then decays downward extremely slowly, indicating
a long-term direction of evolution. Only the oldest genes have hydrophobic amino acids spread out from each other, as previously reported; young
genes have clustered hydrophobic amino acids. Back-transformed central tendency estimates + 1 SE come from a linear mixed model, where gene
family and phylostratum are random and fixed terms, respectively. The x-axis is the same as for Figure 2.

nucleotide level are all above the expectation of one from a
Poisson process, in the range 1.2-1.9 for intergenic se-
quences and 1.1-1.8 for masked intergenic sequences,
depending on which nucleotides are considered. (The lowest
indices are found for the GC vs. AT contrast, presumably due
to avoidance of CpG sites causing a general paucity of clusters
of G and C.) Very short tandem duplications, e.g., as may arise
from DNA polymerase slippage, automatically create seg-
ments in which the duplicated nucleotide is overrepresented;
observed nucleotide clustering values >1 can therefore be
interpreted as a natural consequence of mutational processes.
The consequence of this mutational pattern is therefore a small
and fortuitous degree of preadaptation, i.e., intergenic se-
quences have a systematic tendency toward higher clustering
than “random,” in a manner that facilitates the de novo birth of
new genes.

Discussion

As discussed in the Introduction, apparent gene family age can
be a function of time since (i) gene birth, (ii) HGT, or (iii)
divergence from other phylogenetic branches all of which
have independently lost all members of the gene family, or
(iv) rapid divergence of a gene made homology undetectable.
In all cases, our results describe evolutionary outcomes as a
function of time elapsed since that event. In the case of our
primary result on clustering, this means that genes appear
with clustering values similar to those expected from inter-
genic sequences, are retained only if their clustering is excep-
tionally high, and then show gradual declines in clustering
after that.
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We believe that gene birth is the most plausible driver of our
results. HGT is rare in more recent ancestors of mice, simul-
taneous loss in so many branches is unlikely, and statistical
correction for evolutionary rate, length and expression (Fig-
ure S1) has, in contradiction to the predictions of homology
detection bias, a negligible effect on our results. However, our
results on the evolution of protein properties following a
defining event remain of interest under all scenarios of what
the gene-age-determining event is.

There are three ways to explain subsequent patterns as a
function of gene family age. The two mentioned so far are
biases in retention after birth, and descent with modifica-
tion. The third possibility is that the conditions of life were
significantly different at different times, and hence so were
the biochemical properties of proteins born/transferred/
rapidly diverged at that time. Specifically, ancestral se-
quence reconstruction techniques have been used to infer
that proteins in our ancestral lineage became progressively
less thermophilic (Gaucher et al. 2008). This might explain
why young genes have fewer strongly hydrophobic amino
acids: they were born at more permissive lower tempera-
tures. However, ancestral reconstruction techniques
are likely biased toward consensus amino acids that are
fold-stabilizing (Steipe et al. 1994; Lehmann et al. 2000;
Godoy-Ruiz et al. 2004; Bloom and Glassman 2009) and
hence may be more hydrophobic (Williams et al. 2006;
Trudeau et al. 2016). Alarmingly, ancestral reconstruction
also suggests that the ancestral mammal was a thermophile
(Trudeau et al. 2016), although drosopholid reconstruc-
tions are compatible with a trend in the opposite direction
to reconstruction bias, toward greater hydrophobicity with



time (Yampolsky and Bouzinier 2010; Yampolsky et al.
2017).

The main trend that we see of hydrophobicity/thermo-
philicity as a function of gene age is on shorter timescales; for
older gene families, billions of years of common evolution
has erased the differences in starting points. It is the subtler
signal of hydrophobic amino acid interspersion that shows
the long-term pattern in our analysis. However, variation in
the conditions of life at the time of gene origin remains a
plausible explanation for the idiosyncratic differences be-
tween phylostrata, i.e., for the remaining, statistically mean-
ingful deviations of individual phylostrata from the trends
reported here.

We have already invoked differential retention as a possi-
ble driver of the short-term evolutionary increase in the
clustering values of young genes. It is logically possible that
the long-term trend in clustering values is also a result of
differential retention; if gene families with higher clustering
values are more likely to be lost, different gene ages represent
different spans of time in which this loss has had an oppor-
tunity to occur. Given the billion-year time scales and thus
enormous number of lost gene families this implies, this seems
at present a less plausible scenario than descent with modi-
fication for different durations following different dates of
origin. In other words, descent with modification seems the
most plausible of the three possible drivers of biochemical
patterns as a function of gene age, independently of what
exactly “gene age” means.

Note that our findings go in the opposite direction to those
of Mannige et al. (2012), who used more speciation-dense
branches as a proxy for longer effective evolutionary time
intervals, to infer an evolutionary trend away from, rather
than toward, hydrophobicity. Part of this discrepancy may
arise from differences in which proteins are present in which
species, which could be a confounding factor when Mannige
et al. attributed proteome-wide trends to descent with mod-
ification. Mannige et al. also confirmed their results for single
genes, but did not, in that portion of their analysis, also con-
firm that results were not sensitive to the difficulty of scoring
speciation-density in prokaryotes.

We propose that our findings may be best explained by
three phases of protein evolution under selection for proteins
that both avoid misfolding and have a function. First, a filter
during the gene birth process gives rise to low hydrophobicity
in newborn genes (Wilson et al. 2017) as the simplest way
to avoid misfolding. Second, young genes with their few hy-
drophobic amino acids clustered together are more likely to
have functional folds that remain adaptive for some time
after birth, and so are differentially retained in the period
immediately after birth [when young genes are subject to
very high rates of attrition (Palmieri et al. 2014)]. Finally,
these two initial trends are both slowly reversed by descent
with modification, continuing over billions of years of evolu-
tionary search for better solutions for exceptions to the
intrinsic correlation between propensity to fold and propen-
sity to misfold.

The protein folding problem is notoriously hard. Here we
see that it is not just hard for human biochemists — it is so hard
that evolution struggles with it too. Proteins evolve to find
stable folds despite the correlated and ever-present danger of
aggregation. They do so via a slow exploration of an enor-
mous sequence space, a search that has yet to saturate after
billions of years (Povolotskaya and Kondrashov 2010). Given
the enormous space that has already been searched, existing
protein folds, especially of older gene families, may therefore
be a highly unrepresentative sample of the typical behaviors
of polypeptide chains. Protein folds are best thought of as a
collection of corner cases and idiosyncratic exceptions, which
are hard to find even for evolution, let alone for our “free-
modeling” techniques to predict ab initio.
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