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We thank the Editor for this opportunity to comment on the accompanying paper by Pearce, 

Vandenbroucke, and Lawlor1 [PVL]. In their commentary, PVL discuss methods that they 

argue have been and should be useful for making causal inferences in environmental 

epidemiology. They also cite part of an ongoing debate in the literature (their references 

6-12) that criticizes some causal-inference methods in epidemiology. In this commentary, we 

first point out many areas of agreement with PVL. We then comment on several issues raised 

by their commentary. One issue concerns omission of important references, and four issues 

concern claims that were poorly supported or potentially misleading. We also note how, with 

consideration of a wider scope of methods and more nuanced interpretation of 

recommendations regarding emulation of RCTs, many newer causal inference methods have 

been and should continue to be quite useful in environmental epidemiology and, in fact, have 

been used to justify many of the methods PVL suggested.

Six main points of this paper, at least at heart, are clear, documented, and convincing. In 

simple terms, these points are: 1) causal inference for certain questions in environmental 

epidemiology, such as studying the health effects of climate change, is difficult; 2) 

traditional methods have worked quite well for certain problems in environmental 

epidemiology; 3) additionally, at least five specific other methods (“extensions”) should be 

helpful in environmental epidemiology; 4) many methods can be useful in environmental 

epidemiology; 5) related to 4, the subgroup of methods as defined by PVL (‘RCT-mimicking 

set of “causal inference” methods’) doesn’t include everything that might be useful; and, 6) 

triangulation methods are one such additional method. The first and second points are 

supported by examples; the third point is also supported by examples for each method noted. 

Interestingly, all of the “extensions” have benefited by considerations from the causal 

inference tool box, as we elaborate below. The fourth and fifth points are perhaps self-

evident, as we know of no subgroup of methods that covers everything or claims to. The last 

point is essentially an extension of the well-accepted Bradford Hill considerations, with 
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additional considerations about the directions of potential bias. We agree with these six 

points.

The first issue we highlight concerns the omission of important references that are part of an 

ongoing debate about the merits of certain aspects of modern causal inference concepts, 

methods, and tools. While we welcome the largely muted level of criticism in this 

commentary, PVL cite only one side (their references 6-12) of this debate, omitting many 

responses to and commentaries on these criticisms2–9. To varying degrees, these responses 

and commentaries have clarified positions, provided strong rebuttals of certain criticisms, 

explained misunderstandings, pointed out a strawman fallacy, and offered conciliatory 

remarks.

Our second issue concerns PVL’s unqualified claim that ‘the term “causal inference” is 

being used to denote a specific set of newly developed methods …’, characterized as the ‘…

RCT-mimicking set of “causal inference” methods, in contrast to the broader field of causal 

inference of which it is a part’. This claim is unsupported and potentially misleading 

because, in the context of the ongoing debate, it could be taken to suggest that those who 

have contributed to modern methods of causal inference and who are also involved in the 

ongoing debate used the term “causal inference” in this way. On the contrary, most, likely 

all, who have contributed to modern methods of causal inference and who are also involved 

in the ongoing debate about the merits of certain causal inference methods, do not, in 

general, use the term “causal inference” to refer only to the restricted, narrow subgroup of 

methods described by RVL as “RCT-mimicking”a. In other words, the definition put forth by 

PVL is consistent with neither the language used by these key contributors to modern 

methods, nor with the entirety of methods that those contributors have developed, used, and 

cited in their work.

Our third issue concerns PVL’s claim that: “This [modern causal inference movement, as 

defined by PVL] proposes that observational studies should mimic key aspects of 

randomized trials, since this allows them to be rooted in counterfactual reasoning, which is 

said to formalize the natural way that humans think about causality”. This claim is also 

potentially misleading because, in view of the ongoing debate2–9 and without qualification, 

the claim might be read as implying that all observational studies should mimic key aspects 

of randomized trials. Worse yet, it might be read as implying that it represented the position 

of those involved in the debate. These interpretations would be incorrect. We agree that 

Hernán strongly advocates attempting to emulate randomized experiments as a device to aid 

aSpecifically, Greenland, Hernán, Pearl, Robins, and VanderWeele (alphabetically), all contributors to modern causal inference 
methods and involved in the ongoing debate, have used causal inference to refer to a much broader range of methods and thus do not 
generally use the term in the restricted way described by PVL. Here are a few examples. In their book Causal Inference2, Hernán and 
Robins discuss the “context in which observational studies cannot often be conceptualized as conditionally randomized 
experiments…”[emphasis added]. Hernán also writes “Causal inference relies on transparency of assumptions and on triangulation of 
results from methods that depend on different sets of assumptions”17. Greenland coauthors the book Modern Epidemiology18. 
Chapter 2 on causation and causal inference includes an overview of the philosophy of scientific inference, with causal inference as a 
special case. Also included are the Bradford Hill ‘criteria’. Bareinboim and Pearl23 tackled the problems of combining different 
sources of information (data fusion) and addressing biases like confounding and selection bias to make causal inferences. Finally, 
VanderWeele has coauthored papers using methods, such as Mendelian randomization and meta-analysis for causal inference15. He 
also states “Inference to be best explanation is important in causal inference and diverse types of evidence can and should be used”7. 
He explicitly includes under the causal-inference umbrella: instrumental variable, regression discontinuity and difference in difference 
methods13.
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study design, a position justified in part because such emulation can help sharpen effect 

definitions as counterfactual contrasts of better-defined, possibly hypothetical interventions, 

thereby helping to reduce the vagueness in causal questions4, 10, 11. But with a broader 

reading of Hernán’s work and that of other causal-inference contributors, three important 

additional observations emerge. First, these causal-inference authors are making a 

conditional claim: if such emulation is possible, then many advantages will likely accrue. 

For example, as just noted the definition of the causal effect of interest may be clarified; 

additionally, an intervention of potential public health utility might be better identified and 

evaluated, and certain properties that can contribute to valid causal inference including 

exchangeability, consistency and positivity might be better defined and more evaluable2, 10. 

See also Daniel et al. and van der Laan.9, 12 Second, many causal-inference authors note that 

in some contexts (e.g., system-wide interventions), it may not be possible to conceptualize 

an RCT that can be usefully emulated by an observational study as part of the causal 

inference process2, 6, 13, 14. Third, these authors note that if one cannot emulate an RCT, then 

other methods are available and may apply, including those mentioned by PVL as useful in 

environmental epidemiology, such as instrumental variables, Mendelian randomization, and 

regression-discontinuity and difference-in-differences designs2, 15–18.

As an alternative to the restrictive definition of causal-inference methods used by PVL, we 

suggest, in broad agreement with their overall message, that casual-inference methods 

correspond to what the phrase suggests and should include any, useful, valid method, many 

of which are already being used in environmental epidemiology. The list would include the 

methods listed by PVL plus others, some not mentioned or emphasized, such as G-

computation, G-estimation, marginal structural models19–21, probabilistic causal models22, 

structural equation models, combining information from multiple sources in a structural 

equation framework23, negative control outcomes and exposures24 with specific applications 

to air pollution and environmental epidemiology25–27, directed acyclic graphs (DAGs), 

simulation modeling, and more. We specifically note the important contribution of causal 

graphs28, and in particular DAGs29. They were used in the development of methods to detect 

confounding with examples from environmental epidemiology in mind25–27. More widely, 

they are commonly used to describe causal relationships and might be viewed as providing a 

language for doing so efficiently. As with good notation and language, DAGs can aid in the 

thought process30. In addition to the noted observational approaches, simulations, projection 

studies and agent-based modeling14, 31, 32 can be useful in environmental epidemiology, 

although more work remains in delineating and understanding conditions for valid effect 

estimation33, 34. In research on climate change and health, the projection of estimated effects 

under varying emissions and socioeconomic scenarios has become more common.35–37 

These types of studies are useful for projecting the health burden attributable to climate 

change but results are, of course, dependent upon the initial estimate of effects.

Our fourth issue concerns PVL’s statement that: ‘We are not arguing that “causal inference” 

methods that mimic randomized controlled trials are not useful; for example, they can 

improve individual studies with individual-level exposures that can be seen as 

interventions.” This claim is also potentially misleading because it could be read as implying 

or suggesting that studies that emulate randomized, controlled trials must involve 

randomization of individual-level exposures. In fact, the emulation applies more widely – 
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one need only consider group-randomized trials and appreciate that neither randomization 

nor the potential outcome framework precludes group-level exposure. This wider 

appreciation is particularly relevant for environmental epidemiology since, as PVL note, 

environmental exposures often “… affect individuals across entire communities”.

Interestingly, many of the causal inference methods (e.g., “extensions of traditional 

approaches”) specifically mentioned by PVL have benefited from and have been justified by 

some of the modern causal inference concepts, methods, and tools. For example, Balke and 

Pearl38 used counterfactual models to derive identifiable limits for the magnitude of effect 

based on analyses of instrumental variables. Although the difference-in-differences design 

precedes the formulation of the more recent causal-inference concepts, the major identifying 

assumption of difference in differences – parallel trends – appears now to be generally 

understood in econometrics as based on a counterfactual approach (see, e.g. Abadie39 or 

Lechner40). Moreover, the regression-discontinuity design can be based on the assumption 

that potential outcomes have a continuous distribution at the threshold41. Indeed, Imbens and 

Woodridge, important contributors to the econometrics literature where instrumental-

variable analysis, difference in differences, and regression discontinuity have long been 

used, stated that “… the Rubin potential outcomes framework is now the dominant 

framework”42.

In summary, we agree with much of PVL’s basic message as contained in at least six 

simplified main points. However, they omitted entirely the responses to and commentaries 

on the debate they cited. They also set up a restricted definition of “causal inference”, 

claiming without qualification that it refers to a subset of RCT-mimicking set of causal 

inference methods and proceeded to make additional, unqualified characterizations about the 

subset they defined. Further, they omitted discussion of how RCT-emulation can apply to 

group-level exposures although they note the importance of this in environmental 

epidemiology. These omissions, characterizations, and failure to qualify or note the 

conditional nature of potential advantages if a randomized trial can be emulated are, 

perhaps, unintentional. Regardless of intentionality, these distractions are unfortunate 

because the broad message – environmental epidemiology will benefit from use of a variety 

of causal inference methods – is one with which few would disagree including VanderWeele, 

Hernán, Tchetgen Tchetgen, and Robins, who pointed out these benefits more widely5.
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