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Abstract: We consider the problem of selecting the optimal subgroup 
to treat when data on covariates are available from a randomized trial 
or observational study. We distinguish between four different settings 
including: (1) treatment selection when resources are constrained; (2) 
treatment selection when resources are not constrained; (3) treatment 
selection in the presence of side effects and costs; and (4) treatment se-
lection to maximize effect heterogeneity. We show that, in each of these 
cases, the optimal treatment selection rule involves treating those for 
whom the predicted mean difference in outcomes comparing those with 
versus without treatment, conditional on covariates, exceeds a certain 
threshold. The threshold varies across these four scenarios, but the form 
of the optimal treatment selection rule does not. The results suggest a 
move away from the traditional subgroup analysis for personalized med-
icine. New randomized trial designs are proposed so as to implement 
and make use of optimal treatment selection rules in healthcare practice.
Keywords: Effect modification; Interaction; Optimal treatment se-
lection; Precision medicine; Personalized treatment; Randomized 
trial; Subgroup

(Epidemiology 2019;30: 334–341)

Biomedical researchers and social scientists are often inter-
ested in identifying the subgroups that would benefit most 

from a particular treatment or intervention. In randomized tri-
als, subgroup analyses are often used to compare the effect of 

treatment across subgroups defined by various pretreatment 
covariates.1–6 Such analyses can help give insight into whether 
a treatment might be more effective for men versus women, 
or for younger versus older persons, or for any other char-
acteristic or variable defined before the receipt of treatment. 
These types of analyses are relevant if the effect of treatment 
might vary across individuals in a population, a phenomenon 
often referred to as “effect heterogeneity.” Such analyses can 
be useful in deciding who to treat, or who to treat first, if re-
sources are limited. They can also be useful when deciding 
which of two treatments to give to whom.

While well-established methodology has been used for 
decades to carry out such subgroup analyses across strata defined 
by a single covariate,1,7–11 in actual practice it would be more de-
sirable to make use of data on numerous covariates. Viewed from 
the individual perspective, we are interested in knowing how 
to best choose the appropriate treatment for an individual with 
a particular set of characteristics. This task is sometimes now 
described as “personalized medicine” or “precision medicine.” It 
is the optimal selection of treatment for the individual.12–14 How-
ever, viewed from the perspective of a population, if we optimize 
the treatment for each individual, we are also optimizing the out-
comes for the population and are thus interested in which sub-
groups to give which treatment to maximize the outcomes within 
a population of interest, possibly subject to resource constraints.

To make progress with multiple covariates for this task, 
it is not uncommon in the biomedical or social sciences to form 
a “prognostic score.”4,15–18 In a randomized trial with treatment 
and control, this prognostic score is defined as the predicted 
value of the outcome, conditional on an individual’s covariates, 
if that person were not given treatment. The prognostic score 
is often obtained by first fitting a regression model of the out-
come on the pretreatment covariates among the control arm 
of the randomized trial. Using the estimates of the regression 
parameters of this model, one can then obtain predicted out-
comes under the absence of treatment for each individual in the 
study to give the prognostic score. The prognostic score itself 
is then typically taken as the variable by which subgroups are 
formed. An analyst might, for example, subsequently analyze 
the data within tertiles, quartiles, or quintiles of the prognostic 
score. If those with low prognostic scores would benefit most 
from treatment, then this might be the group for which it would 
be the best to target treatment. This approach is used with some 
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frequency in the biomedical and social sciences.18–22 It is some-
times also referred to as “risk stratification”16 or “endogenous 
stratification.”18 While such procedures theoretically are effec-
tive with very large sample sizes, recent evidence suggests that 
in most practical settings, even with thousands of study partici-
pants,18 biases from this sort of approach result from overfit-
ting if the same data are used to form the prognostic score and 
to run the subgroup analyses.18,23,24 Various techniques, using 
cross-validation, have been proposed to address these biases.18

However, a more fundamental problem with the 
approach is that even if such biases were absent, using the 
prognostic score or individual covariate subgroup analysis 
does not in fact identify the optimal treatment allocation rule. 
There are better ways to use the covariate data available to 
optimize an individual’s outcome and the mean outcomes 
for the population. A growing literature has begun to explore 
statistical approaches for more effective treatment selection 
rules.25–29 In fact, the optimal rule depends subtly on precisely 
what question the analysis is intended to address.

In this article, we will present four settings in which op-
timal subgroup selection is of interest. We will describe these 
settings and the optimal treatment rule in each. We will dis-
cuss how the approaches in this article relate to what is typ-
ically done in practice and how might be best to proceed in 
the subsequent research when selecting optimal subgroups for 
treatment is of interest. New randomized trial designs are fur-
ther proposed so as to implement and make use of optimal 
treatment selection rules in practice. The focus of this article 
is conceptual. Our goal here is to more clearly consider the 
types of questions that arise with subgroup selection and to 
relate that to how subgroups are to be optimally formed. We 
then compare this with what is done in practice. The focus of 
the article will not be statistical methods. Statistical methods 
are available to carry out some of this work and are described 
elsewhere,25–29 and one approach developed by Luedtke and 
van der Laan27–29 is summarized in the eAppendix, http://
links.lww.com/EDE/B466, but our focus here is on concepts 
and how we ought to think about subgroup selection within 
epidemiology and within the biomedical and social sciences 
more generally.

Notation
We will let A denote a treatment or intervention under 

study. We will assume that receipt of treatment has been ran-
domized with probability 1/2, but we will comment later in 
the article on how the methodology described here is also 
potentially applicable to observational studies. We will let Y 
denote an outcome of interest. Finally, we will let C denote 
a set of pretreatment covariates that are available for each in-
dividual in the study. We will let Y1 denote the potential out-
come30 that would have occurred for each individual if they 
had received treatment, and we will let Y0 denote the potential 
outcome that would have occurred under control. We only get 
to observe one of Y1 and Y0: we observe Y1 for those who 

actually received treatment and Y0 for those who were actually 
in the control arm. We do not in general know the potential 
outcome if an individual had been in the other arm of the trial.

In what follows, the task of treatment selection will es-
sentially be to partition the population into two groups, which 
we will call “T” and “S,” those receiving the treatment, and 
those not receiving the treatment, respectively. The goal will 
be, in each setting, to decide on how to partition the popu-
lation into those who do versus do not receive treatment to 
maximize mean outcomes. We will refer to this partition of 
individuals who do and do not receive treatment as the optimal 
treatment rule.

We will, for simplicity, assume here that treatment A 
is binary with 1 denoting treatment and 0 denoting control. 
However, the ideas that are developed below are also appli-
cable if we are comparing two different treatments so that 
A = 1 denotes one treatment and A = 0 denotes another. Al-
though we will generally use of “treatment” and “control,” 
the same methods and ideas described below are applicable 
also in the setting of comparing two treatments with “select-
ing who gets treatment” simply interpreted as “selecting who 
gets the first treatment” and “control” interpreted as “those re-
ceiving the second treatment.” Later in the paper, we will also 
comment on how the ideas potentially extend to settings when 
more than two treatments are being considered.

In what follows, we will provide an overview of the rel-
evant concepts and methods. We will state results that are pre-
cise under some technical conditions. More formal statements 
and proofs are given in the eAppendix, http://links.lww.com/
EDE/B466.27–29

Four Questions Relevant to Optimal  
Subgroup Selection

We will consider four settings that may be of interest in 
selecting optimal subgroups for treatment. Stated intuitively, 
these settings are as follows:

1.	 Who do we treat if resources are limited so that we can only 
treat q% of the population?

2.	 Who do we treat if resources are not limited so that we 
could potentially treat everyone and are simply deciding 
who would benefit from treatment?

3.	 Who do we treat if resources are not limited, but are subject 
to costs or side effects?

4.	 How do we select subgroups to maximize the effect heter-
ogeneity across subgroups?

We will address each question in turn.

Setting 1. Subgroup Selection Under  
Resource Constraints

First, let us suppose that owing to some form of resource 
constraints (e.g., costs, doses available, etc.), we are only able 
to treat at most q% of the population. We have data from a 
randomized trial of treatment A where we have collected out-
come Y and pretreatment covariates C. We want to use the 
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covariates C, and the outcome data from our randomized trial 
to determine a treatment rule to partition the population into 
those that we should treat so as to maximize the expected out-
come for the population, subject to the constraint that we can 
only treat q% of the population. Once we decide on these two 
sets, T, the treated, and S, the untreated, then the expected out-
come for the population under this treatment rule is:

q q

100
1 1

100
0E Y A T   E Y A S| ( ) |, ,= + − =[ ] [ ]

In other words, for q% of the population, we get the 
average outcome under treatment for the subgroup T that we 
selected for treatment, and for (100−q)% of the population, 
we get the average outcome under control for the subgroup S 
that we selected not to receive treatment.

It is shown in the eAppendix, http://links.lww.com/
EDE/B466, that if we knew the potential outcomes, Y1 and Y0, 
for each individual in the population, then the optimal treat-
ment rule to maximize the expected outcome for the popula-
tion would simply be to treat those for whom {Y1−Y0 > k}, 
where k is determined so that exactly q% are treated. In other 
words, if we knew the potential outcomes for each individual, 
so that we knew the actual effect, Y1−Y0, of treatment for each 
individual, we would simply treat the q% for which the effect 
of treatment itself was the largest. In actual fact, however, we 
do not know both potential outcomes for every individual in 
the population. We only have our randomized trial data, our 
outcomes Y, and our covariates C. Therefore, we want to use 
C to partition individuals into those who we do or do not treat 
to maximize outcomes. It is again shown in the eAppendix, 
http://links.lww.com/EDE/B466, that, to maximize outcomes, 
using covariates C, the optimal treatment rule is to treat those 
with covariate values c such that

E Y A C E Y A C| |, ,= = − = = >] [[ ]{ }1 0c c k

where the cutoff k is again determined, so that exactly 
q% is treated. In other words, the optimal treatment rule is to 
treat the q% with the highest expected treatment effect con-
ditional on their covariates. The expected treatment effect for 
each individual conditional on their covariates is something 
that can be estimated from the data in a randomized trial, and 
thus, this treatment rule can be implemented in practice. We 
could, for example, fit regression models for the expected out-
come under treatment E[Y|A  =  1, C  =  c] and under control 
E[Y|A = 0, C = c], (or, more directly, their difference) condi-
tional on covariates, to obtain estimates. However, again, it can 
be shown that the best we can do in terms of maximizing out-
comes for the population using just the covariates C is to treat 
those with the highest expected treatment effect, E[Y|A = 1, 
C = c]−E[Y|A = 0, C = c], conditional on their covariates. With 
this treatment rule, the expected outcome for the population is 

again then 
q

100
E[Y|A = 1,T] + (1−

q

100
)E[Y|A = 0,S].

The expected outcome under the treatment rule will 
not be as high as we could have obtained had we known both 

potential outcomes for all individuals, but again this is the best 
we can do with the measured covariates C. We could compare 
the expected outcome under the treatment rule with what we 
would obtain if we simply randomly selected q% of the popu-
lation for treatment, in which case we would have an expected 
outcome of:

q q

100
1 1

100
0E Y A   E Y A| = + − =[ ] [ ]( ) |

How much better we do under the treatment rule 
using the covariates C will depend in part on how predic-
tive are the measured covariates with respect to the asso-
ciation between treatment and the outcome of interest, and 
also how well we statistically model the expected outcomes 
E[Y|A = 1, C = c] and E[Y|A = 0, C = c], or, more directly, 
their difference. We could compare the expected popula-
tion outcomes in under different estimates of the optimal 
treatment rule using different modeling techniques. Intui-
tively, how well we improve on the outcomes by selecting 
subgroups for treatment using covariates C, instead of ran-
domly allocating treatment, will effectively depend on how 
well we can use the covariates C and statistical modeling to 
predict the potential outcomes, i.e., how well we estimate 
the true E[Y|A = 1, C]−E[Y|A = 0, C].

Setting 2. Subgroup Selection Under 
Unconstrained Resources

We will now turn to a different setting in which re-
sources are not constrained, so that we could potentially treat 
anyone who might benefit from the treatment. Once again 
our objective is to determine the treatment rule that partitions 
individuals into two sets: T, those who do receive treatment, 
and S, those who do not; so as to maximize the average out-
come for the population, which is then:

E Y A T P T   E Y A S P S| |, ,= + =( )] [[ ] ( )1 0

It is shown in the eAppendix, http://links.lww.com/
EDE/B466, that if we knew the potential outcomes, Y1 and Y0, 
for each individual in the population, then the optimal treat-
ment rule to maximize the expected outcome for the popu-
lation would simply be to treat those for whom {Y1−Y0>0}. 
In other words, if we knew the potential outcomes for each 
individual, we would simply treat those for whom the effect 
of treatment itself was positive. This is, of course, relatively 
intuitive. In actual fact, we do not, of course, know both poten-
tial outcomes for every individual; we only have our covari-
ates C. With covariates C, it shown in the eAppendix, http://
links.lww.com/EDE/B466, that to maximize outcomes, using 
covariates C, the optimal treatment rule is to treat those with 
covariate values c such that

E Y A C E Y A C| | ., ,= = − = = >] [[ ]{ }1 0 0c c

In other words, we treat those who have, conditional on 
their covariates, a positive expected treatment effect. We can 
again estimate this from the data from our randomized trial. 
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Under this treatment rule, the expected outcome will simply 
be E[Y|A = 1,T]P(T) + E[Y|A = 0,S]P(S). We could compare 
this expected outcome under the optimal treatment rule with 
the expected outcome if we treated everyone in the popula-
tion, E[Y|A = 1], or if we treated no one, E[Y|A = 0]. Once 
again, how well we could optimize outcomes would depend 
on how predictive were the covariates C with respect to the 
association between treatment and outcome.

An interesting feature of this second setting of un-
constrained optimal treatment selection is that the tasks of 
individual decision-making and maximizing population out-
comes in fact coincide. The approach to maximize popula-
tion outcomes is simply to assign treatment to anyone who 
would benefit from it. The perspectives of the individual and 
the policymaker coincide. This was not the case in the first 
setting, wherein an individual might have a positive expected 
treatment effect and therefore, from an individual perspective, 
have expected benefit from treatment, whereas a policymaker, 
to maximize population outcomes, might choose not to treat 
that individual because others have higher expected treatment 
effects and resources are limited.

Setting 3. Subgroup Selection Under  
Costs and Side Effects

Now let us turn to a setting in which resources are not 
constrained so that we could once again, in principle, treat 
everyone, but now suppose the treatment itself has a cost that 
we want to take into account, and/or has side effects that we 
want to weigh against the potentially beneficial effects on our 
outcome of interest Y. Because of costs or side effects, we 
might, for example, only want to treat those with treatment 
effects larger than some level δ. Or more generally, that level 
might depend on a person’s covariates c so that we only want 
to treat those with the treatment effect greater than some level 
δ(c). The optimal rule (see eAppendix, http://links.lww.com/
EDE/B466) if we knew both potential outcomes for all indi-
viduals would then simply be to treat those with {Y1−Y0 > 
δ(c)} and the optimal rule with the actual trial data and meas-
ured covariates C would be to treat those with {E[Y|A = 1, 
C = c]−E[Y|A = 0, C = c] > δ(c)}. Once again, how well we 
could optimize outcomes would depend on how predictive 
was the covariate C with the association between treatment 
and outcome.

Setting 4. Maximizing Effect Heterogeneity
When one reads through the subgroup analyses of many 

randomized trials, in which subgroup analyses are undertaken 
one covariate at a time, it often seems that the goal is to find 
a covariate, often dichotomous or dichotomized, such that the 
effect heterogeneity across subgroups defined by the covariate 
is as large as possible. When the effect estimate in one subgroup 
is much larger than that of the other, then the subgroup anal-
ysis is considered a success and that covariate defining the sub-
groups is subsequently considered important. In fact, we could 
carry out a similar exercise using data on multiple covariates. 

In this case, we would want to use covariates C to partition the 
population into two subsets, T and S, such that the effect in 
the subgroup T, E[Y|A = 1,T]−E[Y|A = 0,T], was much larger 
than the effect in subgroup S, E[Y|A = 1,S]−E[Y|A = 0,S]. In 
other words, we would want to maximize effect heterogeneity 
by maximizing the difference between the effects in these two 
subgroups:

E Y A T E YA T   E YA S E Y A S| { | }, , , ,= − = − = − =] [ ] [ ] [[ ]1 0 1 0

This is in some sense a generalization of what seems 
to be the traditional subgroup task but extended to multiple 
covariates simultaneously. It is shown in the eAppendix, 
http://links.lww.com/EDE/B466, that once again the solution 
to this maximization takes the form of selecting T to be those 
with an actual treatment effect, Y1−Y0 (if the potential out-
comes were known), or expected treatment effect conditional 
covariates C, E[Y|A = 1, C = c]−E[Y|A = 0, C = c], above 
some threshold k′, where k′ can be determined numerically 
as described in the eAppendix, http://links.lww.com/EDE/
B466. But once again, it is the expected conditional treat-
ment effect, E[Y|A = 1, C = c]−E[Y|A = 0, C = c], which is 
utilized in the criterion by which treatment decisions are to be 
made in this setting as well. Note, however, that although this 
treatment rule maximizes effect heterogeneity, the average 
outcome under this treatment rule will generally be worse 
than that selected by the treatment rule that maximizes the 
outcome itself as in Setting 2: Subgroup Selection Under Un-
constrained Resources. It is thus not clear that this treatment 
rule that maximizes effect heterogeneity is of particular use 
in decision-making, unlike those in Settings 1, 2, and 3. We 
will return to this point in the discussion.

Extensions to Observational Studies
Our discussion thus far has been within the context of 

a randomized trial. However, as discussed further in the eAp-
pendix, http://links.lww.com/EDE/B466, all of the discussion 
above pertains also to optimal subgroup selection and treat-
ment decisions from data arising from an observational study 
as well, provided that the covariates C suffice to control for 
confounding of the effect of treatment A on outcome Y, though 
the formulae for the optimized outcome need to be modified 
(see eAppendix, http://links.lww.com/EDE/B466). With data 
from observational studies, an additional context that may 
be of interest is if, in data from the study, there are available 
covariates C that suffice to control for confounding for the 
effect of treatment A on outcomes Y, but if, when treatment 
decisions are made subsequently, only data on some subset 
W of the covariates C will be available. Methodology for this 
setting has been developed and is described elsewhere.27–29,31 
Further discussion of statistical approaches is given in the Ap-
pendix and eAppendix, http://links.lww.com/EDE/B466.
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IMPLICATIONS FOR CURRENT PRACTICES
We have shown that under a wide range of different 

goals and settings, including making treatment decisions 
with or without resource constraints, and with or without 
side effects, or even when trying to maximize effect heter-
ogeneity, the correct approach to find the optimal treatment 
rule is to estimate expected treatment effects for each indi-
vidual conditional on the covariates. In each of the settings 
described above, the optimal treatment rule involved treat-
ing those above some threshold of the conditional expected 
treatment effect. The threshold differed according to whether 
there were or were not resource constraints, or whether there 
were or were not costs or side effects, or whether we wanted 
to maximize effect heterogeneity, but the form of the treat-
ment rule did not vary across these contexts. In each case, the 
form of the optimal treatment rule was simply to treat those 
with conditional expected treatment effects above a specific 
threshold. The results are summarized in the Table. This has 
a number of important implications for the actual practice of 
subgroup analysis, treatment selection, precision medicine, 
and the modeling of interactions.

Subgroup Analysis
One fundamental insight from our discussion above is 

that for treatment selection and decisions, our discussion sug-
gests a need to move away from subgroup analyses conducted 
one covariate at a time. The problems with this approach are 
numerous. First, subgroups may come into conflict: if sub-
group analyses indicate that treatment A is better for women 
and treatment B is better for men, and also indicate that A 
is better for older and B better for younger persons, and we 
want to make treatment decisions for a younger woman, the 
subgroup analyses conflict. Second, the subgroup analyses 
often fail to answer the scientific question of interest. As they 
are typically carried out, they tend to be aimed at maximiz-
ing effect heterogeneity, whereas what is actually of interest 
is maximizing population outcomes or individual treatment 
decision-making. The optimal treatment rule for maximizing 
population outcomes or individual treatment decision-making 
is not the same as for maximizing effect heterogeneity. Finally, 
compared with individual covariate subgroup analyses, we 
can in fact do better at maximizing mean outcomes by making 
simultaneous use of all covariates, rather than running analy-
ses one covariate at a time. It is conceivable, of course, that the 
optimal treatment selection in some rare cases might involve 
only a single dichotomous covariate, or in some settings, a 

single dichotomous covariate may constitute the decision to 
be made (e.g., resources are limited so we can only intervene 
in city 1 or city 2), but in general, the optimal decision-making 
rule will make fuller use of covariate data.

The need to move away from one-covariate-at-a-time 
approaches in optimizing population outcomes or individual 
treatment decision-making is relevant not just to traditional 
subgroup analyses when we are looking at whether the treat-
ment effect is larger in one group versus another, but this same 
point is also relevant to the analysis of so-called qualitative or 
crossover interactions,32–36 in which the treatment has a posi-
tive effect in one subgroup and a harmful effect in another. The 
analysis of such crossover interactions is again often done one 
covariate at a time, but for the purposes of decision-making, it 
ought to be done using all available relevant covariate data. In 
fact, the methodology described in Setting 2. Subgroup Selec-
tion Under Unconstrained Resources is doing precisely that.

Prognostic Scores
A second important implication of the discussion in this 

article is that, for optimizing population outcomes or individual 
treatment decision-making, we should move away from the 
“prognostic score,” which is often employed in both the bio-
medical and social sciences.16–22 The practice of stratifying on 
prognostic scores in small- or medium-sized trials has numerous 
statistical problems with “overfitting” documented elsewhere.18 
At a more fundamental level, though, it gets the objective wrong 
because the patients at the greatest risk of bad outcomes in the 
absence of treatment are not necessarily the same patients who 
will profit most from intervention. While stratifying the results 
of randomized trials using the predicted outcome under control 
can provide some insight into who might be considered to have 
greatest need for treatment (and this may itself be of interest 
if there are questions of equity), it is not the correct approach 
to optimize population outcomes or individual treatment deci-
sion-making. To optimize population outcomes or individual 
treatment decision-making, one stratifies, not by predicted out-
come under control, but by the expected effect of treatment; that 
is, the difference between the predicted outcome under treatment 
and the predicted outcome under control, conditional on covari-
ates. It is this stratification that gives one insight into optimal 
treatment decisions either with or without resource constraints.

Interaction Analysis
A third important implication, related somewhat to the 

first, concerns the modeling of interactions. In reading the 

Table.  Summary of Optimal Subgroup Selection Settings and Optimal Treatment Selection Rules

Setting Optimal Treatment Rule Threshold

Resource constraints (can only treat q%) E[Y|A = 1, C = c]−E[Y|A = 0, C = c] > k k is selected, so q% are treated

Unconstrained resources E[Y|A = 1, C = c]−E[Y|A = 0, C = c] > 0 Treat all with positive expected treatment effect

Unconstrained resource with costs or side effects E[Y|A = 1, C = c]−E[Y|A = 0, C = c] > δ(c) Treat all with expected treatment effect above costs

Maximizing effect heterogeneity E[Y|A = 1, C = c]−E[Y|A = 0, C = c] > k′ k′ is determined by numerical optimization
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literature, one is often left with the impression that the prin-
cipal goal of interaction analysis is to determine whether, in a 
given statistical model, a product term involving two variables 
is “statistically significant” or nonzero. Methodology to detect 
to “interactions” or nonzero product terms has become increas-
ingly advanced.37–40 However, once again, if the purpose of the 
analysis is optimizing population outcomes or individual deci-
sion-making, the question as to whether a specific product term 
in a particular statistical model may be present is, in fact, sec-
ondary. All that matters for the task of optimizing population 
outcomes or individual decision-making is having predictive 
covariates and having statistical models that give good predic-
tions of expected outcomes conditional on those covariates. If 
the product terms help in a particular model, they can be in-
cluded; if not, they can be omitted. In either case, though, their 
presence or absence is secondary in having a good predictive 
model so as to make optimal treatment decisions. Indeed, using 
models both with and without product terms and, more gen-
erally, numerous models and machine learning algorithms, to 
generate predicted outcomes, and possibly ensemble methods 
to average over, or choose among them, as discussed in the 
Appendix and eAppendix, http://links.lww.com/EDE/B466, is 
probably a preferable way to proceed.

It might be thought that subgroup analyses one-covari-
ate-at-a-time or the analysis of individual product terms in 
statistical models may still be of interest for the purposes 
of understanding or explanation. While this may be true to 
some degree, it is important to clarify the goal of such un-
derstanding or the form of explanation that is in view.41–43 If 
what is thought to be of importance is to understand which 
covariates in fact are most relevant in decision-making (e.g., 
because it was thought undesirable to measure all of the 
covariates subsequently in treatment decision-making), then 
one could instead consider the result of optimal treatment 
rules on the maximized population outcome when only cer-
tain subsets of the covariates C are considered. On the other 
hand, if one simply wanted to assess which covariates in some 
sense seemed most “responsible” for the effect heterogeneity, 
one might instead still model the outcome with all covariates 
simultaneously, and then consider, for example, what a one-
unit shift in any given covariate for all individuals would do in 
changing expected treatment effects. In linear models for the 
expected outcomes in each treatment arm, this would simply 
be the difference between the covariate coefficient in the 
model under treatment E[Y|A = 1, C = c] and the covariate co-
efficient in the model under control E[Y|A = 0, C = c]. But the 
approach of considering a one-unit shift in a particular covari-
ate across all individuals could also be employed in nonlinear 
models as well. Other metrics could also potentially be devel-
oped. Finally, sometimes analyses of interactions are under-
taken for the purpose of understanding the joint effects of the 
treatment and a particular covariate, or to gain mechanistic in-
sight.41–43 In this case, it may be appropriate to assess the joint 
effects of one covariate at a time, but in this case, if the effect 

of the covariate is in view, then confounding control must be 
made for the association between that covariate and the out-
come42–44 and what additional variables are needed to control 
for such confounding will vary depending on which covariate 
is in view. This is no longer simply a question of effect heter-
ogeneity but of joint effects.11,42 A model that includes all of 
the covariates C available will not in general be adequate to 
provide appropriate control in addressing this type of question 
if the covariates themselves affect one another.

Heuristics and Multiple Treatments
Yet another argument that might be put forward for 

doing one-by-one subgroup analyses may involve trying to 
generate heuristics. A physician cannot remember the func-
tional form of two conditional expectations but can remember 
that treatment A is better for women and treatment B is bet-
ter for men. While such treatment heuristics can be of some 
value, they can, as already discussed above, come into con-
flict with one another. Moreover, the use of such heuristics 
in decision-making becomes even more complex when there 
are more than two potential options to choose among, which 
brings us to another topic of our discussion: extensions to 
multiple treatments.

The setting of multiple treatment options is important 
in general and especially so in an era of personalized or pre-
cision medicine. Full discussion of the issue is beyond the 
scope of the present article, but many of the points discussed 
above do generalize to the multiple treatments setting. Specif-
ically, in the task of optimizing treatment decisions without 
resource constraints, the solution to maximizing the popula-
tion outcome, which is itself identical, in this setting, to maxi-
mizing the outcome for each individual, and involves a very 
similar form to what has already been discussed above. The 
optimal treatment rule in this setting with measured covari-
ates C simply involves obtaining the expected outcome given 
an individual’s covariates C under each possible treatment, 
E[Y|A = a, C = c], a = 0,1,2,…,N, and then assigning to each 
individual the treatment that gives the highest predicted out-
come. Likewise, for the same reasons as those given above, in 
this setting, if the goal is to maximize population outcomes or 
individual decision-making, there is little reason to carry out 
one-by-one-covariate subgroup analyses or to consider which 
product terms in statistical models are statistically significant.

Clinical Judgment and New Randomized  
Trial Designs

In the clinical setting, one might also wonder about 
the role of expert judgment. Are there perhaps aspects of a 
patient’s profile which are not, or even cannot be, adequately 
captured by a variable that we can use in a statistical model? 
This of course remains a possibility. Are we to abandon clin-
ical judgment and simply rely on statistical models to make 
such predictions? Are we to pit clinical judgment and mod-
eling against one another? We would like to close this ar-
ticle by attempting to tackle this question head on with a 

http://links.lww.com/EDE/B466
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compromise, to allow both clinical judgment and predictive 
models, by proposing a new type of study design.

A possible design, what we will refer as an Predicted 
Outcomes Trial, is to first use either prior randomized trial 
data, and/or observational data, with a relatively rich set of 
covariates C to build models for the expected outcomes with 
and without treatment. With such models, for each study par-
ticipant in the Predicted Outcomes Trial, the clinician (or pa-
tient) is randomized either to receive no further information, 
or to receive information on the predicted outcome given their 
covariates under each treatment scenario. This could include 
outcomes under multiple treatment options. The clinician (or 
patient) then decides, based on the information available and 
their own judgments and preferences, which treatment to se-
lect. Outcomes are measured after a suitable follow-up period 
to determine whether the information provided by the predic-
tive outcome models is useful in such decision-making. A trial 
of this sort will allow decision makers to make use of both 
individually oriented outcome predictions under statistical 
models, and also personal judgments, in making treatment 
decisions. It would also preserve decisionmaker autonomy, 
and be more likely to be palatable to clinicians, and therefore 
more likely also to be scalable. The trials themselves would 
determine the additional utility of the information provided 
by the predictive models. A variation that added an addi-
tional arm in which treatment always followed the predicted 
maximum outcome could also be used to evaluate the role of 
clinical judgment, whether beneficial or harmful, above and 
beyond reliance on predicted probabilities. We believe that 
such trials will be of use in determining the utility of predic-
tion models for personalized or precision medicine in actual 
practical settings.

CONCLUSIONS
In summary, we believe that careful thought as to 

what the correct question is in individual treatment deci-
sion-making, and careful selection of the correct optimization 
question and statistical method corresponding to the question 
of interest, will result in better patient outcomes. Current prac-
tices of one-covariate-at-a-time subgroup analysis, the use of 
prognostic scores, and the detection of significant interactions 
are simply not optimal for decision-making.
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APPENDIX: STATISTICAL ANALYSIS
In the eAppendix, http://links.lww.com/EDE/B466, we 

describe methods and formal statistical inference for estimat-
ing the optimal treatment rule and the outcome under it, and 
software to do so. While there are many ways to go about 
estimation, the methods described in the eAppendix, http://
links.lww.com/EDE/B466, flexibly model the difference in 
observed outcomes across treatment groups conditional on 
the covariates and use an ensemble technique called “super-
learner”31 that considers numerous different possible models 
or algorithms for the conditional outcome differences and 
then weights these according to their mean square error pre-
dictive value using cross-validation. Statistical inference for 
the optimal treatment rule and for the outcomes under it is 
challenging because the same data are being used to estimate 

the treatment rule and the expected outcomes. Sample split-
ting can potentially be used but is not efficient, and averaging 
across split samples does not yield valid inference.45 The eAp-
pendix, http://links.lww.com/EDE/B466, describes a cross-
validated targeted minimum loss-based approach to estimate 
the optimal treatment rule and the outcome under it. While 
the approach described in the eAppendix, http://links.lww.
com/EDE/B466, has some desirable theoretical properties, 
considerable work remains to be done in assessing the sample 
sizes that are needed for these techniques to be useful and how 
the various methods that have been proposed in the literature 
compare with one another in actual practice. While the theo-
retical methodologic development has come a long way in the 
past decade, much remains to be learned about the application 
of these methods.

http://links.lww.com/EDE/B466
http://links.lww.com/EDE/B466
http://links.lww.com/EDE/B466
http://links.lww.com/EDE/B466
http://links.lww.com/EDE/B466
http://links.lww.com/EDE/B466

