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Abstract

Background.—Randomized controlled trials (RCTs) for determining efficacy of pre-exposure 

prophylaxis (PrEP) in preventing human immunodeficiency virus (HIV) infection have not been 

conducted among US women because their lower HIV incidence requires impractically large 

studies. Results from higher incidence settings, like Sub-Saharan Africa, may not apply to US 

women due to differences in age, sexual behavior, coinfections, and adherence.

Methods.—We propose a novel strategy for evaluating PrEP efficacy in the US using data from 

both settings to obtain four parameters: (1) intention-to-treat (ITT) and (2) per-protocol effects in 

the higher incidence setting, (3) per-protocol effect generalized to the lower incidence setting, and 

(4) back-calculated ITT effect using adherence data from the lower incidence setting. To illustrate, 

we simulated two RCTs comparing PrEP against placebo: one in 4000 African women and another 

in 500 US women. We estimated all parameters using g-computation and report risk ratios 

averaged over 2000 simulations, alongside the 2.5th and 97.5th percentiles of the simulation 

results.

Results.—Twelve months post-randomization, the African ITT and per-protocol risk ratios were 

0.65 (0.47, 0.88) and 0.20 (0.08, 0.34), respectively. The US ITT and per-protocol risk ratios were 

0.42 (0.20, 0.62) and 0.17 (0.03, 0.38), respectively. These results matched well the simulated true 

effects.

Conclusions.—Our simple demonstration informs the design of future studies seeking to 

estimate the effectiveness of a treatment (like PrEP) in lower incidence settings where a traditional 

RCT would not be feasible.
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Introduction

Randomized controlled trials (RCTs) are the gold standard for determining the efficacy of a 

treatment, but variations in adherence can compromise the generalizability of RCT results to 

groups that differ from the study population in which the RCT was conducted. Adimora et 

al1 discussed an approach to estimate the intention-to-treat (ITT) effect in a target population 

whose outcome incidence is substantially lower than the incidence in the population where 

the treatment was formally tested using a RCT. The authors outlined how to use key data 

from both samples, such as biologically determined adherence and baseline effect measure 

modifiers, and the per-protocol effect (i.e., the effect of remaining on trial protocol, usually 

of remaining adherent to the trial drug) as an intermediary step to obtain the desired 

estimates in the target population. The approach discussed by Adimora et al. is important 

when the event of interest is uncommon enough in the target population to render a local 

RCT infeasible. In brief, the steps of this approach are (1) to estimate both the ITT and (2) 

per-protocol parameters in the higher-incidence setting, then (3) to generalize the per-

protocol parameter estimate to the lower-incidence setting, and finally and innovatively (4) 

to estimate the ITT in the lower-incidence setting by combining the generalized per-protocol 

estimate with information on observed compliance in the target setting. While we believe 

this approach has many potential applications, we describe here how it might be 

implemented for the example described by Adimora et al., namely determining the 

effectiveness of pre-exposure prophylaxis (PrEP) as prevention for human 

immunodeficiency virus (HIV) transmission.1 We provide a summary of simulation 

experiments that detail how the proposed approach works in typical sample sizes, and we 

give examples of the types of variables one would need to measure and include when 

adapting our approach to real-world data.

The Motivating Example

PrEP has been shown in some populations to be effective at preventing transmission of HIV. 

For instance, among men who have sex with men (MSM), tenofovir/emtricitabine reduced 

incidence of HIV by 44% compared to placebo (hazard ratio (HR): 0.56, 95% CI: 

0.37-0.85).2 One trial in serodiscordant, heterosexual couples in Kenya and Uganda found 

that tenofovir/emtricitabine reduced HIV incidence by 75% compared to placebo (HR: 0.25, 

95% CI: 0.13-0.45).3 However, we currently have a limited understanding of how well PrEP 

prevents HIV among women in the US.

There are two potential reasons for the lack of information on the effectiveness of PrEP 

among US women. First, it would be infeasible to conduct a Phase III RCT in this 

population because the incidence of HIV is too low. Even among US women at 

exceptionally high risk, whose HIV incidence rate was found by one prior study to be 

320/100,000 person–years,4 one would need to enroll 10,000 women to have adequate 

statistical power to detect the same effectiveness observed in MSM.1 This would be 

infeasible not just because of the required sample size but also the difficulty of enrolling 

women who are at highest risk for HIV in the US. Second, results from populations of 

women in Southern Africa, where incidence rates have been observed to be as high as 
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5700/100,000 person–years,5 are likely not directly generalizable to US women. There is 

concern regarding generalizability because distributions of key demographic, 

socioeconomic, clinical, and behavioral factors are likely to differ between US women and 

African women at risk for HIV. Generalization of results is made even more difficult because 

the trials conducted in African women (e.g., the FEM-PrEP and VOICE trials) had to be 

stopped due to the lack of demonstrated effectiveness of tenofovir/emtricitabine.5,6 In these 

trials, adherence to study protocol was only 30-40%, so the observed ITT analyses were 

essentially futile (i.e., undetectable regardless of actual efficacy). Additionally (and more 

importantly for our purposes), the differences between African and US women in 

demographic, clinical, and behavioral factors make it likely that the adherence patterns 

observed in the African trials differ from what would be seen among US women.

We can overcome the above challenges by combining key data (particularly a valid measure 

of adherence) from both the higher incidence African and lower incidence US settings with 

modern analytic methods to obtain both the per-protocol and ITT effects in the target 

population under stated assumptions.

Methods

The Proposed Approach

Our approach consists of four steps: (1) obtain the ITT and (2) per-protocol effects in the 

higher incidence African setting,7,8 (3) generalize the per-protocol results to the lower 

incidence US setting, and (4) estimate the ITT effect in the US. While per-protocol results 

have been generalized to a target population,9 to our knowledge the last step is novel.

Prior to conducting the analyses, we generated 2000 simulations of the two populations of 

interest. Our higher incidence sample mimicked a placebo-controlled RCT of the effect of 

tenofovir/emtricitabine on prevention of HIV transmission in 4000 women in Southern 

Africa (specifically, the FEM-PrEP and VOICE trials).5,6,10 Our lower incidence sample 

mimicked a RCT of 500 women in the US (with variable distributions being informed by 

HPTN 064).4,11,12 In both settings, the populations were women at risk of acquiring HIV, 

with the expectation that some but not all women would be in serodiscordant partnerships. In 

each trial, we randomized half the participants to receive tenofovir/emtricitabine and half to 

placebo and, if they were assigned to PrEP, determined their adherence (treated simply as a 

binary variable). In Africa half of the women randomized to PrEP were expected to take it at 

a level required by the study protocol, e.g. a stipulation that women take 80-90% of 

dispensed pills or have 10ng of tenofovir per milliliter of plasma.6 In the US, 75% of those 

randomized to PrEP were expected to follow protocol, using the same definition as in 

Africa. Whether women adhered was dependent on the woman’s age (defined as >21 years 

or not). We then simulated whether they acquired HIV 12 months post-randomization, based 

on adherence, age, and the interaction between adherence and effect measure modifier lack 

of a sexually transmitted infection (STI) at baseline. Lack of an STI was selected as our 

example modifier because the distribution of STIs differs between the two settings and 

having an STI increases risk of acquiring HIV.13-16 Figure 1 illustrates the causal 

relationships between the example variables included in our simulation.17
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Starting with the higher incidence African setting, our first parameter of interest was the ITT 

effect of randomization to PrEP versus placebo on HIV incidence. We estimated the ITT risk 

ratio (RR) in two ways: (1) using a log binomial generalized linear regression model and (2) 

using the Snowden adaptation of Robin’s generalized computational algorithm formula (g-

formula).18 It was not necessary to include any covariates in the models to estimate the ITT.

To account for non-compliance in the PrEP arm, we then obtained an estimate of the effect 

of remaining adherent to trial protocol on HIV seroconversion in the African trials, i.e. the 

per-protocol parameter. This method corrects for adherence by analytically censoring 

participants when they no longer adhere to trial protocol, following a pre-determined rule 

such as described above. Since this process involves analysis of adherence to protocol, 

which is by definition a post-randomization variable (and is not guaranteed to be balanced 

across the trial arms), we must account for (but not stratify on) those variables that confound 

the relationship between protocol adherence and the outcome.7,8,19

The first method we used to estimate the per-protocol effect was a log binomial model 

among women who adhered to the protocol, weighted to represent the entire trial using 

stabilized inverse probability of censoring weights.8 Variables included in the censoring 

weight models were those that affect adherence and the outcome, so our weight models 

included our example confounder age. The second method was g-computation. The key to 

using the g-formula to estimate the per-protocol effect is in specifying the counterfactuals 

being compared: (1) set all participants to receive PrEP and adhere to protocol versus (2) set 

all participants to receive placebo.20 When modeling the outcome, the model must include 

confounders of compliance and the outcome. Using the parametric g-formula (g-

computation), we estimated risk of the outcome under counterfactual 1 and under 

counterfactual 2 and then compared those risks to obtain the RR.

Following estimation of the per-protocol effect in the higher incidence African setting, one 

can standardize the results to the target population using the known distributions of effect 

measure modifiers that differ between the populations.21 In our scenarios, lack of an STI 

was our example baseline effect measure modifier. We again estimated this parameter in two 

ways. First, we estimated stabilized inverse odds of selection weights in a combined data set 

of the African and US trials, where selection was defined as inclusion in the African trial. 

The only variable that needed to be included in the weight models was lack of an STI.22 

Those weights were multiplied by the censoring weights, and we ran inverse probability 

weighted log binomial models in the African data to obtain the RR for the per-protocol 

estimate generalized to the lower incidence US setting. Second, we adapted our g-

computation approach for the per-protocol estimate to include an initial step where we took 

a weighted sample from the African women, where participants were selected with 

replacement and with a weight determined by our previously estimated inverse odds of 

selection weights. This ensured that, while the distribution of all other variables remained 

the same as in African, the distribution of any baseline modifiers would be (on average) the 

same as in the US. The per-protocol effect was then estimated in the same way as above but 

now within this weighted sample.
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In the final step, we obtained the ITT effect generalized to the US, using the reweighted 

African sample. We did this by combining information on adherence in the target, lower 

incidence US setting with the g-computation estimators of the generalized per-protocol 

parameter. This involved adding a step in which we used the US data to model adherence 

among those randomized to PrEP. The coefficients from this US adherence model were then 

used when generating the outcomes, instead of using the coefficients from the African 

adherence model. Finally, we obtained RRs by comparing the risks under the scenarios 

where (1) all participants were set to receive PrEP but adherence was allowed to be what it 

would have been in the US and (2) all participants were set to receive placebo.

Several assumptions are required to identify the effects of interest in our approach. For all 

four steps, one must assume that the treatment is well defined (i.e., there is no interference 

and any variations in treatment are irrelevant),23,24 there is no measurement error, and all 

models are correctly specified. Perhaps more importantly for the design of a study seeking to 

use our approach, one must make the assumption of conditional exchangeability for internal 

validity25 and its external validity counterpart.26 For the ITT effect, randomization of 

treatment grants exchangeability in expectation. When estimating the per-protocol effects in 

steps 2 and 3, one has to assume that all confounders of adherence to protocol and the 

outcome have been accounted for, to ensure that those who adhered to protocol in the 

treatment arm are conditionally exchangeable with those who adhered to protocol in the 

comparator arm. Analogously, when generalizing to the target setting in steps 3 and 4, one 

has to assume that all baseline effect measure modifiers which also affect selection into one 

setting versus another have been accounted for, to ensure conditional exchangeability 

between those selected into the source population (higher incidence setting) and those not 

selected (lower incidence setting). Lastly, one has to assume there is a positive probability of 

being observed in all strata defined by the treatment (or, for external validity, selection) and 

those variables necessary to achieve conditional exchangeability.26-28

Below we provide the results summarized across 2000 simulations. Key population variables 

are summarized using the median and interquartile range (IQR) of the percentages in each 

simulation. We then report the RR at each step averaged across the simulations, alongside 

the 2.5th and 97.5th percentiles (hereafter referred to as the 95% central mass) of the 2000 

RRs. We additionally give Monte Carlo simulation errors for each parameter, estimated by 

the standard error of the simulation RRs.

All analyses were conducted in SAS version 9.4 (SAS Institute, Cary, NC). Technical details 

on how each step was carried out using g-computation and SAS code are given in the 

eAppendices.

Results

As shown in Table 1, across the 2000 simulations, 50.0% (IQR: 49.5%, 50.5%) of the 4000 

women enrolled in the African trial were randomly assigned to PrEP, but only 24.9% (IQR: 

24.4%, 25.4%) of the 4000 women actually received PrEP. One third (33.3%; IQR: 32.9%, 

33.9%) were >21 years of age, and 79.0% (IQR: 78.6%, 79.4%) tested negative for an STI at 

baseline. At 12 months, 4.2% (IQR: 4.0%, 4.4%) of African women acquired HIV.
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In the lower-incidence US setting, again half (50.0%; IQR: 48.6%, 51.4%) of the 500 

women were randomized to receive PrEP, and 37.0% (IQR: 35.4%, 38.4%) of the 500 

women took PrEP. The US women were older than those in the African setting (66.6% >21 

years of age; IQR: 65.4%, 68.2%) and more likely to test negative for an STI at baseline 

(89.0%; IQR: 88.2%, 90.0%). The 12-month risk of HIV infection in US women was 0.4% 

(IQR: 0.2%, 0.8%).

Table 2 provides the average and 95% central mass of the 2000 simulation parameter 

estimates obtained using the g-computation approach, and Figure 2 displays the full 

distribution of 2000 simulation RRs. We found that the risk of HIV infection in African 

women randomized to PrEP was 0.65 (95% central mass: 0.47, 0.88) times the risk among 

women randomized to placebo. The risk of HIV infection among African women who 

remained adherent to study protocol and took PrEP was 0.20 (95% central mass: 0.08, 0.34) 

times the risk among women who stayed on study protocol but took placebo. As expected, 

the ITT effect was closer to the null than the per-protocol effect because low adherence in 

the PrEP arm attenuated PrEP’s protective effect.

As for the generalized effect estimates, the risk of HIV infection in US women randomized 

to PrEP was 0.42 (95% central mass: 0.20, 0.62) times the risk among women randomized to 

placebo, and the risk among US women who remained adherent to study protocol and took 

PrEP was 0.17 (95% central mass: 0.03, 0.38) times the risk among women who stayed on 

protocol but took placebo. Both the US ITT and per-protocol results were further from the 

null than the African results because more of the US women tested negative for an STI at 

baseline, and lack of an STI was associated with a more protective treatment effect. 

Additionally, for the ITT effect, US women were more likely to adhere to PrEP (partly 

because they were older), which resulted in a stronger protective effect of PrEP than in 

Africa where adherence was lower. The Monte Carlo simulation errors (defined as standard 

errors of the simulation RRs) were <0.01 for all four parameters.

To assess the performance of our approach, we used several different comparators. First, we 

saw that the parameters estimated using log binomial models and, for the per-protocol 

effects, inverse-probability-weighting methods were comparable (eTable 1). The generalized 

US ITT parameter was not estimated using weighting methods (to our knowledge, no such 

methods currently exist) and could not be compared. Second, we generated counterfactual 

outcomes for each individual in each simulation under the ITT and the per-protocol. We then 

estimated the true RRs in Africa and in the US by dividing the average of the counterfactual 

outcomes. For Africa the true ITT RR was 0.64 and the true per-protocol RR was 0.20; for 

the US those RRs were 0.44 and 0.17, respectively. Thus, all four of our g-computation 

estimates were close to the true parameter values.

Last, we compared our generalized results to what would have been obtained had we 

enrolled 10,000 women in the US – the estimated sample necessary to have adequate 

statistical power to detect the effect size observed in trials among MSM. Consequently, this 

is a large enough population that effects could be estimated without generalization. We 

applied the same methods used to estimate the African ITT and per-protocol effects and 

found that the ITT and per-protocol effects in this large US trial were 0.41 and 0.13, 
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respectively. These results (given in Table 2) again matched closely those obtained using our 

generalization approach.

Discussion

Here, we proposed an approach to generalize ITT and per-protocol effects from a higher 

incidence setting to obtain estimates of those same effects in a lower incidence setting. In 

our example, HIV incidence in the US was not high enough to permit estimation of these 

effects without enrolling an impractically large sample, but, using key data from a trial of 

African women alongside modern statistical methods, we were able to estimate both the 

generalized per-protocol and ITT effects. Our results were consistent across different 

estimators, i.e. the g-computation results matched results obtained using inverse-probability 

weighting methods. Furthermore, our per-protocol results were comparable to the “true RR” 

estimated from the individual counterfactual outcomes, and our generalization results 

matched those we would have seen if we enrolled a trial of 10,000 US women.

An approach like the one described here is necessary if the goal is to estimate the ITT effect 

of a treatment in the lower incidence setting. This is because the ITT is a function of the 

level of adherence within a population. Therefore, if one generalized the ITT from the 

higher-incidence setting to the lower-incidence setting (which requires measuring in both 

settings and analytically controlling for the necessary effect measure modifiers), the result 

would be biased if the patterns of adherence were different. That adherence is a post-

randomization variable on the pathway between randomization and the outcome means that 

it must be carefully handled during the analysis. Estimation of the per-protocol effect is one 

way to validly account for adherence, after which generalization can be carried out in the 

usual way. The generalized per-protocol effect can then be tweaked using measured data on 

adherence in the lower-incidence target population to back-calculate the ITT effect.

There were of course several limitations of this simulation. Primarily, our design was 

simplified, with only one time-point and an unrealistically small variable set. Future 

applications of our approach will likely have many time points at which they assess 

adherence and HIV incidence, and use of such data will require adequately accounting for 

time-varying adherence and time-varying confounders. However, while we do not show it 

here, the methods used at each step can be extended to handling the time-varying case, and 

we plan in future work to adapt our approach to these more complex settings.29 Moreover, 

assessment of variables in real trials will generally not be as clean cut as shown here. For 

instance, adherence can be difficult to measure, being highly prone to measurement error, 

and may not always be a yes/no binary variable. We also constructed our example such that 

all women in both samples remained in the study until the outcome was assessed and that 

there were no missing data; no actual trial is likely to be so perfect. As above, though, our 

approach could be extended to account for censoring or for missing data. Additionally, we 

did not demonstrate here how to obtain confidence intervals for the estimated RRs. When 

adapting our approach, one way to obtain valid confidence intervals would be to use 

bootstrap.
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Above we discussed the assumptions necessary for our approach. Whether these 

assumptions are reasonable will be context dependent, and will in part rely on careful study 

design and data collection. For instance, here we only included the minimal number of 

variables necessary to demonstrate the approach. When using our approach, a researcher will 

need to carefully consider the context and question of interest to determine the variable set 

sufficient to meet the exchangeability assumption. For instance, while we only examined 

baseline STI, a researcher using our approach might also attempt to capture whether a 

woman was in a sero-discordant partnership or frequency of condom use, so these could also 

be used as effect-measure modifiers. Our goal, though, as proof of concept, was simply to 

give examples of the types of variables one would need.

Furthermore, a particular implication of the no measurement error assumption worth 

highlighting is the requirement of using a valid measure of adherence in both populations 

when estimating the per-protocol effect. While we simply used an arbitrary, dichotomized 

indicator of adherence to protocol, an investigator would ideally have an accurate measure of 

drug concentration, by which they could ascertain whether a woman received an effective 

dose of the drug.30 This information would then guide the formulation of the trial’s protocol 

regarding adherence. If an effective concentration was not known, the investigator could 

examine different cut points for drug concentration and compare the results of our approach 

for each cut point.

Some practical implications of our approach should also be noted. In our motivating PrEP 

example, the high-incidence trials from which we would generalize to the US already exist. 

Thus, it would save a great deal of time and money to enroll the small US trial and apply our 

approach to estimate the desired parameters, in comparison to enrolling the 10,000 woman 

trial and estimate the parameters more directly. However, if our approach were to be used in 

scenarios where a high incidence study does not exist, this choice would not be so clean cut. 

The investigators would need to weigh the costs of designing and conducting studies in both 

settings sequentially or concurrently (as well as the “cost” of making the necessary 

assumptions for our statistical approach) against the cost of running one larger study in the 

low incidence setting. This decision will likely be context-dependent, hinging on factors 

such as how large the study in the low incidence setting would need to be (which would 

depend on the outcome incidence) and how well the investigators believe they could 

measure all the necessary variables to carry out our approach.

Despite its limitations, the proposed approach has the potential to be applied to a number of 

important public health questions. For instance, to return to our motivating example, 

understanding how well PrEP can prevent HIV incidence among at-risk women in the US is 

an understudied but critical area of research. Assessment of PrEP efficacy in this population 

would require an impractically large trial because incidence is as low as 320 infections per 

100,000 person–years (compared to 5700/100,000 person–years in Sub-Saharan Africa).4,5 

However, our approach would allow researchers to estimate PrEP effectiveness while 

enrolling a much smaller trial of US women partly because it does not rely on measuring the 

outcome in the US.
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Moreover, our approach need not be limited to placebo-controlled RCTs in both settings. 

The strategy could be adapted for studies using an active comparator; such situations would 

require measuring adherence to the active comparator and accounting for this adherence in 

the per-protocol effect estimation. Observational studies could also serve as the data source. 

In an observational study, the ITT effect might compare women who were prescribed PrEP 

by a physician to a similar group of women who were not prescribed PrEP. Estimation of the 

per-protocol effect would, as in our example, require an accurate measure of adherence to 

PrEP. The use of observational data, however, would mean PrEP was no longer randomized, 

and exchangeability would no longer be expected when estimating the ITT. A researcher 

would thus need to additionally control for the confounders of being prescribed PrEP and 

HIV incidence. Accurate measures of all required variables (adherence, confounders, and 

effect measure modifiers) might also be more difficult to attain than in an RCT.

Thus, the simulations described here, while limited, inform the design of future studies that 

seek to examine the effectiveness and efficacy of a treatment (like PrEP) not just in higher 

incidence settings but also in lower incidence settings where a traditional RCT would not be 

feasible.
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Figure 1. 
Causal diagram used in simulations, showing relations between randomization to pre-

exposure prophylaxis, adherence to study protocol, lack of sexually transmitted infection 

(STI) at baseline (an example effect measure modifier), age >21 years (an example 

confounder), and HIV seroconversion. In our simulation, older age was positively associated 

with adherence to protocol; older age, adherence, and the interaction between lack of an STI 

and adherence were negatively associated with HIV seroconversion.
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Figure 2. 
Boxplots of the simulation risk ratios with individual simulation estimates for all 4 

parameters estimated using g-computation. The filled diamonds are the true risk ratios, and 

the unfilled diamonds are the estimated risk ratios. The boxes represent the interquartile 

range, with the median risk ratio being the line within the box. Each of the light gray circles 

represents the result from a single simulation. The breadth of the whiskers is 1.5 times the 

interquartile range. Extreme outliers were removed from the picture (for the US ITT, 15 risk 

ratios <1×10−4 and, for the US per-protocol, 15 risk ratios <1×10−10).
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Table 1.

Distributions of key variables across 2000 simulations in the higher HIV incidence African setting and lower 

incidence US setting

Variable

African Trials
(trial n=4000)

US Trials
(trial n=500)

Median (%) IQR (%) Median (%) IQR (%)

Randomization to PrEP 50.0 49.5, 50.5 50.0 48.6, 51.4

Receipt of PrEP 24.9 24.4, 25.4 37.0 35.4, 38.4

Incident HIV 4.2 4.0, 4.4 0.4 0.2, 0.8

Age >21 years
a 33.3 32.9, 33.9 66.6 65.4, 68.2

No STI at baseline
b 79.0 78.6, 79.4 89.0 88.2, 90.0

Abbreviations: HIV, human immunodeficiency virus; US, United States; n: sample size; IQR, interquartile range; PrEP, pre-exposure prophylaxis; 
STI: sexually transmitted infection (other than herpes simplex virus)

a
African age distribution based on references 6 and 10. US age distribution based on references 4 and 11.

b
African distribution based on reference 10, and US distribution based on reference 12.
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Table 2.

Intention-to-treat and per-protocol effects in the higher HIV incidence African setting and generalized to the 

lower incidence US setting, estimated using g-computation

Parameter

African Trials
(trial n=4000)

US/African
Composite Trials
(trial n=500/4000)

US Trial
(n=10,000)

RR 2.5th 97.5th RR 2.5th 97.5th RR 2.5th 97.5th

Intention to treat 0.65 0.47 0.88 0.42 0.20 0.62 0.41 0.19 0.68

Per protocol 0.20 0.08 0.34 0.17 0.03 0.38 0.13 0.00 0.31

Abbreviations: HIV, human immunodeficiency virus; US, United States; n: sample size; RR, average risk ratio; 2.5th: 2.5th percentile of the 2000 

simulation RRs or, for the US trial, of 500 bootstrap resamples; 97.5th: 97.5th percentile of the 2000 simulation RRs or, for the US trial, of 500 
bootstrap resamples
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