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Abstract
Adult stem cells, also termed as somatic stem cells, are undifferentiated cells, detected among differentiated cells in a tissue 
or an organ. Adult stem cells can differentiate toward lineage specific cell types of the tissue or organ in which they reside. 
They also have the ability to differentiate into mature cells of mesenchymal tissues, such as cartilage, fat and bone. Despite 
the fact that the balance has been comprehensively scrutinized between adipogenesis and osteogenesis and between chon-
drogenesis and osteogenesis, few reviews discuss the relationship between chondrogenesis and adipogenesis. In this review, 
the developmental and transcriptional crosstalk of chondrogenic and adipogenic lineages are briefly explored, followed by 
elucidation of signaling pathways and external factors guiding lineage determination between chondrogenic and adipogenic 
differentiation. An in-depth understanding of overlap and discrepancy between these two mesenchymal tissues in lineage 
differentiation would benefit regeneration of high-quality cartilage tissues and adipose tissues for clinical applications.
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Introduction

Stem cells are gaining importance due to their potential to 
regenerate damaged tissues [1, 2]. Adult stem cells, which 
exist in the postnatal organism, have been identified to have 
multi-lineage or uni-lineage differentiation capacity toward 
which they are committed to differentiate. Mesenchymal 
stem cells (MSCs), as part of the multi-lineage differentia-
tion of adult stem cells, have the ability to form articular 

cartilage, fat and bone [3]. The balances between adipo-
genesis and osteogenesis and between chondrogenesis and 
osteogenesis have been comprehensively reviewed [4, 5]; 
however, few reviews explore the crosstalk between chon-
drogenesis and adipogenesis.

There is a strong and close relationship between chondro-
genesis and adipogenesis. For example, a high concentration 
of dexamethasone could induce adipogenic differentiation 
even during chondrogenic induction of human synovium-
derived stem cell (SDSC) pellets [6]. Pericytes in pellet cul-
tures in chondrogenic medium also underwent adipogenic 
differentiation, as evidenced by the fact that some cells 
within the pellets displayed a signet-ring adipocyte-like mor-
phology [7]. Interestingly, depletion of RUNX2 (Runt-related 
transcription factor 2), a typical osteogenic marker, resulted 
in the loss of chondrocyte phenotype and induced adipo-
genic differentiation in primary chondrocytes in vitro [8]. 
Furthermore, Qu et al. found that genetic deletion of Vav1, 
a guanine exchange factor for Rho GTP highly expressed in 
murine bone marrow-derived MSCs (BMSCs), led to spon-
taneous adipogenesis but disabled chondrogenic differen-
tiation [9]. They also found that overexpression reversed 
this phenotype, resulting in increased chondrogenesis but 
decreased adipogenesis [9].

Cellular and Molecular Life Sciences

 * Ming Pei 
 mpei@hsc.wvu.edu

1 Stem Cell and Tissue Engineering Laboratory, Department 
of Orthopaedics, West Virginia University, 64 Medical 
Center Drive, PO Box 9196, Morgantown, WV 26506-9196, 
USA

2 Department of Sports Medicine and Adult Reconstructive 
Surgery, School of Medicine, Drum Tower Hospital, Nanjing 
University, 321 Zhongshan Road, Nanjing 210008, Jiangsu, 
People’s Republic of China

3 Department of Orthopaedics, Chengdu Military 
General Hospital, Chengdu 610083, Sichuan, 
People’s Republic of China

4 Robert C. Byrd Health Sciences Center, WVU Cancer 
Institute, West Virginia University, Morgantown, WV 26506, 
USA

http://orcid.org/0000-0001-5710-3578
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-019-03017-4&domain=pdf


1654 S. Zhou et al.

1 3

The transcription factors of chondrogenesis and adi-
pogenesis are interrelated, which can influence stem cell 
fate. Down-regulation of Sox9 (SRY-Box  9), a classi-
cal transcription factor for chondrogenesis, seems to be 
required for adipocyte differentiation since Sox9 can bind 
to and suppress the major adipogenic transcription fac-
tors CCAAT/enhancer-binding protein beta (C/EBPβ) and 
C/EBPδ promoter activity directly [10]. On the contrary, 
Sox9 directly regulates COL2A1 (type II collagen) but it 
binds to the element overlapping with C/EBP motif in RCS 
(rat chondrosarcoma) cells [11]; thereby, C/EBPβ and C/
EBPδ may participate in interleukin 1β (IL-1β)-induced 
repression of COL2A1 expression. Furthermore, chondro-
genic marker genes COL2A1, ACAN (aggrecan) and SOX9 
are reported to be suppressed by C/EBPα, C/EBPβ and C/
EBPδ in ATDC5 cells (derived from mouse teratocarcinoma 
cells and characterized as a chondrogenic cell line) [12, 13]. 
These findings imply negative regulation between C/EBP 
family members and Sox9. However, other reports indicate 
that Sox9 is imperative for adipogenic differentiation by 
stabilizing C/EBPβ mRNA in rat adult BMSCs [14] and C/

EBP family members show potent transactivation of SOX9 
in both ATDC5 and Hela cells [15]. Therefore, the inter-
action of transcription factors between chondrogenesis and 
adipogenesis is complicated. The in-depth investigation is 
still in its infancy.

In this review, for the first time, we briefly discuss devel-
opmental origins of articular cartilage and adipose tissue, 
followed by signaling pathways guiding chondrogenic and 
adipogenic differentiation of stem cells as well as regulators 
controlling the crosstalk of chondrogenesis and adipogen-
esis. Further investigations of lineage-specific differentia-
tion may lead to promising applications of MSCs in tissue 
engineering and regeneration.

Developmental origins of articular cartilage 
and adipose tissue

MSCs developing from the mesoderm commit to chondro-
genic and adipogenic differentiation (brown, brite/beige and 
white adipocytes) (Fig. 1) and other lineages. Transcription 

Fig. 1  Developmental origins of 
articular cartilage and adipose 
tissue. Adult stem cells develop 
from the mesoderm and then 
commit into different lineages, 
including but not limited to 
chondrogenic and non-skeletal 
adipogenic lineage (brown adi-
pocyte, brite/beige adipocyte, 
white adipocyte). However, in 
the cephalic region, adipocytes 
have a neuroectodermal origin. 
Lineage determination is influ-
enced by a number of transcrip-
tion factors and growth factors 
in a spatiotemporal pattern (See 
text for details)
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factors promote the differentiation of chondroblasts and 
preadipocytes to acquire their specific functions.

In the chondrogenic lineage, Sox9 is necessary for induc-
tion and maintenance of chondrocytic phenotypes in concert 
with Sox5 and Sox6 [16]. Transforming growth factor beta 
(TGFβ), bone morphogenetic protein (BMP), GLI-Kruppel 
family member 3 (Gli3) and Runx2 also promote chondro-
genic differentiation [17]. Cartilage developmental stages 
can be divided into three phases: mesenchymal condensa-
tion, interzone formation and cavitation and stabilization of 
articular cartilage [18]. During mesenchymal condensation, 
chondroblasts migrate from the lateral plate of the meso-
derm followed by an interruption of continuous cartilage 
anlagen by interzone formation. The interzone is composed 
of three layers: two chondrogenic layers and one intermedi-
ate layer. The former covers the cartilage while the latter 
aids intra-articular structure formation [19]. At early stages 
of joint morphogenesis, GDF5 (growth differentiation fac-
tor 5) mRNA is highly expressed in regions flanking future 
joint sites, within the flattened intermediate interzone [20]. 
Cells with a GDF5-expressing lineage actively take part in 
joint tissue formation and constitute a progenitor cell cohort 
endowed with joint-formation capacity [21].

Brown adipocytes arise from precursors that express myo-
genic factor 5 (Myf5), a gene that was also expressed in the 
myogenic lineage with transcriptional co-factor PRDM16 
(PRD1-BF-1-RIZ1 homologous domain-containing pro-
tein-16) as a dominant regulator [22, 23]. Despite the fact 

that some white fat cells arise from Myf5 + precursors, most 
evidence suggests that white and brown adipocytes take dif-
ferent developmental paths [24]. Adipocytes in the cephalic 
region are ectodermal due to the mesenchyme in this part 
of the body deriving from the neuroectoderm [25]. Multi-
ple signaling pathways are involved in the fate of adipocyte 
lineage. For example, Wingless/int (Wnt) and Hedgehog 
proteins are important for MSC myogenic lineage commit-
ment but prevent MSCs from proceeding toward an adipo-
genic lineage [26]. In the adipogenic lineage, peroxisome 
proliferator-activated receptor gamma (PPARγ) is necessary 
and sufficient for adipogenesis [27]. C/EBPα is required for 
the differentiation of white but not brown adipocytes [28]. 
With BMP2 and BMP4 as white adipogenic factors, BMP7 
serves as the unique brown fat inducer [29]. Forced expres-
sion of PRDM16 in a white preadipocyte cell line or white 
adipocytes in vivo promotes a robust brown adipocyte phe-
notype [22].

Signaling pathways guiding chondrogenic 
and adipogenic differentiation of stem cells

Recent studies have demonstrated that multiple signaling 
pathways are involved in determining stem cell fate, includ-
ing TGFβ/BMP signaling, Hedgehog, Wnt and Notch sign-
aling (Fig. 2).

Fig. 2  Signaling pathways involved in regulating chondrogenic and 
adipogenic differentiation of MSCs. These signaling pathways main-
tain a delicate balance between chondrogenesis and adipogenesis 
through regulating SOX9 or CEBPβ. For example, TGFβ binding 
with TGFβR results in further activation of p38 and Smad2/3. The 
p38 signaling and Smad2/3 promotes chondrogenesis while Smad2/3 
inhibits adipogenesis. BMP2/4/7 enhance chondrogenic and adipo-

genic differentiation. Interestingly, BMP7 favors adipogenesis over 
chondrogenesis (indicated by the dotted line). Hedgehog signaling 
has pro-chondrogenic and anti-adipogenic properties, which is con-
sistent with canonical Wnt (cWnt) signaling while non-canonical Wnt 
(ncWnt) pathways promote both differentiations. Notch signaling is 
a negative regulator of chondrogenesis but plays an inhibitory and 
obligatory role in adipogenesis
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TGFβ

TGFβ1 has the ability to induce chondrogenic differentia-
tion in chick periosteum-derived mesenchymal cells [30] 
and in human and animal MSCs but in a dose-dependent 
manner [31–33]. For example, 10 ng/mL of TGFβ1 induced 
human BMSC differentiation into chondrocytes while lower 
doses, such as 0.01–0.1 ng/mL and 0.5–1.0 ng/mL, did not 
work in monolayer culture [34, 35]. TGFβ2 and TGFβ3 were 
more effective than TGFβ1 in promoting chondrogenic dif-
ferentiation in human BMSCs [32]. Interestingly, TGFβ1 
and TGFβ3 exerted an inhibitory effect on adipogenesis. 
TGFβ1 induced dominant chondrogenesis while suppress-
ing adipogenic differentiation of CL-1 cells (a cell line that 
can spontaneously differentiate into chondrocytes and adi-
pocytes) in the presence of fetal calf serum (FCS) [36] or 
human BMSCs [37]. In vitro treatment of 100 pM TGFβ1 
also inhibited 3T3-L1 (mouse cells that resemble preadipo-
cytes) differentiation into mature adipocytes [38] and 1 ng/
mL TGFβ1 hampered lipid accumulation in mouse embry-
onic fibroblasts [39]. TGFβ3 (10 ng/mL) suppressed the 
induction of adipogenesis-associated genes, such as PPARG  
(PPARγ) and FABP4 (fatty acid binding protein 4), even in a 
two-dimensional micromass chondrogenic culture of human 
SDSCs [6].

Mechanically, TGFβ in chondrogenic differentiation can 
signal through the canonical Smad2 (small mothers against 
decapentaplegic homolog 2) or Smad3-mediated pathway 
or non-canonical p38 mitogen-activated protein kinase 
(MAPK) pathway [40–43]. However, the MAPK kinase 
(MEK)/extracellular signal-regulated protein kinase (Erk) 
signaling pathway in TGFβ-induced chondrogenesis remains 
controversial and complex [43]. In adipogenesis, however, 
overexpression of Smad2 or Smad3 inhibited lipid accumu-
lation of 3T3-F442A preadipocytes, with Smad3 exerting a 
stronger effect [44]. A dominant-negative form of Smad3 is 
able to suppress the inhibitory function of TGFβ signaling 
on adipogenesis while adipogenesis proceeds normally in 
the presence of the dominant-negative form of Smad2, sup-
porting Smad3 as a TGFβ signaling component in inhibit-
ing adipogenic differentiation [44]. Moreover, Smad3, along 
with Smad4, associated with C/EBPβ and C/EBPδ resulted 
in decreased PPARγ expression in NIH3T3 cells [45]. The 
above evidence indicates that TGFβ may exhibit opposite 
effects on chondrogenic and adipogenic lineage differentia-
tion via Smad3.

BMP

More than 20 different BMP isoforms have now been identi-
fied. Among them, BMP2, BMP4 and BMP7 are the well-
established determinants of chondrogenic and/or adipogenic 
differentiation of MSCs.

BMP2 is a positive regulator in chondrogenic differ-
entiation. In human BMSCs, BMP2 is the most effective 
in promoting chondrogenic differentiation as compared 
to BMP4 and BMP6 [46]. BMP2 (500 ng/mL), associ-
ated with a thiazolidinedione activator of PPARγ, also 
stimulated adipogenesis in 3T3-L1 cells and rat BMSCs 
[47]. BMP2 (50 ng/mL) could even induce adipogenesis 
on a two-dimensional micromass chondrogenic culture of 
human SDSCs [6]. In fact, the concentration of BMP2 
strongly influences mesenchymal cell differentiation. For 
example, differentiation of C3H10T1/2 mouse embryonic 
stem cells (ESCs) into adipocytes occurred at lower con-
centrations (such as 10 ng/mL) of BMP2, while chondro-
cyte differentiation was prevalent at higher concentrations 
(such as 1000 ng/mL) [48]. However, BMP2 (50 ng/mL) 
was also reported to increase proteoglycan and type II 
collagen expression but decrease the level of adipocyte-
specific aP2 (adipocyte protein-2) expression in human 
BMSCs [49].

BMP4 is a useful agent for stimulating chondrogenic dif-
ferentiation both in vitro and in vivo [50–52]. Nakayama 
et al. demonstrated that BMP4 promotes chondrogenesis of 
ESC-derived mesodermal cells in a dose-dependent manner. 
They found that 50 ng/mL of BMP4 enhanced more cartilage 
formation compared to 20 ng/mL, while 5 ng/mL was not 
effective [53]. BMP4 also promotes stem cell commitment 
to the adipocyte lineage. Taha et al. found that 100 ng/mL 
of BMP4 induced more adipocyte clusters in ESC-derived 
embryoid body outgrowth compared to 50 and 10 ng/mL, 
suggesting that BMP4 induces adipogenesis in a dose-
dependent manner [54].

BMP7 alone or with TGFβ increased chondrogenesis 
in bovine synovium explants, human ESCs, SDSCs and 
BMSCs [55–59]. BMP7 also augments phosphorylation of 
Smad1/5/8 in white and brown preadipocytes. However, via 
p38 MAPK, BMP7 initiated a full program of brown adipo-
genesis including increased expression of UCP1 (uncoupling 
protein 1), CEBPs and PPARG  and blockade of adipogenic 
inhibitors such as NDN (Necdin), PREF1 (preadipocyte fac-
tor 1) and WNT10A (a canonical Wnt signaling molecule) 
[60]. Interestingly, BMP7 favors adipogenic differentiation 
over chondrogenic differentiation. For example, BMP7 
dose-dependently decreased the level of aggrecan assessed 
by Alcian blue staining and increased the number of lipid-
filled cells in human BMSCs [61]. Moreover, BMP7 (50 ng/
mL) initiated adipogenesis instead of chondrogenesis of 
human BMSCs even in micromass cultures, which usually 
favors chondrogenic differentiation [61]. In addition, treat-
ment with 100 ng/mL BMP7 alone did not increase chon-
drogenic gene expression, such as proteoglycan, COL2A1 
and SOX9, after a 21-day chondrogenic induction of human 
BMSCs [62]. Interestingly, even in osteogenic induction, 
BMP7 elevated the expression of adipogenic genes PPARG ,  
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ADIPOQ (adiponectin) and LPL (lipoprotein lipase) of 
human BMSCs [62].

Hedgehog

Extracellular ligands of the hedgehog protein family are 
modulators of stem cell chondrogenesis along with poten-
tial interactions on adipocyte differentiation pathways [34, 
63, 64]. The interaction of Hedgehogs with receptors of the 
patched (PTCH) family, a conserved transmembrane protein 
receptor that negatively regulates the Hedgehog signaling 
pathway, ultimately rescues Ci (in Drosophila)/Gli (in ver-
tebrates) from proteolytic degradation and then promotes 
their nuclear localization.

Hedgehog signaling is well known to stimulate MSC 
chondrogenic differentiation. Indian Hedgehog (IHH), 
expressed and secreted by pre-hypertrophic and early 
hypertrophic cells, is a key regulator of endochondral ossi-
fication [65]. IHH-deficient mice displayed a markedly 
reduced chondrocyte proliferation and premature chondro-
cyte hypertrophy [66]. Generally, chondrogenic differentia-
tion of human BMSCs was characterized by an increase of 
IHH expression [34]. Knockdown of IHH or pharmacologi-
cal inhibition of Hedgehog signaling with cyclopamine or 
HhAntag could completely block TGFβ1 or BMP2-induced 
chondrogenesis in mesenchymal cells [34, 67]. Furthermore, 
overexpression of IHH was sufficient to drive chondrogen-
esis, even when TGFβ signaling was inhibited [34]. Like-
wise, treatment with IHH or the recombinant amino half of 
SHH (recombinant N-terminal portion of Sonic Hedgehog) 
induced chondrocyte differentiation in clonal pre-chondro-
genic RMD-1 and ATDC5 cells [68]. SHH is also a critical 
moderator of cell differentiation due to its anti-adipogenic 
and pro-chondrogenic properties in mouse adipose-derived 
stem cells (ADSCs) [69].

The anti-adipogenic potential of Hedgehog signaling 
has been observed in a variety of multipotent cell lineages. 
Generally, adipogenic differentiation of human ADSCs was 
characterized by a decrease in Gli1, Gli2, Gli3 and PTCH 
expression [64]. A dominant negative form of Gli2 was 
reported to promote adipogenesis of 3T3-L1 cells [70]. Con-
versely, treatment with purmorphamine, a Hedgehog ago-
nist, decreased adipocyte-specific markers, such as FABP, 
CFD (complement factor D, Adipsin), CD36, ADIPOQ 
and LEP (leptin) in human ADSCs [64]. Likewise, SHH 
resulted in suppression of pro-adipogenic effects of BMP2 
in multipotent C3H10T1/2 cells and transgenic activation 
of Hedgehog signaling in both Drosophila and mammalian 
models impaired fat formation [70–72]. In summary, current 
data suggest that Hedgehog signaling promotes stem cell 
chondrogenic differentiation over adipogenic differentiation, 
primarily via Gli transcription factor activity.

Wnt

Over the course of several decades, Wnt signaling has been 
identified as playing an essential role in cell fate determi-
nation and differentiation [73, 74]. Collectively, canonical 
Wnt signaling has demonstrated both pro-chondrogenic and 
anti-adipogenic activities while the non-canonical pathways 
promote both of these differentiations.

Many studies showed that Wnt proteins, such as Wnt3a, 
have been reported to promote chondrogenic differentiation 
[75]. Moreover, secreted frizzled-related protein 1 (sFRP1) 
and Dickkopf-related protein 1 (Dkk1) enhanced glycosami-
noglycan (GAG) synthesis, SOX9 and COL2A1 expression 
only in the early chondrogenesis of human BMSC pellet cul-
tures [76]. However, several members of the Wnt signaling 
family have been identified to inhibit early stage adipogenic 
differentiation [77]. Wnt1, Wnt6, Wnt10a and Wnt10b have 
been shown to maintain 3T3-L1 cells in an undifferentiated 
state via inhibition of PPARγ and C/EBPα [77–81]. Further 
studies also suggest that canonical ligand Wnt3a inhibits 
activation of both PPARγ and C/EBPα in order to elicit its 
anti-adipogenic effects [82]. Additionally, during adipo-
genic differentiation of human ADSCs, the mRNA levels of 
SFRP4 and DKK1, two Wnt antagonists, were higher than 
in the undifferentiated state [83]. Also, a 48-h treatment 
with sFRP1 and sFRP4 up-regulated adiponectin secretion 
in human ADSCs [84]. Accordingly, inhibition of Wnt/β-
catenin signaling via treatment with Sclerostin or Dkk fam-
ily proteins positively regulated adipogenesis [77, 78, 85, 
86]. A higher level of sFRP2 enhanced adipogenic differen-
tiation and a decrease of sFRP2 suppressed adipogenesis in 
mouse BMSCs [87]. Interestingly, Kirton et al. found that 
Wnt/β-catenin signaling enhanced chondrogenesis while 
attenuating adipogenic differentiation of pericytes in both 
monolayer and pellet cultures [7].

The non-canonical signaling pathway has also been impli-
cated as a modulator of chondrogenic and adipogenic dif-
ferentiation of MSCs. To date, the β-catenin independent 
pathway has been reported to be a determinant of stem cell 
chondrogenesis. For example, TGFβ up-regulated the level of 
Wnt5a, which promoted chondrogenesis of chick wing bud 
mesenchymal cells [88]. Overexpression of Wnt11 promoted 
chondrogenesis in rat BMSCs [89]. Moreover, hyaluronan-
grafted chitosan promoted chondrogenesis by Wnt5a-mediated 
non-canonical Wnt signaling in rat ADSCs [90]. Furthermore, 
Wnt5a and Wnt11-mediated non-canonical Wnt signals were 
actively involved in the enhanced chondrogenesis of decellu-
larized extracellular matrix (ECM) expanded human SDSCs 
[91]. These results indicated that non-canonical Wnt signal-
ing plays a positive role in promoting the chondrogenic dif-
ferentiation response. Non-canonical Wnt ligands, Wnt4 and 
Wnt5a, promoted the adipogenesis of 3T3-L1 cells through 
the Protein Kinase C (PKC)-CamKII pathway [92]. These data 
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indicated that, different from canonical Wnt signals, the non-
canonical Wnt pathway was a positive regulator in adipogenic 
differentiation.

Notch

Notch signaling has been shown to be active in undifferentiated 
stem cells and in the early phase of chondrogenic differentia-
tion. Notch signaling was down-regulated when chondrocyte 
differentiation ensued in pellet cultures of human BMSCs [93]. 
Correspondingly, overexpression of NICD (Notch intracellu-
lar domain), HES1 (Hairy and enhancer of split-1) and HEY1 
(Hairy/enhancer-of-split related with YRPW motif protein 
1) prevented chondrogenesis of human BMSCs [93]. Further 
studies found that inhibition of Notch signaling on chondro-
genesis of murine limb bud mesenchymal progenitor cells was 
markedly reduced by knockdown of TWIST1 (Twist-related 
protein 1) [94]. These results suggest that Notch signaling 
plays a negative role during chondrogenic differentiation.

Notch receptor mRNA expression, such as NOTCH1, 2, 3 
and 4, decreased as adipogenic differentiation of human ADSC 
clones [95]. However, only Notch1 and 4 increased during adi-
pogenic differentiation of 3T3-L1 cells [96]. Existing evidence 
indicates that Notch signaling plays an inhibitory and obliga-
tory role in adipogenesis [97, 98]. Exposure to ligand jagged1 
in 3T3-L1 cells or jagged1 transgene expression in human 
BMSCs blocked PPARγ and C/EBPα induction and inhibited 
adipocyte formation in response to adipogenic induction [98, 
99]. N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine 
t-butyl ester (DAPT, γ-secretase inhibitor) inhibited Notch 
signaling, induced autophagy and promoted adipogenesis of 
human BMSCs through the Phosphatase and tensin homolog 
(PTEN)-phosphatidylinositol-3 kinase (PI3K)/protein kinase 
B (Akt)/mammalian target of rapamycin (mTOR) pathway 
[100]. However, exposure of jagged1 to mouse ADSCs stim-
ulated adipogenesis by promoting PPARγ expression [101]. 
Active form Notch4 promoted adipogenic differentiation of 
3T3-L1 cells [96]. Moreover, reduction of HES1 using siRNA 
or impaired Notch1 expression by antisense constructs was 
associated with inhibition of adipogenic differentiation in 3T3-
L1 cells, which may involve modulation of DLK1 (Delta-like 
1 homolog)/Pref1 [97, 98]. Thus, the Notch signaling path-
way inhibits or promotes adipogenesis in a complex manner 
through multiple intracellular signaling pathways.

Regulators controlling the balance 
of chondrogenic and adipogenic 
differentiation of stem cells

The crosstalk between chondrogenic and adipogenic differ-
entiation is important and accumulating evidence shows that 
a multitude of cues direct the lineage commitment. Here, we 

will discuss the cues controlling the crosstalk between chon-
drogenic and adipogenic differentiation of MSCs, including 
biochemical, biophysical and biological factors.

Biochemical factors

Culture conditions such as culture medium and growth fac-
tor supplements are crucial for MSC differentiation toward a 
specific lineage. To induce chondrogenesis and adipogenesis 
of MSCs, various combinations have been included such 
as induction reagents and growth factors (Fig. 3) (Table 1). 
For example, typical chondrogenic factors, including 40 μg/
mL proline, 100 nM dexamethasone, 0.1 mM ascorbic acid-
2-phosphate, 1 × ITS Premix and TGFβ3, could promote 
chondrogenic differentiation as the induction medium [91]. 
Moreover, stem cells cultured in medium supplemented with 
1 mM dexamethasone, 0.5 mM IBMX (isobutyl-1-methyx-
anthine), 200 mM indomethacin and 10 mM insulin sup-
ported adipogenic differentiation [102].

Dexamethasone

Dexamethasone typically included in the cocktail of both 
chondrogenic and adipogenic media is to stimulate chon-
drogenesis and adipogenesis, indicating that it is a crucial 
component in differentiation induction. Interestingly, low 
dose (10 nM) dexamethasone treatment during the expan-
sion period increased chondrogenic and adipogenic potential 
in human BMSCs [103]. Unexpectedly, adipocyte-like oil 
droplets were recognized in a three-dimensional micromass 
aggregate culture of human SDSCs with dexamethasone 
(100 or 1000 nM) plus BMP2 (50 ng/mL), which indicates 
that high concentration of dexamethasone could cause adi-
pogenesis in chondrogenic culture of human SDSCs [6].

Many studies found that dexamethasone increased the 
aggrecan or proteoglycan synthesis rates in human ADSCs, 
human adult trabecular bone mesenchymal progenitor cells 
(MPCs) and equine BMSCs [33, 104, 105]. However, dexa-
methasone (1 μM) inhibited insulin-induced chondrogenesis 
and decreased chondrogenic potential in ATDC5 cells [106]. 
In combination with TGFβ1 or TGFβ3, dexamethasone aug-
ments the levels of ACAN, COL2A1 and COMP (cartilage 
oligomeric matrix protein) in human ADSCs and trabecular 
bone MPCs, and bovine BMSCs [33, 104, 107]. However, 
Kurth et al. found that the TGFβ1-mediated expression 
of ACAN and COL2A1 mRNAs was not enhanced in the 
presence of 100 nM dexamethasone, whereas the BMP2-
induced expression of these markers was markedly sup-
pressed in human SDSCs [108]. In fact, tissue sources of 
MSCs, dosages and growth factors combined have an impact 
on the role of dexamethasone in chondrogenesis. In aggre-
gates of bovine BMSCs, 100 nM dexamethasone enhanced 
TGFβ1-induced chondrogenesis, but had little influence on 
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BMP2-induced response [109]. In human ADSCs, dexa-
methasone (10 or 100 nM) significantly reduced TGFβ1-
mediated increases in proteoglycan synthesis rates on days 1 
and 5, but notably increased the rates on day 9 [33]. In aggre-
gates of bovine SDSCs, 100 nM dexamethasone exerted no 
remarkable effect on either TGFβ1- or BMP2-induced chon-
drogenesis [109]. Dexamethasone concentration also affects 
chondrogenic differentiation of adult stem cells [6, 105]. For 
example, less than 10 nM dexamethasone combined with 
10 ng/mL TGFβ1 or less than 1 nM dexamethasone with 
50 ng/mL BMP2 enhanced the synthesis of proteoglycan 
and type II collagen in human SDSCs [6]. However, a higher 
concentration of dexamethasone (100 nM) with TGFβ1 or 
more than 10 nM dexamethasone with BMP2 disturbed car-
tilaginous tissue formation [6]. These results indicate that 
the influence of dexamethasone on chondrogenesis is context 
dependent.

Studies also found that dexamethasone could increase 
adipogenic potential in human BMSCs, ROB-C26 (the 
clonal rat mesenchymal progenitor cell line) and 3T3-L1 
cells [110–112]. A high concentration of dexamethasone 
(100 nM) favors adipogenic differentiation over osteogenic 
differentiation of human BMSCs or mouse pluripotent mes-
enchymal cells [113]. Combined with BMP2, dexametha-
sone treatment (10 nM) increased the early phase of differ-
entiation of adipocytes in ROB-C26 [114].

A glucocorticoid receptor (GR) is required for dexameth-
asone-mediated modulation of chondrogenesis. Dexametha-
sone could promote chondrogenic differentiation of MSCs 
through enhancing TGFβ3-induced phosphorylation of 
Smads [115]. However, the mechanisms of dexamethasone 
in chondrogenic studies are not clear. There is more informa-
tion about how dexamethasone induces adipogenesis. Type I 
Runx2 kept 3T3-L1 cells in a growth-arrested state and was 
significantly down-regulated during adipocyte differentia-
tion [116]. Knockdown of RUNX2 stimulated adipogenesis 
of 3T3-L1 cells; dexamethasone repressed type I Runx2 
through direct binding of GR in the RUNX2 P2 promoter 
at the transcriptional level [116]. These results indicate that 
Runx2 may be a downstream target of dexamethasone in 
the adipogenic differentiation of 3T3-L1 cells. Moreover, 
C/EBPα was significantly up-regulated in dexamethasone-
induced osteoporotic BMSCs by a mechanism that involved 
inhibited DNA hypermethylation of its promoter [117].

FGF

In mammals, fibroblast growth factors (FGFs) are heparin-
binding growth factors which contain 23 members. In gen-
eral, FGF2, FGF9 and FGF18 have been primarily studied 
in chondrogenic differentiation while FGF1 and FGF2 are 
most investigated in adipogenic differentiation [118, 119].

Fig. 3  Biochemical factors that regulate chondrogenic and adipogenic 
differentiation of MSCs. During the period of expansion, FGF2 has 
no effect or pro-chondrogenic properties while playing a pro-adipo-
genic role. During the differentiation period, the pro- and anti-dif-
ferentiation roles of FGF2 have been reported in chondrogeneis and 
adipogenesis. Moreover, no effect (indicated by dotted line) has been 
reported for the addition of FGF2 in adipogenic differentiation. FGF1 
in both the expansion and differentiation periods enhances adipogen-
esis. However, during the differentiation period, FGF1 treatment has 
a tendency to inhibit adipogenesis. Low-dose dexamethasone (Dex) 

treatment during the period of expansion increases both chondrogenic 
and adipogenic potentials. However, Dex supplementation in the dif-
ferentiation period can enhance, inhibit or have no effect on chon-
drogenesis, depending on the tissue sources of MSCs, dosages and 
growth factors combined. IGFI signaling plays a positive role in both 
chondrogenesis and adipogenesis. During the period of expansion, 
calcium plays a positive role in adipogenesis while having no effect 
for chondrogenesis. During the differentiation period, the pro- and 
anti-differentiation roles of calcium have been reported in chondroge-
neis and adipogenesis
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Many studies showed that FGF2 has a positive role in 
chondrogenic differentiation in human SDSCs and BMSCs, 
and equine synovial fluid chondroprogenitor cells (SFCPCs) 
[120–122]. FGF2 has been shown to retain chondrogenic 
potential when supplemented during expansion [121, 
123–125]. Our study discovered that 10 ng/mL FGF2 treat-
ment during expansion, but not differentiation, increased 
GAG deposition, pellet size and chondrogenic gene expres-
sion during chondrogenic induction in human SDSCs [120]. 
However, another study found that treatment with 100 ng/
ml FGF2 during the expansion period significantly acceler-
ated cell expansion without affecting subsequent chondro-
genic capacity in equine SFCPCs [126]. Similarly, supple-
mentation of 1 ng/mL FGF2 during the expansion period 
increased adipogenic rather than chondrogenic differentia-
tion in human BMSCs [127]. Moreover, supplementation 
with 10 ng/mL FGF2 alone or combined with 10 ng/mL 
TGFβ3 during the differentiation period decreased COL2A1 
in human BMSCs [128]. Hildner et al. also found that the 
addition of 10 ng/mL FGF2 during the differentiation period 
abolished the chondrogenic effect of combined 10 ng/mL 
BMP6 and 10 ng/mL TGFβ3 in human ADSCs [129]. How-
ever, 10 ng/mL FGF2 and 10 ng/mL TGFβ2 have a synergis-
tic effect in chondrogenic differentiation of human BMSCs 
[130].

FGFs, such as FGF1 and FGF2, have been demon-
strated to have strong adipogenic effects in the presence of 
adipocyte differentiation stimuli [131–133]. FGF2 seems 
to enhance adipogenic potential of human ADSCs when 
present (1000 ng/mL) during expansion [133]. However, 
addition of FGF2 in the differentiation phase only was not 
effective for adipogenesis of human ADSCs (at 10 ng/mL) 
[134] and even inhibited adipogenic differentiation of human 
BMSCs (at 25 ng/mL) in collagen gels in the presence of 
heparin (25 μg/mL) [119]. FGF1 has been shown to promote 
adipogenic differentiation for preadipocytes. Hutley et al. 
demonstrated that FGF1 treatment (1 ng/ml) only during 
the expansion phase or a continuous treatment with FGF1 
in the expansion and differentiation periods enhanced pri-
mary human preadipocyte adipogenic differentiation [131]. 
However, FGF1 treatment (25 ng/mL) in the presence of 
heparin (25 μg/mL) only during differentiation induction had 
a tendency to inhibit adipogenic differentiation of human 
BMSCs [119].

Exposure of FGF2 to MSCs during expansion up-reg-
ulated SOX9 [118]. In addition, Pizzute et al. found FGF2 
pretreatment significantly up-regulated both p-p38 and 
p-Jnk (Jun N-terminal kinase) signals in human SDSCs; 
total Erk1/2 was markedly reduced, while p-Erk1/2 was 
moderately suppressed [120]. Similarly, short-term treat-
ment of FGF2 to 3T3-L1 cells promoted adipogenesis by 
phosphorylation of Erk1/2 and increased the expression of 
PPARG  and CEBPA [135]. Another study showed that the 

inhibitory effect of FGF2 on adipogenesis of human BMSCs 
is dependent on high mobility group A-2 (HMGA2) [136]. 
Moreover, FGF1 down-regulates BAMBI (BMP and activin 
membrane-bound inhibitor homolog) in a PI3K-dependent 
manner to induce adipogenic differentiation [137].

IGFI

Insulin-like growth factor I (IGFI) binding with IGF recep-
tor (IGFR), which belongs to the family of receptor tyrosine 
kinases [138], has been shown to stimulate chondrogenic and 
adipogenic differentiation [36, 139, 140]. Treatment using 
100 ng/mL IGFI alone for 3 weeks did not induce dominant 
chondrogenesis in CL-1 cells; however, in the presence of 
10% FCS, IGFI increased both Alcian blue staining intensity 
and fractional Oil Red O positive area [36]. Furthermore, 
Frisch et al. utilized recombinant adeno-associated virus 
(rAAV) vectors to overexpress IGFI and found that applica-
tion of IGFI vector significantly increased pellet diameters, 
proteoglycan and type II collagen in the aggregates and the 
intensities of Oil Red O staining in human BMSCs and bone 
marrow aspirates [139, 140]. These data indicate that IGFR 
signaling is involved in chondrogenesis and adipogenesis.

MAPK pathways are a downstream signal of the IGFR 
pathway [141]. A marked reduction of IGFI-mediated 
Erk1/2 activation has been demonstrated to occur during 
chondrogenesis [142]. Moreover, ATDC5 cells continually 
exposed to PD98059, a selective inhibitor of MAPK kinases, 
plus IGFI showed a greater degree of chondrogenic differ-
entiation, as demonstrated by both Alcian blue staining and 
COL10A1 (type X collagen) expression, than cells exposed 
to IGFI alone [142]. Moreover, an alginate-chondrocyte 
system with IGFI treatment inhibited Erk1/2 and resulted 
in an increase in proteoglycan synthesis [143]. Similarly, 
there was a dramatic decrease in IGFI-stimulated MAPK 
activity during early differentiation of 3T3-L1 cells, which 
was permissive for IGFI-mediated adipogenic differentia-
tion [144]. PD98059 enhanced adipogenic markers, such as 
PPARG , aP2 and LPL, suggesting that inhibition of MAPK 
in subconfluent, proliferating 3T3-L1 cells accelerates adi-
pogenic differentiation [145]. These data indicate that down-
regulation of the Erk1/2 pathway is indispensable for IGFI-
stimulated chondrogenesis and adipogenesis.

IGFI has also been shown to stimulate chondrogenic and 
adipogenic differentiation through the PI3K pathway. In the 
absence of serum, 100 ng/mL IGFI activated PI3K and its 
downstream signaling molecule, Akt (protein kinase B), in 
chick limb bud mesenchymal cells. Moreover, inhibition 
with LY294002, a selective PI3K inhibitor, blocked the abil-
ity of IGFI to stimulate the accumulation of proteoglycan 
in chick mesenchymal cells, human ankle articular chon-
drocytes and rat BMSCs, implying that IGFI induces chon-
drogenesis of mesenchymal cells via the PI3K/Akt pathway 
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[143, 146, 147]. Similarly, LY294002 abolished the LPL 
expression, which functions as a terminal marker of adi-
pogenesis in human orbital preadipocytes [148]. Moreover, 
activation of insulin receptor substrate 1 (IRS1) and IRS2 
and associated PI3K pathways led to activation of PPARγ 
and C/EBPα and thereby resulted in the induction of adipo-
genic differentiation [149]. Thus, IGFI signaling is involved 
in both chondrogenic and adipogenic differentiation.

Calcium ions

Calcium ions  (Ca2+) play a pivotal role in regulating cell 
differentiation potential [150, 151]. Calcium homeostasis 
during chondrogenesis is complicated.  Ca2+ concentrations 
influenced the response of MSCs to chondrogenic induction. 
A low concentration (1.8 mM) showed no effect for chondro-
genic differentiation while a higher one (5 or 8 mM) showed 
no difference or negative influence [152, 153]. Moreover, 
transient  Ca2+ exposure (5 mM) enhanced chondrogen-
esis while subsequent exposures to elevated  Ca2+ (5 mM) 
suppressed chondrogenic differentiation [154]. Calcium 
channels, which are regulated by physical stimuli, such as 
hydrostatic pressure, electrical stimulation and pulse elec-
tromagnetic fields, seemed to play a crucial role in chondro-
genic differentiation of MSCs [154–156]. Voltage-operated 
calcium channels, transient receptor potential channels and 
purinergic receptors have been reported to be regulated by 
physical stimuli [150, 151, 157, 158]. Modulating these 
channels or receptors can influence the concentration of 
intracellular  Ca2+, which may have an impact on chondro-
genesis. For example, transient receptor potential channel 
antagonists could effectively block chondrogenesis of the 
first exposition to pulse electromagnetic fields [154].

As for adipogenesis, increasing  Ca2+ inhibited the early 
stages while promoting the late stage of differentiation, thus 
exerting a biphasic regulatory role [159]. What is more, con-
tinuous high concentrations of  Ca2+ inhibited adipogenic 
differentiation of 3T3-L1 preadipocytes [160]. Calcium ions 
have been reported to play a positive role in adipogenic dif-
ferentiation of porcine SDSCs and BMSCs, mouse BMSCs 
and human umbilical cord blood-derived MSCs through dif-
ferent pathways [152, 161–165].

Biophysical factors

Given physical interaction with elements in the microen-
vironment, the shape of a stem cell is one of the biophysi-
cal factors implicated in cell fate decision. Cell shape can 
be influenced through micropatterned substrates [166], 
chitosan/polycaprolactone blended materials [167], gela-
tin/hyaluronic acid cryogels [168], ECM composition 
and mechanical properties [169] and chemicals [169, 
170], indicating that spherical morphology encourages 

chondrogenic and adipogenic differentiation. There is 
increasing evidence showing that stem cell fate is also 
influenced by macro-mechanical stimulation, such as com-
pression and shear forces, and by micro-mechanical stress, 
such as substrate stiffness [171] (Fig. 4) (Table 2).

Micro‑mechanical stress

As an external signal, substrate stiffness of ECM, usually 
represented by elastic modulus or Young’s modulus, is 
a determinant of stem cell lineage differentiation [172]. 
Many studies show that, compared to stiffer ones, softer 
substrates, such as hydrogel, porous/fibrous scaffold and 
decellularized ECM (dECM), were more likely to support 
MSC chondrogenesis [171]. Moreover, less stiff acellu-
lar ECM scaffolds, such as cartilage-derived dECMs and 
cell-derived dECMs, also enhanced chondrogenic dif-
ferentiation by increasing chondrogenic gene expression 
compared to stiffer scaffolds [91, 102, 173, 174]. Similarly, 
softer matrix also promotes stem cell differentiation into 
adipogenic lineage. For instance, Park et al. showed that, 
compared to stiffer substrates (3, 15 kPa), human BMSCs 
seeded onto a soft substrate (1 kPa) had a higher expres-
sion of the adipogenic marker LPL as well as chondrogenic 
marker COL2A1 expression [175]. Moreover, MSCs on 
softer substrates, such as adipose matrix-coated poly-
acrylamide gel and hydrogel substrates, exhibited more 
adipogenic markers and fat droplets compared to a stiffer 
matrix [176–178].

Direct evidence showed that dECM deposited by fetal 
SDSCs with lower elasticity promoted chondrogenic and 
adipogenic differentiation [102]. Generally, substrate stiff-
ness may likely guide MSC differentiation down corre-
sponding tissue lineages of similar stiffness. For example, 
substrates approximating the elastic moduli of cartilage 
(0.4–0.8 MPa) may be more likely to enhance stem cells 
toward chondrogenesis [179–181], while scaffolds closely 
mimicking that of adipose tissue (2–8 kPa) might promote 
adipogenesis [176, 182–184].

The exact mechanisms of substrate stiffness underlying 
chondrogenesis and adipogenesis are unknown, but recent 
studies indicate that actin and ROCK (Rho-associated pro-
tein kinase)/RhoA might be involved. Cytochalasin D dis-
rupted the actin cytoskeleton and promoted chondrogenic 
and adipogenic differentiation [170, 185]; treatment with 
Y27632, a selective inhibitor of ROCK, increased GAG 
production and decreased the number of actin fibers [186]. 
Inhibiting both ROCK and RhoA also promoted MSCs 
toward adipogenic differentiation [170]. These studies indi-
cate that MSCs with a less organized and less stiff actin 
cytoskeleton organization are more prone to differentiate 
into chondrocytes and adipocytes.
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Macro‑mechanical stress

Many studies showed that direct compression promoted 
chondrogenesis [187–189]. For instance, human BMSCs 
were seeded in either chitosan-coated poly L-lactide-co-
ε-caprolactone scaffolds [190] or hyaluronic acid hydrogel 
[191] with dynamic compression (5 or 10% strain, 1 Hz) 
enhanced cartilage formation and suppressed chondrocyte 
hypertrophy. However, the effects of mechanical stimuli on 
adipogenic differentiation are not well known. One study 
subjected SGBS (a human preadipocyte cell line) to a com-
pressive force of 226 Pa for 12 h [192]. They found that 
compressive force immediately after adipogenic induction 
did not affect adipogenic differentiation; however, com-
pressive force before adipogenic induction significantly 
inhibited PPARγ and C/EBPα through the up-regulation of 
cyclooxygenase-2.

Oscillatory fluid flow (1 Hz, peak shear stresses of 1.0 Pa, 
1 h) has also been shown to induce the up-regulation of 
SOX9 and PPARG  in C3H10T1/2 progenitor cells and its 
promotion of chondrogenic and adipogenic differentiation 
depended on inhibiting tension within the actin cytoskel-
eton, indicating it has the potential to regulate stem cell fate 
[193]. However, with the increasing magnitude of fluid shear 
stimulation (from 0.009 to 1.089 dyne/cm2), higher YAP 
(Yes associated protein) decreased adipogenic differentia-
tion and initiated dedifferentiation for chondrocytes [194]. 

Further research is needed to clarify the role of shear force 
in chondrogenic and adipogenic differentiation.

Biological factors

Biological factors, such as hypoxia and aging, provide a bet-
ter way to understand MSC differentiation toward chondro-
genesis versus adipogenesis due to pathophysiologic condi-
tions (Fig. 5) (Table 3).

Hypoxia

In general, hypoxia promotes chondrogenic differentiation 
while suppressing adipogenic differentiation, although with 
some inconsistent results. Hypoxia during the differentiation 
period could enhance chondrogenic marker genes, transcrip-
tion factors and ECM deposition in rat BMSCs and human 
infrapatellar fat pad stem cells and BMSCs [195–197]. 
Hypoxia (3%  O2) during the expansion and differentiation 
periods could enhance expression of COL2A1, ACAN and 
SOX9 in human BMSCs [198]. However, results are incon-
sistent. For example, hypoxia during chondrogenic induc-
tion of human ADSCs did not significantly alter the levels 
of COL2A1 and ACAN [199]. Cicione et al. even found that 
expression of SOX9 and ACAN in human BMSCs decreased 
during chondrogenic induction under severe hypoxia (1% 
 O2) [200].

Fig. 4  Biophysical factors that 
regulate chondrogenic and 
adipogenic differentiation of 
MSCs. a Cell shape: round 
morphology encourages 
chondrogenic and adipogenic 
differentiation. b Substrate 
stiffness: soft stiffness guides 
MSC differentiation down cor-
responding tissue lineages of 
similar stiffness, such as both 
chondrogenesis and adipogen-
esis. c Compression: compres-
sion promoted chondrogenesis; 
however, compression immedi-
ately after adipogenic induc-
tion does not have an effect 
(indicated by dotted line) but 
before stimulation significantly 
inhibits adipogenesis. d Shear 
force: oscillatory fluid flow 
up-regulates chondrogenic and 
adipogenic differentiation while 
a higher magnitude resulted in 
decreased chondrogenic and 
adipogenic differentiation
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Many studies showed that adipogenic induction of stem 
cells under hypoxia resulted in attenuated adipogenic dif-
ferentiation [201–203]. However, other studies showed that 
hypoxic conditions in the myogenic cell lines, C2C12 and 
G8, increased adipocyte differentiation [204]; in addition, 
mild hypoxia (4%  O2) in 3T3-L1 cells or extreme hypoxia 
(0.2%  O2) in human BMSCs promoted adipogenesis [205, 
206]. These observations indicate that the effect of oxygen 
on adipogenic differentiation is extensive and cell-type 
specific. Interestingly, stem cells that had previously been 
cultured in hypoxia could subsequently be stimulated to 
exhibit normal or even significantly higher differentiation 
capacity, indicating that hypoxic preconditioning may rep-
resent a strategy to enhance MSC adipogenic differentiation 
[207–209].

In terms of mechanism, hypoxia inducible factors (HIFs) 
may play critical roles in stem cell chondrogenic and adipo-
genic differentiation under hypoxia. The expression level of 
HIF1α was significantly increased on day 21 during chon-
drogenic differentiation of equine hypoxia-expanded BMSCs 
[210]. Besides, HIF1α was found to be able to bind to a 
Sox9 promoter and up-regulate this key transcription fac-
tor [211]. Except for HIFs, hypoxia was demonstrated to AC
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Fig. 5  Biological factors that regulate chondrogenic and adipogenic 
differentiation of MSCs. Both hypoxia and aging have complex 
effects on chondrogensis and adipogenesis. In general, hypoxia pro-
motes chondrogenic differentiation while suppressing adipogenic dif-
ferentiation, although differential roles in either differentiation have 
been reported. Interestingly, aging impairs chondrogenic potential of 
MSCs while it has complex roles in adipogenic differentiation
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Table 3  Studies investigating biological factors guiding lineage determination between chondrogenic and adipogenic differentiation

Cell type Treatment Chondrogenic differen-
tiation

Adipogenic differentia-
tion

Possible mechanisms Refs.

Hypoxia
 3T3-L1 preadipocyte 2%  O2 during differentia-

tion induction
– Decreased By regulating DEC1/

Stra13 to repress 
PPARG2 promoter

[201]

Chemical hypoxia 
 (CoCl2) during differen-
tiation induction

– Decreased By inhibiting PPARG  in 
a HDAC-independent 
manner

[202]

1 or 4%  O2 during differ-
entiation induction

– Mild, but not severe, pro-
moting differentiation

Through excess of acetyl-
CoA independently of 
HIF activation

[205]

1%  O2 during differentia-
tion induction

– Decreased By increasing miR-27a 
and miR-27b to inhibit 
PPARγ and C/EBPα

[213]

 ADSC (human) 5%  O2 during differentia-
tion induction

No effect – – [199]

2%  O2 during expansion 
phase

– Increased – [209]

 ADSC (murine) 2%  O2 during expansion 
phase

– Increased By increasing Sca-1/
CD44

[208]

 BMSC (equine) 5%  O2 during expansion 
phase

Increased No effect By up-regulating HIF1α [210]

 BMSC (human) 5%  O2 during differentia-
tion induction

Increased – – [197]

3%  O2 during expan-
sion and differentiation 
phases

Increased – By up-regulating HIF2α [198]

1%  O2 during differentia-
tion induction

Decreased Decreased – [200]

0.2%  O2 during differen-
tiation induction

– Increased – [206]

5%  O2 during differentia-
tion induction

Increased – By up-regulating HIF1α [211]

1%  O2 during differentia-
tion induction

Increased – By activating the PI3K/
Akt/FoxO pathway

[212]

 BMSC (rat) 2%  O2 during differentia-
tion induction

Increased – By up-regulating HIF1α [196]

 C2C12 and G8 (murine) 1%  O2 during differentia-
tion induction

– Increased – [204]

 IPFP cells (human) 5%  O2 during differentia-
tion induction

Increased – By up-regulating HIF2α [195]

 MSC (human) 3%  O2 during expansion 
phase

– Increased – [207]

 Preadipocyte (human) 1%  O2 or chemical 
hypoxia (DFO) during 
differentiation induction

– Decreased – [204]

Aging
 ADSC (bovine) Passages 2, 5 Passage 2 > passage 5 Passage 2 > passage 5 – [222]
 BMSC (porcine) Passage 5–15 Early late passage – – [214]
 BMSC (bovine) Fetal, juvenile and adult 

bovine donors
Fetal > juvenile > adult 

donor
– – [215]
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enhance chondrogenic differentiation by inhibiting apoptosis 
via activating the PI3K/Akt/FoxO pathway [212]. During 
adipogenic differentiation, HIF1 was increased to regu-
late DEC1 (Differentiated embryo-chondrocyte expressed 
gene 1)/Stra13 (Stimulated with retinoic acid 13), thereby 
repressing PPARγ2 promoter activation [201]. This finding 
indicates that HIF1 mediates hypoxia-induced inhibition 
of adipogenic differentiation. Moreover, hypoxia increased 
miR-27a and miR-27b, which strongly inhibited PPARγ 
and C/EBPα in preadipocytes [213]. Interestingly, extreme 
hypoxia (0.2%  O2) induced adipogenic differentiation of 
human BMSCs through HIF1α and C/EBPs [206].

Aging

Many studies showed that in vitro aging (passage num-
ber in culture) and in vivo aging (donor age) influenced 
the differentiation potential of adult stem cells. Several 
reports showed that aging impaired stem cell chondrogenic 
potential in porcine, bovine and human BMSCs, and rat 
tendon-derived stem cells [214–217]. Different from chon-
drogenic differentiation, which declines with age, adipo-
genic differentiation seems to accelerate with aging. Aging 
up-regulated adipocyte specific genes such as PPARG  and 
aP2 [218, 219]. In line with these molecular changes, the 
number and size of adipocytes increased in late passage 
MSCs compared to early passage ones [217]. However, no 

difference or a general decrease has been reported in adi-
pogenic differentiation capacity of aged stem cells [216, 
220–223].

Stable gene expression levels of cyclin-dependent 
kinase inhibitor 2A (CDKN2A) and CDKN2C, the senes-
cence-associated marker genes, in early passages con-
tributed to effective chondrogenic differentiation [217]. 
Human BMSCs preserved chondrogenic potential with low 
CDKN2C and stable CDKN2A expression level. Increased 
CDKN2A expression led to impaired chondrogenic poten-
tial [217]. Adipogenic differentiation was less affected by 
CDKN2A and CDKN2C expression, but higher expression 
of CDKN2A resulted in a more effective adipogenic dif-
ferentiation [217].

As aging progresses, reactive oxygen species (ROS) 
and oxidative stress have been reported to increase and to 
play vital roles in stem cell differentiation. Suppression 
of Heme oxygenase-1 (HO-1), an agent known to neu-
tralize oxidative stress [224], strongly increased PPARγ 
expression and adipogenesis in human BMSCs [225]. 
Correspondingly, overexpressing HO-1 suppressed adipo-
genic differentiation in porcine ADSCs [226]. Adenovirus-
mediated expression of HO-1 in human BMSCs slightly 
decreased adipogenic differentiation of MSCs, but did not 
affect chondrogenic differentiation [227]. The above-men-
tioned reports indicate that increasing intracellular oxida-
tive stress may be one of the major drivers of adipogenesis 
during the aging process.

ADSC adipose-derived stem cell, Akt protein kinase B, BMSC bone marrow-derived stem cell, CEBP CCAAT/enhancer-binding protein, 
CDKN2A cycline-dependent kinase inhibitor 2A, CoCl2 cobalt chloride, DEC1/Stra13 differentiated embryo-chondrocyte expressed gene 1/
stimulated with retinoic acid 13, DFO desferrioxamine, FoxO forkhead box protein O, HDAC histone deacetylase, HIF hypoxia inducible fac-
tor, IPFP infrapatellar fat pad, PI3K phosphatidylinositol 3-kinase, PPARG  PPARγ, peroxisome proliferator-activated receptor gamma, TDSC 
tendon-derived stem cells

Table 3  (continued)

Cell type Treatment Chondrogenic differen-
tiation

Adipogenic differentia-
tion

Possible mechanisms Refs.

 BMSC (human) Passages 3, 5, 6, 7, 9, 11 Early and mid > late 
passage

Early and mid < late 
passage

By increasing CDKN2A 
level

[217]

80 patients (14–79 year-
old)

– Young < old donor – [218]

passage 1–10 – Differentiation potential 
dropped from the 6th 
passage on

– [220]

Passages 3, 5, 8, 14 – Early > late passage – [221]
Young (aged 18–29 years) 

and old (aged 
68–81 years)

– No effect – [223]

 BMSC (murine) Adult (6–8 month-old) 
and old (20–26 month-
old)

– Adult < old donor By altering TGFβ and 
BMP2/4 signaling 
pathways

[219]

TDSC (rat) Early (P5), mid (P10) and 
late passages (P20, P30) 
of TDSCs

Early and mid > late pas-
sages

Early and mid > late pas-
sages

– [216]
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Conclusions

Over decades of studies, the relationship between chon-
drogenesis and adipogenesis is still not clear. For exam-
ple, TGFβ and Hedgehog signaling pathways can promote 
chondrogenesis and inhibit adipogenesis; interestingly, BMP 
signaling can promote both chondrogenesis and adipogen-
esis simultaneously through the Smad1/5/8 pathway and the 
p38 pathway. These findings indicate that chondrogenic and 
adipogenic differentiations are competing and reciprocal. 
To make matters more complicated, some external chemi-
cal factors have differing roles in stem cell differentiation 
through different pathways. For example, dexamethasone 
can promote adipocyte differentiation through C/EBPα but 
inhibits adipogenesis via Runx2. Studies have demonstrated 
that biochemical, biophysical and biological cues can exert 
their effects on the crosstalk between chondrogenesis and 
adipogenesis via a variety of signaling pathways. These 
signals approach at a controlled cascade of transcription 
events, including Sox9 for chondrogenesis and C/EBPs and 
PPARγ for adipogenesis. Unlike the relationship between 
chondrogenesis and osteogenesis or adipogenesis and oste-
ogenesis, studies on the decision between chondrogenesis 
and adipogenesis are few. Understanding the mechanisms 
underlying the balance between chondrogenic and adipo-
genic differentiation is more meaningful via in vivo studies 
and in vitro studies at a clonal level. These new data will 
be of great significance to identify the pathogenic causes 
of cartilage and fat-related diseases and will lead to better 
clinical applications of adult stem cells in cartilage and fat 
tissue engineering.
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