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Abstract 

STEM XEDS spectrum images can be drastically denoised by application of the principal component analysis (PCA). 
This paper looks inside the PCA workflow step by step on an example of a complex semiconductor structure con-
sisting of a number of different phases. Typical problems distorting the principal components decomposition are 
highlighted and solutions for the successful PCA are described. Particular attention is paid to the optimal truncation 
of principal components in the course of reconstructing denoised data. A novel accurate and robust method, which 
overperforms the existing truncation methods is suggested for the first time and described in details.
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Background
Scanning transmission electron microscopy (STEM) 
delivers images of nanostructures at high spatial resolu-
tion matching that of broad beam transmission electron 
microscopy (TEM). Additionally, modern STEM instru-
ments are typically equipped with electron energy-loss 
spectrometers (EELS) and/or X-rays energy-dispersive 
spectroscopy (XEDS, sometimes abbreviated as EDS 
or EDX) detectors, which allows to turn images into 
spectrum-images, i.e. pixelated images, where each pixel 
represents an EEL or XED spectrum. In particular, the 
recent progress in STEM instrumentation and large col-
lection-angle silicon drift detectors (SDD) [1, 2] made 
possible a fast acquisition of large STEM XEDS spec-
trum-images consisting of 10–1000 million data points. 
These huge datasets show typically some correlations in 
the data distribution, which might be retrieved by appli-
cation of statistical analysis and then utilized for improv-
ing data quality.

The simplest and probably the most popular multivari-
ate statistical technique is a principal component analysis 
(PCA) that expresses available data in terms of orthog-
onal linearly uncorrelated variables called principal 

components [3–9]. In general terms, PCA reduces the 
dimensionality of a large dataset by projecting it into an 
orthogonal basic of lower dimension. It can be shown 
that among all possible linear projections, PCA ensures 
the smallest Euclidean difference between the initial and 
projected datasets or, in other words, provides the mini-
mal least squares errors when approximating data with a 
smaller number of variables [10]. Due to that, PCA has 
found a lot of applications in imaging science for data 
compression, denoising and pattern recognition (see for 
example [11–18]) including applications to STEM XEDS 
spectrum-imaging [19–24].

A starting point for the PCA treatment is the con-
version of a dataset into a matrix D , where spectra are 
placed on the matrix rows and each row represents an 
individual STEM probe position (pixel). Assume for 
definiteness that the m× n matrix D consists of m pix-
els and n energy channels. Although STEM pixels may 
be originally arranged in 1D (linescan), 2D (datacube) or 
in a configuration with higher dimensions, they can be 
always recasted into the 1D train as the neighborhood 
among pixels does not play any role in the PCA treat-
ment. PCA is based on the assumption that there are 
certain correlations among spectra constituting the data 
matrix D . These correlations appear because the data 
variations are governed by a limited number of the latent 
factors, for example by the presence of chemical phases 
with the fixed composition. The spectral signatures of 
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latent factors might be, however, not apparent as they 
are masked by noise. In this consideration, PCA relates 
closely to the factor analysis [7] although principal com-
ponents generally do not coincide with the latent factors 
but represent rather their linear combinations [25].

Principal components can be found, for example, 
through the diagonalization of the covariance matrix 
DD

T or by applying the singular value decomposition 
(SVD) directly to D . SVD decomposes data as:

where U and V are left and right hand singular vector 
matrices and � is a diagonal matrix with singular values 
of D on the diagonal. For the purpose of PCA formula (1) 
can be rewritten as:

where P = V is an n× n loading matrix describing prin-
cipal components and T = U� is an m× n score matrix 
showing the contribution of components into the dataset. 
Figure 1 illustrates the principal component decomposi-
tion in the graphical form. The columns of the loading 
matrix P (rows in PT ) represent spectra of principal com-
ponents expressed in the original energy channels. Typi-
cally, the columns of P are normalized to unity, such that 
all the scaling information is moved into the score matrix 
T . It is important to sort the principal components in the 
order of their significance. In PCA, the components are 
ranked according their variance, i.e. the variance of the 
data along the corresponding column of T.

(1)D = U�V
T

(2)D = TP
T

The data matrix D expressed by (1) can be subjected 
to dimensionality reduction or, in other words, trun-
cation of components. Such dimensionality reduction 
might serve various purposes, for instance, it can be a 
first step for more complicated multivariate statistical 
treatment like unmixing data and extraction of latent 
factors. In the simplest case, dimensionality reduction 
can be utilized for removing the major part of noise 
from data, i.e. for its denoising.

The following questions are at the heart of the 
method. How much the dimensionality of a given data-
set can be reduced? How many components must be 
retained to reproduce adequately the data variation and 
how many of them may be truncated to reduce noise? 
This paper attempts to address these crucial questions 
on the example of typical XEDS spectrum-images 
obtained in modern STEM instruments.

At a first glance, the reasonable number of retained 
components should be equal to the known (or 
expected) number of latent factors behind the data var-
iations. It will be, however, shown that the situation is 
more complicated and the number of meaningful com-
ponents might strongly differ from the number of latent 
factors—typically, there are less components than fac-
tors. The reason for this deviation is unavoidable cor-
ruption of data with noise.

To explore the topic most comprehensively, we con-
sidered an object with a very large number of latent 
factors and analyzed its experimental XEDS spectrum 
image. In parallel, we generated a twin synthetic object 
that mimicked the real one in all its essential features. 
An advantage of the synthetic data is the possibility to 

Fig. 1  Schematic showing how data matrix D is decomposed into loading matrix P and score matrix T in PCA. A given column of T and a row of PT 
form a principal component. The components are sorted such as the variances of the data points in columns of T decreases from left to right. The 
principal components that will be retained after the truncation are filled green
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exclude noise in simulations and, therefore, compare 
the noisy data with the noise-free reference.

PCA is often considered as a fixed procedure, where lit-
tle can be altered or tuned. In reality, there is a number 
of hidden issues hampering the treatment and leading 
to dubious results. Better understanding of the poten-
tial issues might help to design the optimal treatment 
flow improving the efficiency and avoiding artifacts. The 
systematic comparison between the experimental and 
synthetic data sets on the one hand and between the syn-
thetic noisy set and the noise-free reference on the other 
hand, allowed us to identify the typical obstacles in the 
treatment flow and find the solutions for the optimal 
principal component decomposition and reconstruction 
of the denoised data.

Below, it will be demonstrated that certain pre-treat-
ments, namely weighting datasets and reducing its 
sparseness, are essential for the successful PCA of STEM 
XEDS data. Ignoring these pre-treatments would dete-
riorate dramatically the denoising effect of PCA and 
might cause severe artefacts. This paper addresses also 
the problem of the optimal truncation of principal com-
ponents in the course of reconstructing denoised data. A 
new accurate and robust method, which overperforms 
the existing truncation methods, is suggested and tested 
with a number of experimental and synthetic objects.

The paper is organized as follows: "Multi-component 
object for spectrum-imaging" section describes an object 
investigated with STEM XEDS and also its synthetic twin 
object designed to mimick the real one. "Principal com-
ponent decomposition" section follows all steps of the 
principal component decomposition and highlights the 
potential problems distorting PCA in the case of XEDS 
spectrum images. "Truncation of principal components 
and reconstruction" section  presents the theoretical 

background for truncation of principal components and 
discuss the existing practical truncation methods. A 
novel method for automatic determination of the opti-
mal number of components is introduced in "Anisotropy 
method for truncation of principal components" section. 
At the end of "Truncation of principal components and 
reconstruction" section, the results of the spectrum-
image reconstruction are shown and the denoising ability 
of PCA is demonstrated.

Results and discussion
Multi‑component object for spectrum‑imaging
A modern CMOS device was chosen as an object for 
XEDS spectrum imaging. Figure  2a shows a so-called 
mean image of the device, i.e. the spectrum imaging sig-
nal integrated over all available energy channels. Such 
images appear typically very similar to high-angle annu-
lar dark field (HAADF) images. The device consists of a 
number of nano-scale layers manufactured to optimize 
the speed, switching potential and leaking current of a 
field-effect transistor [26]. The chemical content of layers 
shows the high variety that makes such a device a good 
model object for the extensive PCA. The composition 
of the layers was measured as listed in Table 1 by Auger 
spectroscopy, ToF-SIMS and other non-TEM meth-
ods. There were 11 different layers, or in other words 
phases, although some phases differed only marginally in 
composition.

In parallel to experiment, we generated a twin syn-
thetic object with the layers of the same composition and 
roughly the same relative volume fractions (Fig.  2b). As 
demonstrated below, the synthetic object shows a good 
proximity to the experimental one, which helps to fig-
ure out important regularities in its PCA treatment. 
Then XEDS spectrum-images of the synthetic object 

Fig. 2  Objects employed for evaluation of PCA in the present paper: a shows the mean image of the experimentally characterized CMOS device 
and b represent a twin synthetic object generated to reproduce the key features of the real object. The twin object was designed to mimic 
the mixture of the layers composing the real object but not necessarily their exact geometry. A colored legend identifies all the constituent 
phases labeled according the notations in Table 1. The simulations of spectrum-images were performed in the noise-free and noisy variants. 
Correspondingly (c) and (d) show the mean images of the noise-free and noisy datasets
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were generated in two variants: with and without add-
ing a Poisson noise. These two datasets will be referred 
to as noisy and noise-free synthetic datasets in the present 
paper. The generated noisy and noise-free spectrum-
images are presented in the DigitalMicrograph format 
in Additional files 1 and 2 respectively. The details of the 
experiment and simulations are described in "Experi-
mental details" and "Details of simulation" subsections.

Principal component decomposition
Unweighted PCA
In classical PCA, data is decomposed into principal com-
ponents according to Eq. (2). Unfortunately, the cor-
ruption of data with noise makes such decomposition 
not perfect. The extracted eigenspectra of components 
always deviate from those for “true”, noise-free data and 
the component variances are always overestimated due to 
the contribution of the noise variance. It is instructive to 
evaluate such deviations by comparison of the obtained 
noisy and “true” synthetic eigenspectra. In this paper, we 
introduce a proximity function φ:

that calculates a squared projection of mth column of 
noisy matrix P on the target kth column of noise-free 
matrix P∗ . As the loading matrix represents an orthog-
onal SVD basis, the sum of φk(l) over all l components 
must equal 1. In the case of ideal decomposition, the dis-
tribution φk(l) is the Kronecker delta δkl while it should 
be smeared over many l components if the decomposi-
tion is inaccurate.

It should be noted that in most cases, the first principal 
component differs drastically (in terms of the extraction 
accuracy) from the other ones because the first component 

(3)φk(l) =
n∑

i=0

(
pilp

∗
ik

)2

consists of the mean data spectrum. To relax this differ-
ence we always subtract the mean spectrum from the data 
matrix D prior to the principal component decomposition. 
This operation is usually referred to as data centering.

Figure 3b shows the proximity between the eigenspec-
tra and the true reference for the first ten components of 
the synthetic noisy dataset. From the comparison with 
an ideal case (Fig.  3a), it is evident that only the first 
obtained eigenspectrum reveals some proximity with the 
true spectrum, while the remaining eigenspectra show 
quite poor agreement with the noise-free references.

Figure 4 displays so-called scree plots—the variances of 
the extracted PCA components as a function of the com-
ponent index. For the noise-free synthetic data (Fig. 4a), 
the ten meaningful components are visually well sepa-
rated from the rest components. Note that, although 
noise was not introduced in this simulation, there were 
tiny random variations arising from the numerical inac-
curacies of calculation, which contributed to a kind of 
numerical noise. However, even minor meaningful vari-
ations overpassed it, which ensured the easy visualization 
of the domain of meaningful components. The number 
of the phases (eleven) employed in the simulation fits 
perfectly the number of the observed meaningful com-
ponents (ten). The difference (eleven versus ten) appears 
because the data centering procedure reduces the degree 
of freedom by one.

In contrast, the scree plot for the noisy dataset (Fig. 4b) 
indicates very poor correlations with the reference noise-
free case. About 20 principal components can be roughly 
accounted as meaningful but there is no clear separation 
between them and the noise domain. The reconstruction 
with such a number of components leads to the unsatis-
factory results dominated by noise and artifacts as will be 
shown in "Reconstruction of denoised datasets" section. 
We can conclude that PCA fails for the noisy synthetic 
dataset. It presumably fails also for the experimental 
dataset because its scree plot is quite similar to that for 
the noisy simulation.

The reason for the failure of classical PCA of noisy 
STEM EDX datasets is well known. PCA is able to 
extract meaningful variations only in the case when the 
superimposed noise has a similar level of variance in 
any given fragment of a dataset or, in another words, 
when the noise is homoscedastic. In fact, the dominant 
noise in XEDS spectra is Poisson noise, which is not 
homoscedastic.

Weighted PCA
The Poisson noise in spectrum images can be converted 
into the homoscedastic one using a well-known prop-
erty of Poisson noise, namely that its variance equals the 
mean count of the signal. Accordingly, the level of noise 

Table 1  Composition of  layers (phases) constituting 
the investigated CMOS device

Phase notation Composition (at.%)

Si 100% Si

SiO-A 33% Si–67% O

SiO-B 29% Si–57% O–14% N

HfO 33% Hf–67% O

TiN-A 50% Ti–50% N

TiN-B 50% Ti–40% N–10% O

TiN-C 45% Ti–45% N–10% Al

TaN 50% Ta–50% N

Al 80% Al–20% Ti

AlO 40% Al–60% O

SiN 43% Si–57% N
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is proportional to the square root of the signal and can be 
equalized [27] by the following rescaling:

(4)D̃ = D÷W

 where symbol “ ÷ ” denotes the element-wise division and 
W is an m× n weighting matrix defined as

with G being an m-dimensional vector consisting of a 
mean image (image averaged over all energy channels) 
and H an n-dimensional vector consisting of a mean 
spectrum (spectra averaged over all pixels). The dyadic 
product G⊗H = GH

T is expected to reflect the vari-
ation of the “true” signal in D , therefore the normaliza-
tion to its square root should equalize the noise across a 
dataset.1 In case the signal does not vary much from pixel 
to pixel, the weighting can be simplified by taking G = 1 . 
This kind of weighting will be referred in this paper to as 
spectrum-only weighting.

It should be stressed, however, that the elements of W 
provide only the estimates of the “true” signal level across 
the dataset. This estimation works typically quite well for 
STEM EELS but might be rather inaccurate in the case of 
STEM XEDS datasets as will be shown below.

After weighting the noise-free synthetic dataset, its 
scree plot (Fig. 4c) indicated 11 meaningful components, 
i.e. one more than that in the unweighted case. This can 
be explained by the non-linearity in the data variations, 
which was shown to increase the number of the observed 
components against the number of the latent factors [25]. 
Such non-linearity exists often in real-life objects and 
might be enhanced by the weighting rescaling.

Unfortunately, weighting does not improve the qual-
ity of principal component decomposition of the con-
sidered noisy synthetic dataset. Figure  3c demonstrates 
that the found eigenspectra still show poor correlation 
with the “true” ones. The 1st and 2nd true eigenspectra 
are partially retrieved in the 3rd–6th components of the 
noisy dataset but the rest meaningful components seem 
to be almost completely lost. In addition, the domains 
of meaningful and noise components in the scree plots 
(Fig. 4d) are not clearly separated for both noisy synthetic 
and the experimental datasets.

The failure of the weighting pre-treatment in STEM 
EDX spectrum-imaging has been already reported ear-
lier [28, 29]. The reason for the problem is a high sparsity 
of typical STEM XEDS data that makes the evaluation 
of the elements of matrix W inaccurate. The sparsity of 
both the experimental and the noisy synthetic datasets in 
the present work was about 0.001, which means that only 
0.1% of the elements in data matrix D were filled with a 
signal while 99.9% of them were empty. In this situation, 
the extracted mean spectrum and mean image suffer of 

(5)W = (G⊗H)
1
2

Fig. 3  For synthetic datasets, it is possible to evaluate the proximity 
between the actually extracted principal components and the “true” 
ones obtained in the noise-free case. This is characterized by the 
angular difference between the actual and noise-free eigenspectra. 
a shows an ideal case of the perfect PCA decomposition when 
each eigenspectrum coincides with its true reference and has a 
zero projection to the other eigenspectra in the PCA basis. Then, 
the proximity diagram represents the sequence of bars of height 
1 with the colors fitting the right component index: red for the 1st 
component, orange for the 2nd one, pink for the 3rd one and so on. 
However, the observed eigenspectra always deviate from the true 
ones in realistic cases. This looks like a redistribution of each colored 
bar over many of components in proximity diagrams: (b) represents 
such a diagram for the unweighted decomposition of the noisy 
synthetic dataset, while (c) and (d) show those for the weighted 
decomposition without and with filtering pre-treatment, respectively. 
Only the treatment variant (d) delivers the satisfactory proximity 
between the observed and true principal components

1  In the case when weighting is combined with centering a data set, the for-
mer should be executed first because data centering destroys the basic proper-
ties of Poisson distribution.
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random variations that makes the weighting pre-treat-
ment dangerous.

Appendix  2 considers the effect of sparsity on the 
weighing efficiency in details and Appendix  3 presents 
simulations confirming the conclusions of Appendix 2.

PCA with smoothing filter pre‑treatment
The most evident way to solve the sparsity issue outlined 
in the previous subsection is to smooth a dataset in either 
the spatial or energy directions prior the PCA treatment. 
The smoothing filtering would apparently reduce the 
sparsity of a dataset while hopefully preserving its general 
features. The simplest smoothing filter is binning the data 
as suggested by Kotula and van Bethlem [28]. Binning 

Fig. 4  Standard characterization of principal component decomposition—scree plots of the components obtained by a, b unweighted 
decomposition, c, d weighted decomposition and e, f weighted decomposition with the filtering pre-treatment. a, c, e show the variances of 
synthetic noise-free (TRUE) datasets, while (b, d, f) show the variances for the noisy synthetic (NOISE) and experimental (EXP) overlapped with the 
TRUE ones. Note that the variances of components are plotted in the logarithmic scale
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reduces also the size of a dataset that boosts the calcula-
tion speed and saves storage capacity. The disadvantage 
of intensive binning is a significant loss of the spatial and 
energy resolution, thus it might be employed only if the 
original dataset was oversampled for the required task 
(e.g. for obtaining an elemental map of given resolution 
or resolving certain features in spectra). Alternatively, 
data can be smoothed by Gaussian kernel filtering in the 
spatial or energy directions [29]. Gaussian smoothing 
fills the empty data elements even more efficiently than 
binning does while it deteriorates the resolution only 
slightly. On the other hand, Gaussian smoothing does 
not improve the calculation speed because the data size 
is unchanged. 2D Gaussian filtering in the spatial X- and 
Y-dimensions is most efficient in terms of reducing the 
data sparsity. Note that it must be performed before con-
version of a data cube into matrix D because the spatial 
information is then retained more consequently.

In the present work, the combination of binning and 
Gaussian filtering was employed to overcome the sparsity 
issue. For the comparison purpose, the same filtering was 
applied to experimental, noisy and noise-free synthetic 
datasets. The datasets were first subjected to the 2× 2 
spatial binning, which provided a 4 times reduction in 
size. Then, the Gaussian kernel filtering with the standard 
deviation σ = 1 pixel was applied. To save the calculation 
time, the Gaussian function was truncated at 10% of its 
maximum such that the kernel mask included 12 pixels 
around the central pixel (see [29] for details). No smooth-
ing in the energy direction was applied.

The filtering pre-treament dramatically improves the 
quality of principal component decomposition as dem-
onstrated in Fig. 3d. The eigenspectra of at least 6 major 
components of the noisy synthetic dataset are now in a 
good proximity with the reference noise-free eigenspec-
tra. The 7th component (blue in Fig. 3c) lies at the limit of 
detectability—although the proximity function is rather 
wide-spread, its maximum seems to stay at the approxi-
mately correct position.

The scree plot of the noisy synthetic dataset in Fig. 4f 
now clearly visualizes two domains - the domain of the 
meaningful components with a higher variance and 
the noise domain where the variance follows a stead-
ily decreasing line. The border between two domains is 
located near the 6–8th component. Superposing the 
scree plots of the noisy and noise-free datasets reveals 
that they closely follow each other up to the 6th compo-
nent. On the other hand, the scree plot of the experimen-
tal dataset is very similar to that of the noisy synthetic 
one, which suggests that most of components of the real-
life object are retrieved accurately.

Truncation of principal components and reconstruction
At the next step of the PCA treatment, it is assumed that 
the only few major PCA components carry the useful 
information while the remaining minor components rep-
resent noise. Therefore, a dataset can be reconstructed 
using only k (k ≪ n) major components as illustrated in 
Fig. 1. This truncation implies a reduction of the effective 
dimensionality of data from n to k in the energy dimen-
sion. Accordingly, a dataset is significantly denoised 
because most of the noise variations are removed with 
the omitted minor components.

The key question of the PCA analysis is how to trun-
cate? Retaining too many components would marginal-
ize denoising while retaining too few components might 
distort the meaningful variations. A naive consideration 
suggests that the number of retained components should 
correspond to the number of latent factors L governing 
the spectral changes in data. The latter, however, is often 
not known even approximately. Furthermore, the num-
ber of components retrieved (or potentially retrievable) 
from PCA can significantly differ from L because:

•	 It can be higher than L as a result of experimental 
artifacts like changing the beam current in the course 
of scanning or changing response of the detector.

•	 It can be higher than L due to non-linearities in the 
spectra formation such as absorption in the mixture 
of light and heavy phases. These non-linearities man-
ifest themself as the appearance of additional dimen-
sions in the energy space unrelated with any latent 
factor [25].

•	 It can be smaller than L if the variance of some minor 
components approaches the variance of noise. Then, 
these components might be irretrievable from PCA 
[30–32].

The latter effect is extremely important for practical cases 
and will be discussed on the example of the considered 
object in the next subsection.

Loss of minor principal components in noisy datasets
Within the framework of a so-called spiked covariance 
model, Nadler [33] has shown that PCA is able to retrieve 
a meaningful component only if the following inequality 
is satisfied:

where m and n are, as above, the number of STEM pixels 
and energy channels, respectively, σ 2 is the variance of 
homoscedastic noise and �∗ is the “true” (not corrupted 

(6)m

n
≥

(
σ 2

�∗

)2
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by noise) variance of a meaningful component. If �∗ 
appears to be smaller than 

√
n
m σ 2 , a component cannot 

be retrieved even theoretically.
The synthetic datasets presented in this paper provide 

a good possibility to test this prediction as the noise vari-
ance and meaningful noise-free variances of all compo-
nents are precisely known. Table  2 demonstrates that 
about 7 meaningful components can be theoretically 
retrieved in the course of principal components decom-
position. This is in good agreement with the results in 
Fig. 3d, which suggest that the 7th component appears at 
the limit of detectability.

Formula (6) also predicts that the range of detectable 
components can be extended by the smoothing filter 
pre-treatment. Indeed, filtering reduces σ 2 thus smaller 
�
∗ can be retrieved2 [29]. This provides an additional 

argument in favor of filtering pre-treatment described in 
"PCA with smoothing filter pre-treatment" section.

An estimation within the spiked covariance model is 
instructive for understanding why minor components 
might be lost in the course of PCA. However, Eq. (6) is 
based on the precise knowledge of “true” eigenvalues �∗ 
that are not directly accessible in the experiment. In the 
next subsections we consider existing practical trunca-
tion methods that do not require the knowledge of these 
parameters.

Scree plot method for truncation of principal components
Historically, one of the earliest and most popular meth-
ods is analyzing a scree plot. This is based on the 

assumption that meaningful components show a data 
variance noticeably higher than that of the noise. The 
variance of noise components is assumed to follow some 
smooth curve, thus the meaningful and noise domains 
can be visually separated on scree plots such as those in 
Fig. 4f.

In most cases, the scree plot analysis leads to satisfac-
tory results. However, this kind of truncation requires 
manual evaluation and is not accurately reproducible as 
different persons tend to set the border between the visu-
ally distinct regions slightly differently. For the considered 
noisy synthetic and experimental datasets in Fig. 4f, the 
border can be subjectively set between 6 and 8. It is also 
quite difficult to incorporate the scree plot approach into 
automatic algorithms because the behavior of the noise 
variance might vary significantly and the factorization of 
its dependence in the noise domain is problematic.

Analytical model‑based methods for truncating principal 
components
Recently, several approaches for analytical determina-
tion of the optimal number of principal components have 
emerged [34–37]. These methods are based on certain 
models for the mixture of noise and useful signal typi-
cally assuming the Gaussian nature of noise.

A representative example for this family of truncation 
methods is an approach by Gavish and Donoho [36], who 
considered a spiked covariance model with a known level 
of homoscedastic noise σ and searched for the optimal 
threshold minimizing the mean squared error between 
the reconstructed and noise-free datasets. They found 
that eigenvalues � of the retained components should 
satisfy3:

where, as before, m is the number of pixels and n is 
the number of energy channels and α(mn ) is a tabulated 
parameter dependent on mn  . In the simplified case when 
m = n , (7) is reduced to � ≥ 16

3 σ
2 . Note that Eq. (7) con-

sists of observable eigenvalues � (not “true” eigenvalues 
�
∗ as in 6), and therefore, can be used for practical trun-

cation of principal components.
The approach of Gavish and Donoho as well as other 

similar approaches require the precise knowledge of the 
level of homoscedastic noise σ that is, in practice, very 
difficult to extract from experimental data (see [35] for 
details). This can be performed by subtracting all mean-
ingful principal components and evaluating the retained 

(7)� ≥ n

m

(
α

(m
n

))2
σ 2

Table 2  Extracted variances ( � ) and  “true” variances ( �∗ ) 
of the noisy and true synthetic dataset

The level of homoscedastic noise σ 2 is 28.07. According the Nadler model [33], 
a component is retrievable if the value in the 4th column exceeds 

√
n

m
 , which is 

0.245 for the number of channels n = 1200 and the number of pixels m = 19920

Component � �
∗ �∗

σ 2
Retrievable

1 1228 1214 43.2 ✔
2 938.3 906.4 32.3 ✔
3 509.2 482.2 17.2 ✔
4 444.7 422.8 15.1 ✔
5 273.8 214.6 7.65 ✔
6 94.04 40.05 1.43 ✔
7 83.53 6.571 0.234 ✔
8 81.98 0.5804 0.0207 –

9 80.61 0.04119 1.47e−3 –

10 78.30 5.13e−6 2.01e−7 –

11 78.28 1.63e−6 6.43e−8 –

2  The more accurate analysis requires an introduction of the effective number 
of independent pixels me , which can be also affected by filtering [29].

3  We rewrote original formula (3) from [36] to fit the definitions and nota-
tions used in the present paper.
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data fraction with the so-called real error function [38]. 
The approach implies the time-consuming iterative eval-
uation of the noise level alternated with the cut-off of 
meaningful components. Furthermore, as will be dem-
onstrated in "Comparison of different truncation meth-
ods" section and Appendix 4, the accuracy of the resulted 
truncation is not guaranteed in the case of STEM EDXS 
spectrum-imaging.

Anisotropy method for truncation of principal components
To overcome the limitations highlighted in the previ-
ous subsections, we suggest a novel practical method for 
truncation of principal components, which is flexible, 
objective and can be easily implemented in automatic 
algorithms.

Consider a scatter plot—a joint plot of scores for two 
given principal components. A number of examples 
for scatter plots of the analyzed object are presented in 
Appendix  3. These plots are quite informative because 
their geometry immediately reveals correlation or 
absence of correlation between given components. Fig-
ure  5 shows a tableau composed of all possible scatter 
plots for the principal component decomposition of the 
experimental dataset up to component 11. First of all, 
note that this tableau is symmetric relative to its diagonal 
as reversing the indexes in a couple is equivalent to mir-
roring a corresponding scatter plot. Second, the tableau 
can be separated into two regions: one (green outlined) 
with the quite asymmetric scatter plots and another (red 
outlined) with the scatter plots of round shape. The for-
mer region (green) consists of couples of components 
with at least one meaningful component. If the other 

component is noise, the scatter plot contains a spread-
ing of the meaningful distribution along either vertical 
or horizontal axis. In the case when both components 
are meaningful, the resulting scatter plot is more com-
plicated and asymmetric. The latter region (red) consists 
of couples of compounds both representing pure noise. 
As random noise is uniform in all energy directions, the 
distribution of their scores is expected to be round. In 
the most common case of the Gaussian nature of noise, 
such scatter plots should represent the bivariate Gaussian 
distribution.

The described property of scatter plots can be 
employed as an objective criterion to discriminate mean-
ingful and noise components. The easiest way to find 
the border between two regions is tracking the sequen-
tial couples of components 1–2, 2–3, 3–4... as shown by 
the dashed arrow in Fig.  5. Automatic truncation tech-
nique implies now a method to quantify the anisotropy 
of a given scatter plot. We will consider several criteria 
directly or indirectly related with the factorization of 
a bivariate distribution. One of them is the covariance 
( Cov ) of two distributions (scores of two components in 
this case):

where T1 and T2 are the scores of two given principal 
components constituting the plot and m is the number of 
pixels. Computation of the covariance in Eq. (8) is simpli-
fied by the fact that the mean values of T1 and T2 are zero 
for the centered principal components decomposition.

Another way to evaluate the anisotropy could be calcu-
lating a third-order momentum of a scatter plot. As an 
example of such approaches, we calculate the bivariate 
skewness ( Ske ) defined after Mardia [39] as

Alternatively, we investigated a group of methods that 
utilize the geometry of the bivariate score distribution. 
One can digitize the joint distribution of T1 and T2 in a 
kind of a two-dimensional t × t grid S where each cell 
of the grid corresponds to certain small ranges of the T1 
and T2 values. The slq cells are assigned to zero if none 
of the ( T1(l),T2(q) ) couples appear in the given ranges. 
Otherwise slq cells are assigned to the number of events 
with both T1 and T2 satisfying the corresponding ranges. 
In fact, this digitization is performed every time when a 
display of a scatter plot is built (see examples of displayed 
scatter plots in Fig. 5 and in Appendix 3). Based on this 

(8)Cov(T1, T2) =
1

m

m∑

i

(T1(i)T2(i))

(9)

Ske(T1, T2) =
1

m2

m∑

i,j

[
T1(i)T1(j)+ T2(i)T2(j)

Cov(T1, T2)

]3

Fig. 5  Bivariate scatter plots of observed principal components 
deliver important information about the correlation between 
components. The figure shows a tableau composed of all 
possible couples of the scatter plots (up to component 11) of 
the experimental dataset. The shape of the scatter plots can be 
anisotropic (a region outlined by green) or isotropic (outlined by red)
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digitized representation we may now analyze, whether 
the bivariate score distribution is a dyadic product of two 
independent distributions or not. To this end we com-
pute the following criterion

which is 1 for the ideal dyad (no correlation) while it 
becomes larger for general matrices (correlated case). 
Note that a similar task—the discrimination between 
pure (i.e., dyad) and mixed quantum states—is known in 
quantum mechanics. There one computes the so-called 
purity of a normalized density matrix in a similar way 
and the resulted value is 1 for a pure state and less than 
1 for a mixed state. The anisotropy criterium introduced 
in Eq. (10) roughly amounts to the inverse of the matrix 
purity in quantum mechanics. This inversion in defini-
tion is made to match the tendencies in other anisotropy 
criteria.

Finally, we explored the simplest method that analyses 
the histograms of grid S under the different projections 
as sketched in Fig.  6. The anisotropy of the plot can be 
then evaluated as:

where H(l,ϕ) is a histogram of the projection under angle 
ϕ and H̄(l) is the average over all projections. Here p is a 
number of projections in the range of ϕ = −π/2 . . . π/2 

(10)Pur(T1, T2) =
t∑

l,q=0

[
slq

tr(S)

]2

(11)

His(T1,T2) =
1

ps

s∑

l=1

π/2∑

ϕ=0

(H(l,ϕ)− H̄(l))2

H̄(l)
− 1

and s is a number of channels in a histogram. In the case 
of a perfectly isotropic scatter plot, there are only ran-
dom deviations of H(l,ϕ) from rotational average H̄(l) 
following the Poisson distribution. This means that their 
variance must equal their average value. Therefore, the 
expression under the sum should approach 1 and the 
whole expression averaged over all projections and chan-
nels should approach zero for a perfectly round scatter 
plot.

Figure  7 compares the different quantification meth-
ods for the series of the scatter plots of the experimental 
dataset. The covariance and matrix purity criteria oscil-
late too much for high-index components, which does 
not allow to separate the meaningful and noise domains 
reliably. The skewness criterion might approach quite 
low values in the noise domain but sporadic heavy outli-
ers make this method unreliable as well. Additionally, the 
calculation of skewness requires an order of magnitude 
longer computation time than the other methods. After 
all, the only method of projected histograms (Fig.  7e) 
provides a clear separation between the anisotropic and 
isotropic domains. Zooming into the transient region 
(inset in Fig. 7e) reveals that this criterion oscillates very 
close to zero in the noise domain and any departures 
from isotropy are evident there. A small bias in the posi-
tive direction might appear as the variances of neighbor-
ing noise components are slightly different. This can be 
canceled by normalizing the scores of both components 
to their variance.

It should be, however, stressed, that the anisotropy 
method fails for sparse STEM XEDS data. In this case, 
the anisotropy criterion shows quite high values both for 
the meaningful and noise components. The reason for 
that is apparent—if only a few data elements are assigned 
to one and the rest are zeros, a random-like asymmetry 
of scatter plots might be observed even if the underly-
ing data distribution is isotropic. Therefore, a treatment 
reducing the data sparseness like that described in "PCA 
with smoothing filter pre-treatment" section is obligatory 
prior application of the anisotropy method.

Comparison of different truncation methods
Table 3 lists the number of principal components to trun-
cate according to the methods described in the previous 
subsections. The scree plot and anisotropy methods sug-
gest similar truncation cut-offs, which are in agreement 
with the theoretical prediction of Eq. (6). The analyti-
cal approach by Gavish and Donoho suggests the same 
cut-off in the case of the experimental dataset but over-
estimates dramatically the number of meaningful com-
ponents for the synthetic noisy one. Another examples 
in Appendix  4 demonstrate that this is not a singular 

Fig. 6  A suggested method to quantify the anisotropy of a 
scatterplot. The data points in the scatter plot are projected on 
the number of lines oriented under different angles φ . At each 
orientation, a histogram with a fixed number of s channels is 
calculated. Finally, the anisotropy criterion is calculated as in Eq. (11) 
by comparing all available projections
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Fig. 7  a The easiest way to localize the border between the anisotropic and isotropic regions in Fig. 5 is to track the sequential couples of scatter 
plots along the blue-dashed arrow while analyzing their anisotropy as shown in (a). The point where the scatter plot turns from anisotropic to 
isotropic denotes a reasonable cut-off for the meaningful principal components. To make the procedure automatic the quantitative criterion for 
anisotropy is needed; b–e compare the different anisotropy criteria: covariance (b), multivariate skewness (c), matrix pureness (d) and projected 
histograms (e). The component index plotted in the horizontal axis corresponds to the lowest index of the evaluated couple of components. 
Among all the considered methods, the method of projected histograms (e) performs best in separating the anisotropic and isotropic regions. The 
anisotropy criterion oscillates very closely to zero in the isotropic region as apparent from the inset in (e)
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exception but rather an indication of instability of the 
method when applied to STEM XEDS spectrum images.

Although the scree plot and anisotropy methods per-
form similarly, the latter offers a crucial advantage—the 
cut-off can be determined less subjectively. Localizing 
the inflection point in a scree plot is straightforward 
but might require a number of tunable parameters in an 
unsupervised treatment. In contrast, the method of scat-
ter plot anisotropy can be easily incorporated into an 
automatic algorithm. The anisotropy oscillates around 
zero in the noise domain, which is very beneficial com-
pared to a scree plot, where the variance decays slowly 
from an unknown level. Therefore, a single threshold 
parameter can be used to discriminate the meaningful 
and noise domains. This parameter represents the rela-
tive deviation from isotropy that can be still tolerated. 
To our experience the threshold parameter can be set 
to 0.5–1.0 for the case of STEM XEDS and EELS spec-
trum-imaging depending on the required accuracy of the 
detection of minor principal components. It is also pos-
sible to define the threshold adaptively depending on the 
measured variation of anisotropy in the region with very 
high indexes of components.

The suggested anisotropy method employs a very basic 
property of random noise—its directional isotropy. It 
does not put any strict assumptions on the specific nature 
of noise—Poissonian, Gaussian, or mixed. The synthetic 
data presented in this paper are corrupted by the Poisson 
noise, which is converted to the Gaussian-like one after 
the correctly performed weighting procedure. In real 
experimental data, some small fractions of noise might 
come from the imperfections of registration that makes 
the noise distribution more complicated. Some hints for 
that are the different slopes of the scree plots in the noise 
domains for experimental and syntetic datasets in Fig. 4f. 
Nevertheless, the anisotropy method delivers identical 

truncation cut-offs for both the datasets, which suggests 
a certain robustness against the nature of noise.

Appendix 4 shows more examples of application of the 
anisotropy method for truncating principal components 
in STEM XEDS data. The anisotropy criterion behaves 
similarly (compare Figs.  7e, 13b and 14b) in the variety 
of STEM XEDS data—it shows quite high values for the 
meaningful components and then oscillates around zero 
in the noise domain. Furthermore, it has been demon-
strated that the method works reliably for STEM EELS 
spectrum-images as well [40].

Reconstruction of denoised datasets
After truncating principal components, a dataset can be 
reconstructed as

where the index k means that the energy dimension n 
was reduced to k in both weighted score T̃ and loading P̃ 
matrices as illustrated in Fig. 2. Here, the symbol · means 
the element-wise multiplication on weighting matrix 
W . In the case when the principal component decom-
position and truncation were performed reasonably, the 
reconstructed data matrix incorporates all meaningful 
data variations but noise. The conversion into the original 
data arrangement (line scan, data cube or cube of higher 
dimension) results in a new spectrum-image greatly 
denoised compared with the initial one.

Data can be then subjected to the further processing 
depending on the treatment goals. For instance, Fig.  8 
shows elemental maps extracted from the noisy synthetic 
dataset by integration of the corresponding XEDS lines. 
The maps for the best PCA treatment strategy (filtering 
and weighting, 7 components-truncation) appear to be 
noticeable improved compared to those from the raw 
spectrum image. Note that the effect is not due to a trivial 
improvement of the data appearance by filtering (com-
pare Fig.  8b, e). The non-optimal PCA strategies might 
eventually denoise elemental maps as well, but they 
often result in dangerous artifacts. For instance, the Hf 
layer disappears and manifests itself as a false Ta layer in 
Fig. 8c, d.

The corresponding elemental maps from the experi-
mental spectrum-image are shown in Fig.  9. The com-
parison between Figs.  8 and 9. confirms that the noisy 
synthetic and experimental data sets behave very simi-
larly under the various strategies of the PCA treatment. 
Therefore, the trends discovered by analyzing the syn-
thetic data can be reliably extended towards experimen-
tal data of real-life objects.

(12)D ≈
[
T̃P̃

T
]
k
·W

Table 3  The number of  components to  truncate according 
to  the  different truncation methods: the  evaluation 
of a scree plot with visual localisation of the inflection point 
("Scree plot method for truncation of principal components" 
section), the  approach of  Gavish and  Donoho ("Analytical 
model-based methods for truncating principal components" 
section) and  the  anisotropy method ("Anisotropy method 
for truncation of principal components" section) with using 
the  projected histograms and  the  anisotropy threshold 
of 0.5

Dataset Scree plot Gavish 
and Donoho

Anisotropy

Synthetic 6–8 30 7

Experimental 6–8 7 7
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Conclusions
We conclude that experimental STEM XEDS spec-
trum-images acquired with modern STEM instrumen-
tation and typical acquisition settings can be noticeably 
denoised by application of PCA. Here, two pre-treat-
ments of the typically sparse STEM XEDS datasets are 
ultimately needed for the successful PCA: smoothing 
and weighting.

A crucial step for denoising spectrum images is 
the truncation of principal components. Theoretical 

consideration shows that the optimal number of 
retained components depends on the ratio between the 
levels of noise and expected meaningful variations in an 
object as well as on the number of pixels in a spectrum 
image.

We presented a promising method for optimally trun-
cating principal components based on the analysis of the 
anisotropy of scatter plots resulting from the principal 
components decomposition. This method can be easily 

Fig. 8  Elemental maps extracted from (a) raw and (b) filtered noisy synthetic datasets; c–e represent elemental maps extracted from the 
reconstructed datasets according to the (c) unweighted PCA, (d) weighted PCA and (e) filtered and weighted PCA treatments. The number of 
principal components used in reconstruction was 22 for (c), 9 for (d) and 7 for (e). For fair comparison, all maps are displayed with identical contrast 
settings. The PCA treatment improves noticeably the visibility of the chemical components, especially the weak-signal elements—Ta and Hf. Note 
that the treatment variants (c) and (d) cause the artificial intermixing of the Ta and Hf layers
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implemented in automatic algorithms, which promotes a 
smooth, unsupervised workflow.

Given the straightforward implementation of the 
presented PCA workflow and the power of the method 
for denoising datasets containing, e.g., only small 
concentrations of elements with sparse spectra, we 
anticipate a further increase in PCA applications to 
STEM-based spectrum-images as well as other hyper-
spectral techniques with similar dataset properties.

Methods
Experimental details
The STEM XEDS spectrum-imaging was performed in 
the Titan G2 (S)TEM microscope operating at 300kV and 
equipped with the 4-windows SDD XEDS detector. The 
TEM cross section of the CMOS device was prepared by 
FIB at 30 kV followed by Ga ion milling at 5 kV. The final 
thickness of the sample was approximately 50 nm.

The STEM scanning with collecting the XEDS sig-
nal was executed within 6 minutes in the multi-frame 

Fig. 9  Elemental maps extracted from (a) raw and (b) filtered experimental datasets; c–e represent elemental maps extracted from the 
reconstructed datasets according the (c) unweighted PCA, (d) weighted PCA and (e) filtered and weighted PCA treatments. The number of principal 
components used in reconstruction was 18 for (c), 12 for (d) and 7 for (e). For fair comparison, all maps are displayed with identical contrast settings. 
The PCA treatment improves noticeably the visibility of the chemical components, especially the weak-signal elements—Ta and Hf. Note that the 
treatment variants (c) and (d) cause the artificial intermixing of the Ta and Hf layers
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mode across the 244 × 336 pixel rectangle covering the 
area of approximately 40× 50 nanometers. The probe 
size was about 0.2 nm and the beam current was 120 pA. 
Although the spectra were originally acquired with 4096 
energy channels, the data cube was then truncated to 
1200 channels in the range of 0.2–12.2 keV that covered 
all useful XEDS peaks.

Details of simulation
A phantom object that mimicked a real CMOS transis-
tor was generated as shown in Fig. 2b. The geometry of 
the layers was greatly simplified but their volume frac-
tions were reproduced reasonably accurate. The compo-
sition of each layer was set according Table  1 and then 
the borders among them were numerically smeared out 
to mimic the roughness of the layers in the real device 
and the spread of the STEM probe along the 50 nm sam-
ple thickness.

XEDS spectra were generated using the simulation 
program DTSA-II [41] developed in National Institute 
of Standards and Technology. The simulation employed 
an acceleration voltage of 300 kV, a realistic model for an 
SDD detector, a sample thickness of 50 nm and the com-
positions of the layers as listed in Table 1. The generated 
spectrum-images consisted of the same number of STEM 
pixels ( 244 × 336 ) and energy channels (1200) as the 
experimental dataset.

The synthetic data were prepared in two variants: one 
with no noise (the counts were represented by floating 
numbers, not truncated to integers) and another with a 
Poissonian noise added according to the nominal signal 
at each data point (here the counts were represented by 
integers as appearing in the experimental set). For the 
best compliance with the experiment, the synthetic spec-
trum-images were scaled such that the total number of 
counts in the range of 0.5–12 kV coincided with that of 
the experimental dataset.

Additional files

Additional file 1. Simulated STEM XEDS spectrum-image of a phantom 
CMOS device with adding Poisson noise.

Additional file 2. Simulated STEM XEDS spectrum-image of a phantom 
CMOS device without adding noise.
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Appendices
Appendix 1: Effect of data sparsity on weighting XEDS 
spectrum‑images
Consider a simplified spectrum-only weighting where 
the elements of an m× n data matrix D are normalized 
to the square root of a mean spectrum. In other words, 
all columns of D are normalized to the square root of the 
mean value hj over the corresponding j-th column of D . 
Assuming random noise, the data variance ν2j  in each col-
umn can be separated into “true” variance µ2

j  and noise 
variance σ 2

j  as:

with the “true” variance:

and the noise variance:

where dij denote the actual elements of data matrix D 
while d∗ij refer to “true”, noise-free values. The variance of 
Poissonian noise in each column is equal to the “true” 
data mean h∗j  along this column. In the case the sufficient 

(13)ν2j = µ2
j + σ 2

j

(14)µ2
j = Var

(
d∗ij√
hj

)
=

Var(d∗ij)

|hj|

(15)σ 2
j = Var

(
dij − d∗ij√

hj

)
=

Var(dij − d∗ij)

|hj|

https://doi.org/10.1186/s40679-019-0066-0
https://doi.org/10.1186/s40679-019-0066-0
http://temdm.com/web/msa/
http://temdm.com/web/msa/
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signal is present, hj ≈ h∗j  and σ 2
j → 1 , therefore the noise 

is equalized among all columns. The situation is quite dif-
ferent if a dataset is sparse. Consider a limiting case 
where each column consists of no more than one XEDS 
count. A lot of columns will contain of entirely zeros and 
hj will be also zero. To avoid divergence, such columns 
must be simply set to zero in the course of the weighting 
procedure. The columns consisting of one count should 
be normalized to 

√
hj = 1√

m
 . The data variance in each 

column is

oscillating between two extreme numbers, 1 and 0. Note 
that the data variance ν2 averaged over all columns is now 
proportional to the total number of counts c in a spec-
trum image:

as sketched in Fig.  10. The total data variance is greatly 
reduced due to the presence of a number of data elements 
dij with zero values. The noise variance is constrained as

and apparently can not be normalized to 1 in the “diluted” 
limit.

In the situations intermediate between the “diluted” 
and “saturated” limits, the average data variance (and 
therefore the noise variance) must be lower than 1 as 

(16)ν2j =
{

(
√
m−

√
m
m )2

m ≈ 1 one count in column
0 no counts in column

(17)ν2 = c

n

(18)σ 2 ≤ c

n

shown in Fig.  10. That means that the noise can not be 
scaled to the fixed value 1 but varies instead in each col-
umn depending on actual hj , which takes more or less 
randomly the small discrete values 0, 1

m , 2
m . . . depending 

on how much counts are observed in a column. Such dig-
itization of the data variance in the course of the weight-
ing procedure is the direct consequence of the sparseness 
of the typical STEM XEDS signal. The issue does not 
exist in STEM EELS data that provide always the suffi-
cient signal for accurate evaluation of the mean spectrum 
values.

These speculations can be extended to the case when 
weighting employs the normalization to both mean 
spectrum and mean image. The issue occurs if any of 
elements of weighting matrix W introduced in Eq. (5) 
becomes small due the small mean spectrum in the cor-
responding W column or due to the small mean image in 
the W row. A simple derivation shows that σ 2 → mn

c  in 
the “saturated” limit and the noise variance can be suc-
cessfully rescaled over data matrix D to match this limit. 
In the “diluted” limit, the noise variance is constrained 
as σ 2 ≤ mnc , which causes the failure of the noise 
equalization.

Appendix 2 presents simulations of STEM XEDS data-
sets for a simplified one-component object where the sig-
nal strength was varied in the large range. The extracted 
mean noise variance fits nicely the theoretical considera-
tion of Appendix 1.

Appendix 2: Simulation of the effect of sparsity 
on weighting XEDS spectrum‑images for a one‑component 
object
A simple object consisting of two phases - pure Si and 
SiO2 with the smooth variation of composition between 
them—was employed in the simulations. The XEDS 
spectra were generated in the same way as described in 
"Details of simulation" section. The synthetic spectrum-
images consisted of 100× 100 pixels and 300 energy 
channels covering the energy range 0–3 keV.

The simulations were carried out with a systematic 
variation of the total number of counts in the spectrum-
image or in other words, with a varying dose. As in 
"Multi-component object for spectrum-imaging" section, 
each dataset was generated in two variants—with and 
without adding a Poissonian noise. The following data-
sets were created: 1

16 , 
1
8 , 

1
4 , 12 , 1, 2, 4, 8, 16, 32, 64, where 

the number denoted the dose. Dose 1 corresponds to the 
conditions for the simulations in "Details of simulation" 
section, i.e. a typical dose encountered in STEM XEDS 
spectrum-imaging nowadays.

Fig. 10  Schematic dependence of the noise variance on the total 
count in a weighted spectrum-image. In the “saturated” limit, the 
noise variance is approaching 1 and is equalized over a whole 
dataset. In the “diluted” limit, the noise variance is constrained by the 
linear dependence on the total counts and can not be equalized
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Then, the synthetic spectrum-images were weighted 
by normalizing it to the mean spectrum (spectrum-only 
weighting). The latter was extracted either from the noisy 
dataset or from the corresponding noise-free dataset. 
Finally, the total variance of noise was evaluated by sub-
tracting the noisy datasets from the noise-free ones.

Figure 11a demonstrates that the weighting procedure 
normalizes noise to 1 only if the “true” mean spectrum 
is utilized. Using the actual mean spectrum causes the 
weighting artifacts at low doses. As seen from Fig.  11b, 
the mean spectrum varies very discretely there and this 
uncertainly propagates to the weighted datasets causing 

uneven distribution of the noise variance over the differ-
ent energy channels.

Unfortunately a “true” mean spectrum is not avail-
able in real experiments. Using instead a mean spectrum 
evaluated from a noisy dataset always imposes a risk of 
failure of the noise equalization as described in "Appen-
dix 1".

Appendix 3: Scatter plots of the principal component 
decomposition for the experimental and synthetic 
datasets
Figure  12 shows the results of the weighted principal 
component decomposition for the experimental and syn-
thetic datasets expressed in the scatter plots of compo-
nent. In contrast to real-space images or maps, scatter 
plots visualize the data distribution in a kind of spectral 
or factor space. The spatial positions of data points plays 
no role in scatter plots. Instead, the appearance of data in 
such plots is determined solely by the spectral proximity 
of pixels constituting a spectrum-image. The eigenspec-
tra of the latent factors governing the data variation can 
be sometimes identified as special knots in this spectral 
space.

A benefit of noise-free synthetic data (Fig. 11c, f, i, l) is 
in clear visibility of the data variation among given latent 
factors. The variation trend might represent a more or 
less straight line connecting the two factor knots through 
the shortest way or might follow some bent curve. 
Typically, the latter behavior indicates non-linearity in 
the spectra formation [25]. The introduction of noise 
(Fig.  11b, e, h, k) results in smearing out the true scat-
ter plots such that the only dominant variation trends are 
visible.

The scatter plots of the experimental dataset (Fig. 11a, 
d, g, j) are in a good agreement with those for the noisy 
synthetic dataset (Fig. 11b, e, h, k). The slight discrepan-
cies in the positions of the latent factors and the shape 
of variations can be attributed to the simplified assump-
tions in the spectra modeling and to the limited accuracy 
in reproducing the actual structure of the CMOS device. 
Note that the scatter plots represent the 2D cross sec-
tions in a spectral space with 1200 dimensions, thus even 
small deviations in the orientation of the given cross sec-
tion might influence noticeably the appearance of the 
data simplex.

Fig. 11  a Calculated mean noise variance as a function of the 
total count (dose) in the spectrum-images of the synthetic 
one-componential object. All spectrum-images were weighted 
using either the “true”, noise-free mean spectrum (black curve) or the 
actual, extracted from the noisy data mean spectrum (red curve). b 
Comparison of the “true” (red curve) and the actual (blue filled) mean 
spectra for the dataset with dose 1
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The proximity between the experiment and simulations 
is however deteriorated with increasing the component 
index. This happens because the the variance of the high-
index components is reduced and the accuracy of the 
retrieved component loadings is reduced as well.

Appendix 4: Examples of application of the anisotropy 
method for truncating principal components in STEM XEDS 
spectrum‑images
The STEM XEDS data were collected under the condi-
tions described in "Experimental details" section with 

Fig. 12  Scatter plots for the experimental (a, d, g, j), synthetic noisy (b, e, h, k) and noise-free (c, f, i, l) datasets described in "Multi-component 
object for spectrum-imaging" section. All datasets were subjected to the filtering pre-treatment followed by the weighted principal components 
decomposition as described in "PCA with smoothing filter pre-treatment" section. The scatter plots are composed of the 1st and 2nd (a–c); 2nd 
and 3rd (d–f), 3rd and 4th (g–i) and 4th and 5th (j–l) principal components. The spectral positions of the pure latent factors whenever they can be 
identified in the scatter plots are marked by the red points
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similar beam currents and acquisition times. To reduce 
the data sparsity the spectrum-images were fist sub-
jected to 2× 2 binning and then to Gaussian kernel fil-
tering with the standard deviation σ = 1 pixel.

Figure  13 presents the evaluation of well-known 
MAG*I*CAL samples dedicated for a magnifica-
tion calibration in the TEM. The active structure of 

MAG*I*CAL is composed of a nanoscaled stack of 
Si and Si-15%Ge layers that were characterized by 
STEM XEDS followed by the application of PCA. As a 
result, the elemental maps of Si and Ge were drastically 
denoised and improved as evident from Fig. 13c.

Fig. 13  PCA results for the STEM XEDS spectrum-image of a MAG*I*CAL sample: a scree plot, b anisotropy plot. The inset in (b) shows the zoomed 
variation of the anisotropy criterion in the noise domain; c compares the elemental maps extracted from the untreated and the PCA treated 
datasets. For fair comparison, all maps are displayed with identical contrast settings
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Figure  14 shows the results of the PCA treatment for 
the so-called “high-k stack” in modern semiconduc-
tor CMOS devices. This stack serves to maximize the 
dielectric constant k and therefore to increase the gate 
capacitance. In the considered case, the high-k stack con-
sisted of a HfO2 layer capped by TiN where both layers 
were doped with Al. The PCA treatment changes only 
slightly the appearance of the strong Ti and Hf   signals 

but improves dramatically the visibility of the weak Al 
signal in Fig. 14c.

Table  4 compares the performance of the different 
methods for truncating principal components. The scree 
plot and anisotropy methods suggest a similar number of 
meaningful components although the anisotropy method 
is a bit more robust and precise. The analytical method 
of Gavish and Donoho suggests the same cut-off for the 
MAG*I*CAL sample while overestimates heavily the 
number of meaningful components for the high-k stack 
sample.
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