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Abstract
An ontology offers a human-readable and machine-computable representation of the concepts in a domain and the relationships
among them. Mappings between ontologies enable the reuse and interoperability of biomedical knowledge. We sought to map
concepts of the Radiology Gamuts Ontology (RGO), an ontology that links diseases and imaging findings to support differential
diagnosis in radiology, to terms in three key vocabularies for clinical radiology: the International Classification of Diseases,
version 10, Clinical Modification (ICD-10-CM), the Radiological Society of North America’s radiology lexicon (RadLex), and
the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT). RGO (version 0.7; Jan 2018) incorporated 16,918
terms (classes) for diseases, interventions, and imaging observations linked by 1782 subsumption (class-subclass) relations and
55,569 causal (Bmay cause^) relations. RGO classes were mapped to RadLex (46,656 classes, version 3.15), SNOMED CT
(347,358 classes, version 2018AA), and ICD-10-CM (94,645 classes, version 2018AA) using the National Center for
Biomedical Ontology (NCBO) Annotator web service. We identified 1275 exact mappings from RGO to RadLex, 5302 to
SNOMED CT, and 941 to ICD-10-CM. RGO terms mapped to one ontology (n = 3401), two ontologies (n = 1515), or all three
ontologies (n = 198). The mapped ontologies provide additional terms to support data mining from textual information in the
electronic health record. The current work builds on efforts to map RGO to ontologies of diseases and phenotypes. Mappings
between ontologies can support automated knowledge discovery, diagnostic reasoning, and data mining.
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Introduction

An ontology offers a human-readable and machine-
computable representation of the concepts in a domain and
the relationships among them [1]. Mappings between ontol-
ogies enable the reuse and interoperability of biomedical
knowledge. The Radiology Gamuts Ontology (RGO) is an
ontology that provides a formal representation of differential
diagnosis in radiology [2]. RGO comprises 16,918 classes that
represent disorders (e.g., giardiasis; RGO:3525), interventions
(e.g., oral medication; RGO:3968), and imaging findings

(e.g., fused ribs; RGO:30094). RGO’s subsumption (is_a)
relation defines subclasses: concepts that are more specific
than their parent class; e.g., congenital splenomegaly is a
subclass of splenomegaly. The ontology has a relatively flat
hierarchical structure, in that it has only 1782 subclass rela-
tions; 90% of the ontology’s entities are subclasses of the
top-level Entity class. The ontology had a maximum depth of
4 subclass relations [3].

In addition to subsumption, RGO defines a causal rela-
tion (may_cause, and its inverse, may_be_caused_by) to
express the links between diagnoses and imaging observa-
tions. This relation is neither tautological nor exhaustive;
that is, it does not express the absolute certainty of logical
implication (Bif A, then B^), nor does it require that all
possible causes of a finding are defined. However, the re-
lation does allow one to express the differential diagnosis
of imaging findings, and the relation’s transitive property
allows one to explore chains of inference [3].

A key application of RGO has been in named-entity recog-
nition of diagnoses and imaging findings in narrative-text ra-
diology reports. To further expand RGO’s applicability in

* Charles E. Kahn, Jr
ckahn@upenn.edu

1 Department of Radiology, MedStar Georgetown University Hospital,
Washington, DC, USA

2 Department of Radiology, University of Pennsylvania, 3400 Spruce
Street, Philadelphia, PA 19104, USA

3 Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA, USA

Journal of Digital Imaging (2019) 32:206–210
https://doi.org/10.1007/s10278-019-00186-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-019-00186-3&domain=pdf
http://orcid.org/0000-0002-6654-7434
mailto:ckahn@upenn.edu


Bdeep phenotyping^ studies—which seek to identify all phe-
notypic findings in a set of subjects—it is important to expand
the set of synonyms and coded terms that are connected to
RGO. This investigation sought to map RGO concepts to
terms in three key vocabularies used in clinical radiology.

The International Classification of Diseases, version 10,
Clinical Modification (ICD-10-CM) is an adaptation of the
World Health Organization disease coding scheme that is used
in the USA as a source of diagnostic codes. ICD-10-CM codes
typically are used to encode the indications for a radiology
exam, and thus are incorporated into the patient’s clinical re-
cords and billing information [4–6]. RadLex is an ontology of
radiology terms developed and published by the Radiological
Society of North America (RSNA) [6–8]. It was developed to
address gaps in general clinical vocabularies [9], and incorpo-
rates terms for anatomy, diseases, and imaging signs [10].
RadLex has been used to index radiological literature, learn-
ing materials, and radiological procedures. The Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT) is
the world’s most comprehensive clinical healthcare terminol-
ogy; it enables consistent representation of clinical content in
electronic health records and has been used widely in biomed-
ical information systems [6, 11].

Methods

RGO (version 0.7; Jan 2018) incorporated 16,918 terms
(classes) linked by 1782 subsumption (class-subclass) re-
lations and 55,569 causal (Bmay cause^) relations. We
defined Bdisorders^ as entities that could cause other en-
tities in the ontology, and Bobservations^ as entities that
could be caused by other entities. Whether or not an entity

was considered an intervention was encoded as one of its
properties. We tallied the numbers of disorders, interven-
tions, and observations in RGO.

RGO terms were mapped to RadLex (46,656 classes, ver-
sion 3.15), SNOMEDCT (347,358 classes, version 2018AA),
and ICD-10-CM (94,645 classes, version 2018AA) using the
National Center for Biomedical Ontology (NCBO) Annotator
web service [12, 13]. The ontologies were accessed through
the National Center for Biomedical Ontology (NCBO)
BioPortal web site (http://bioportal.bioontology.org/) and
web services [14, 15]. An automated script was created to
query the Annotator web service for each RGO term and to
retrieve all partial and exact string matches. Preferred terms
and their synonyms were considered in RGO and the target
ontologies; only exact string matches were included for
mapping. To confirm the mappings, we randomly selected
10% of all exact mappings for manual review and identified
any errors.

Within each target ontology, we tallied the number of caus-
al relationships that could be expressed using the equivalence
relationships to causally linked RGO terms. Examples are
shown in Fig. 1. For the purposes of this study, we also de-
fined an Bindirect causal relationship^ as an axiom between
two terms in a target ontology linked by one or two causal
relations and zero or more is_a relations in RGO, in any order
of occurrence. Examples are shown in Fig. 2.

Mappings were stored initially in a MySQL relational da-
tabase, and then exported as a delimited text file containing
the Gamuts entity name and the mapped term name. From this
file, an OWL file was constructed for submission to NCBO so
that Gamuts could be parsed and displayed; the OWL file
included equivalence (sameAs) relationships as well as hierar-
chical (is_a) relationships. Equivalence relationships between

Fig. 1 Causal relations between terms within each target ontology. For example, the RadLex term Crohn’s disease is causally related to osteomalacia
through their equivalence relations to the corresponding RGO terms
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Gamuts and ICD-10, RadLex, and SNOMED-CTwere added
one at a time using the BioPortal API (endpoint https://data.
bioontology.org/mappings). Each post included a JSON
object that documented the relationship and the entities that
should be mapped; for example:

{
"creator": "rwfilice",
"relation": "http://www.w3.org/2002/07/owl#sameAs",
"classes": {
"http://www.gamuts.net/entity#hematoma_of_neck":
"GAMUTS",
"http://purl.bioontology.org/ontology/SNOMEDCT/
447220009": "SNOMEDCT"

}
}

Mapped relations were limited to equivalence (sameAs)
relations because NCBO does not support hierarchical rela-
tionships between different ontologies. Mappings were added
one at a time to allow for error checking to identify transac-
tions that timed out or had other errors.

Results

RGO incorporated 12,878 disorders, i.e., entities that could
cause other RGO entities; examples included multiple
periapical condensing osteitis (RGO:9089), Stewart-Treves
syndrome (RGO:23924), and mineralizing vasculopathy
(RGO:7770). The ontology included 524 interventions, such
as surgical repair of esophageal atresia (RGO:3550), body cast

(RGO:4194), and beta-blocker (RGO:24937). RGO included
4662 imaging findings, i.e., entities that could be caused by
other RGO entities, such as sloughed calcified renal papilla
(RGO:20192), underdeveloped pubic rami (RGO:31943),
septicemia (RGO:3317), and brachytelephalangy
(RGO:34143). These three subsets were not disjoint.

We identified 51,049 potential matches from RGO, of
which there were a total of 7518 exact matches: 941 to ICD-
10-CM, 1275 to RadLex, and 5302 to SNOMED CT. In total,
5114 (30.2% of 16,918) RGO terms mapped to one or more
ontology: 3401 RGO terms mapped to exactly one ontology,
1515 terms mapped to exactly two ontologies, and 198 terms
mapped to all three ontologies. For example, esophageal web
(RGO:68) was mapped as equivalent to RadLex term
RID34693, SNOMED CT term 19216006, and ICD-10-CM
code Q39.4. The numbers of mappings of disorders, interven-
tions, and observations into each of the target ontologies is
shown in Table 1. A randomly selected sample of 510 mapped
terms was reviewed manually; no errors were identified.

RGO’s causal relations allowed one to express 10,958 direct
causal relationships between concepts within the target ontol-
ogies: 696 in ICD-10-CM, 1160 in RadLex, and 9102 in
SNOMED CT. We explored only causal relations between
entities within the same ontology using their mappings to
RGO terms. In RadLex, for example, scleroderma
(RID34592) may cause achalasia (RID3458), based on the
causal relation between the corresponding RGO terms. There
were a total of 31,845 indirect causal relations (1849 for ICD-
10-CM, 3596 for RadLex, and 26,400 for SNOMEDCT).
Figure 2 shows examples of indirect causal relationships.
RGO and its equivalence mappings have been published to
NCBO BioPortal, where they are freely available.

Fig. 2 BIndirect^ causal relations as defined in this study are based on up
to two causal relations and zero or more subclass (is_a) relations in RGO.
For example, as shown graphically, actinomycosis may cause

esophagobronchial fistula, which is an esophageal fistula, which may
cause pneumomediastinum
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Discussion

The mapped ontologies provide additional terms to support
data mining from textual information in the electronic health
record. Overall, 30% of RGO terms were mapped to concepts
in at least one of the target ontologies; this value represents a
quite good result, especially given that RGO terms are highly
specific to radiology, and include complex terms such as
sloughed calcified renal papilla (RGO:20192). For compari-
son, equivalent SNOMED CT concepts were identified for
30% of classes of the Human Phenotype Ontology, an ontol-
ogy similar to RGO in size [16]. The current work builds on
efforts to map RGO to other biomedical ontologies such as the
Orphanet Rare Disease Ontology (ORDO), which enabled
analysis of 12.4 million radiology reports to estimate the fre-
quency of rare diseases in radiology reports [17, 18].

The current study has two principal limitations. First, it did
not explore partial matches. Partial mappings can provide a
Bnext-best approach^ when equivalence mapping is limited
due to differences in the ontologies’ focus and granularity
[16]. However, the need for manual review of a large number
of potential matches—here, 51,049—limits such an approach.
Second, the current study relied upon an audit of 10% of exact
matches rather than exhaustive review of all matches. Future
work may include exploring partial mappings to SNOMED
CT, which admits Bpre-coordinated^ concepts (such as chron-
ic pain) and Bpost-coordinated^ concepts that entail an expres-
sion made up of other concepts (e.g., pain, with clinical qual-
ifier chronic) [19].

Recently, longitudinal electronic health record (EHR) in-
formation such as ICD billing codes have been coupled with
genetic data to perform phenome-wide association scans
(PheWAS) for disease-gene associations [20]. EHR systems
also frequently incorporate SNOMED CT terms to encode
clinical findings. Because a large fraction of EHR data exists
as unstructured narrative text, ontologies such as SNOMED
CT and RadLex can provide critical bases to guide named-
entity recognition in textual data, such as clinic notes and
radiology reports. Mappings between ontologies can support

automated knowledge discovery, diagnostic reasoning, and
data mining.

The current work helps link interface terminologies and
reference terminologies. An Binterface terminology^ is a
maintained set of unique, identified terms designed to be com-
patible with the natural language of the user. A Breference
terminology^ is one in which every concept has a formal,
machine-usable definition that can support data aggregation
and retrieval. A reference terminology is designed to provide
common semantics for diverse implementations. Integration
of these different types of terminologies is critical to promote
semantic interoperability [21]. One goal of precision medicine
is to more precisely classify patients in order to improve diag-
nosis and medical treatment [22]. Ontologies can support pre-
cision medicine through their systematic representations of
knowledge that allow researchers to integrate and analyze
large collections of heterogeneous data [23].

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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