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Introduction
Cancer is caused by genetic changes that alter normal cell 
behavior that leads to uncontrolled cell growth. Studying can-
cer genomics, identifying cancer-causing genes, and learning 
genetic networks could provide insights into understanding the 
biology of cancer and developing targeted drug and treatment 
of cancer.1 Several studies have reported genome-wide muta-
tional patterns in different types of cancer and identified the 
potential cancer-causing gene mutations.2–5 The Cancer 
Genome Atlas (TCGA) project has generated data sets of the 
key genomic changes in 33 different types of cancer and gives 
researchers unprecedented access to the cancer genomic data.6,7 
These data sets, including genomic, transcriptomic, epig-
enomic, and clinical data, have been made publicly available by 
TCGA through its data portal. Cross-cancer gene alterations 
in 21 different cancer types were analyzed and reported.8 
Despite the advances in cancer genomics, mining the biological 
significance hidden in the TCGA data sets remains to be a 
challenge. Many attempts from developing software tools to 
innovative algorithmic approaches have been made to facilitate 
the mining process.9–13

Gaussian graphical model (GGM) as an analytics tool is 
often used to analyze gene interactions based on gene expres-
sion levels.14–21 For a multivariate random vector having a nor-
mal distribution, GGM defines an undirected graph structure 
through the precision matrix (inverse covariance matrix) which 
reveals the conditional dependences among variables. A node 

in the graph represents a variable, and an edge implies the con-
ditional dependence between the two variables incident to the 
edge. The expression levels of genes are generally considered to 
be log-normal because their distributions are typically skewed 
to the right.22 Gaussian graphical model provides an effective 
approach for learning genetic regulatory networks from log-
transformed gene expression profiles. In the networks inferred 
from gene expression data sets, a node represents an expressed 
gene, and an edge denotes conditional dependence between the 
two expressed genes connected by the edge.

To estimate the inverse covariance matrix based on sample 
observation data, several algorithms have been reported. The 
underlying idea of the reported approaches is based on the 
maximum likelihood estimation. The traditional covariance 
selection with maximum likelihood estimation aims at identi-
fying zero elements in the inverse covariance matrix; the stand-
ard algorithm for covariance selections is greedy forward and 
backward search.14,15 During greedy forward search, the initial 
set of edges is empty, and then the edges are iteratively added 
when the hypothesis testing reaches an indicated level α. The 
cost of this algorithm is extremely high, making it infeasible to 
estimate high-dimensional graphs.

An inferred genetic network is expected to be sparse and 
stable, and it should not change much with different sample 
data sets. In other words, the estimated inverse covariance 
matrix should only contain non-zero entries for pairs of genes 
that are highly related. To ensure the sparsity, the least absolute 
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shrinkage and selection operator (lasso) technique was intro-
duced.16 Furthermore, several approaches were proposed to 
obtain sparse high-dimensional graphs using lasso with a pen-
alty on the L1-norm  of the precision matrix. Neighborhood-
selection algorithm learns sparse high-dimensional Gaussian 
graphs by performing neighborhood selection for each node; it 
estimates each node separately by fitting linear lasso model.17 
The essence of estimation procedure is equivalent to variable 
selection for Gaussian linear models. The value of a pair of 
variables i  and j  in inverse covariance matrix is estimated to 
be non-zero if both p i j( | )  and p j i( | )  are non-zero. To 
improve the performance of the algorithm and the stability of 
the estimated network, penalized likelihood methods were 
proposed, which minimize the negative log-likelihood func-
tion with L1  penalty by taking advantage of the efficiency of 
the maxdet  algorithm developed in convex optimization.18,23 
To handle the computational challenge in high dimension, a 
model-selection method based on block coordinate decent was 
proposed.19 This approach converted the inverse covariance 
matrix finding problem to be a box-constrained quadratic prob-
lem that is then solved using interior point algorithm. The pro-
posed method is equivalent to a recursive linear regression with 
L1  penalty. Based on similar idea, a simple, but more efficient 
graphical lasso algorithm was proposed.20 This graphical lasso 
algorithm cycles through the variables, fitting a modified lasso 
regression to each variable and the individual lasso problems are 
solved by coordinate descent. Despite all the efforts made to 
improve the computational performances, graphical lasso is still 
not efficient enough to be directly used to construct genome-
scale networks, which contain tens of thousands genes.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway repository is a collection of pathway maps; these path-
way maps represent biologists’ knowledge on the molecular 
interactions, reaction, and relation networks for metabolism, 
genetic information processing, human diseases, cellular pro-
cesses, drug development, and so on.24

In this study, we focus on inferring gene interactions in 15 
specific types of human cancer using RNA-Seq expression 
level data and GGM with graphical lasso. We used the subsets 
of genes outlined in the corresponding KEGG cancer path-
ways.24,25 RNA-Seq expression levels of the subsets of genes in 
solid cancerous tumor and normal tissue were extracted from 
TCGA. The gene expression data sets were cleaned and for-
matted; and then the genetic network corresponding to each 
cancer type was inferred using GGM with graphical lasso. The 
inferred genetic networks were compared and examined to fur-
ther identify a collection of cross-cancer gene interactions.

Materials and Methods
To infer genetic networks and identify cross-cancer gene inter-
actions, genes presented in KEGG pathway maps and their 
RNA-Seq expression levels were extracted from KEGG and 
TCGA, respectively. We cleaned these data sets and inferred 
the genetic networks using GGM with graphical lasso. The 
pipeline for inferring these networks is illustrated in Figure 1 
and the details of each step are described below.

RNA-Seq gene expression levels in 15 solid cancerous tis-
sues as well as normal tissues were extracted from TCGA7 
using the R script, TCGA-Assembler version 2.0.5.26 The 
RNA-Seq data from primary solid tumor and the correspond-
ing normal samples were retrieved. The expression profiles of 
20 531 genes were then preprocessed in three steps: (1) removal 
of 29 putative and retired genes (in the data sets, the IDs of 
these genes are present, but the symbols are absent); (2) remove 
the genes whose expression levels are zero across all samples. 
We note that it is possible that these genes did express but their 
levels were so low and were not picked up by RNA-Seq tech-
nology. There are about 300 such genes for each tissue type; (3) 
log-transformation of the expression data. We replaced 0 in the 
data sets by 1 before the transformation.

A total of 13 KEGG cancer pathway maps were down-
loaded from KEGG pathway repository.25 Genes specific to 
each pathway were extracted to form the subset of genes for the 
pathway. The RNA-Seq expression levels in 15 solid cancerous 
tissues as well as normal tissues of the genes in each subset were 
extracted from TCGA (data sets not related to any KEGG 
cancer pathway were not considered).25 Table 1 presents the list 
of the 15 cancer types/subtypes, their corresponding KEGG 
pathway IDs, and the number of available TCGA gene expres-
sion data sets. The normal gene expression data sets from a 
specific organ were pooled to form one normal tissue data set 
for that organ; the pool data sets include one for kidney renal 
clear cell carcinoma (KIRC) and kidney renal papillary cell car-
cinoma (KIRP) and one for lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC). In addition, the 
normal data sets for brain lower grade glioma (LGG) and skin 
cutaneous melanoma (SKCM) are not available, and the nor-
mal data set for pancreatic adenocarcinoma (PAAD) was not 
used because the data set with a sample size of three is too 

Figure 1.  Pipeline of inferring gene-interaction networks.
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small to construct a reliable network. The data sets were then 
preprocessed and log transformed, resulting in 15 RNA-Seq 
expression data sets from solid cancerous tissues and 10 data 
sets from normal tissues.

To ensure that the log-transformed gene expression profiles 
are normal or at least close to normal, we calculated Ryan-
Joiner (RJ) statistic measures, representing correlations between 
the expression levels of genes and the corresponding normal 
distribution scores. The calculation was performed on one gene 
at a time; effectively, it was testing how well the log-trans-
formed conditional distribution of a gene correlates to a nor-
mal distribution. We observed a significant variability in the RJ 
statistic measures. The correlation coefficient varies from one 
gene to another. The weakest is between CDK4 and normal 
with the correlation coefficient 0.956. The strongest is between 
MAPK3 and normal with JR score 0.999. Statistically speak-
ing, the expression level of CDK4 is considered not normal 
despite the RJ score 0.956; the distribution is still slightly 
skewed to the right (some patients have relative high CDK4 
levels). Nevertheless, the statistics indicates that normal distri-
bution provides a fairly good approximation to the distribution 
of gene expression levels.

Given gene expression data Y RT= … ∈ ×[ , , ]y y1 n
n p  for n  

samples and p  genes, the gene expression profile of each 

sample, y i i i
p= …[ , ]y ,y T1 , is assumed to be independent and 

follow a Gaussian distribution N ( , )u Σ , where u  is the mean 
and Σ  is the p p×  covariance matrix. The precision matrix 
Θ = ∑−1  is a positive definite and symmetric matrix and pre-
sents a model for an undirected graph G V E= ( , )  where V is a 
set of p  vertices corresponding to the p  genes, and the edge 
set E = { },ei j  describes the conditional dependences among 
the p  genes. ei j, = 1  indicates that genes i  and j  are condi-
tionally dependent, whereas ei j, = 0  states the two genes i  
and j  are conditionally independent of each other. Each entry 
θi j,  of the precision matrix signifies the strength of the 
dependence relation. Therefore, learning genetic network is 
equivalent to estimating the precision matrix Θ , that is, to 
maximize the log-likelihood with L1  norm penalty on its pre-
cision matrix Θ :

	 log trace Sdet( )Θ Θ Θ− ( ) −ρ 1
	 (1)

where S is sample covariance matrix, ρ  is non-negative pen-
alty parameter which controls the sparsity of the inverse covari-
ance matrix Θ  and || || | |,Θ Σ Σ1= i j i jθ  represents the 
L1-norm  of Θ .19,20 Clearly, the larger the parameter ρ  is, the 
sparser the estimated Θ  would be. If ρ = 0 , this problem is 

Table 1.  The 15 cancer types and their KEGG and TCGA IDs as well as the number of TCGA data sets.

Cancer type KEGG ID KEGG cancer type TCGA cancer type TCGA sample size

Cancer Normal

BLCA hsa05219 Bladder cancer Bladder urothelial carcinoma 408 19

BRCA hsa05224 Breast cancer Breast invasive carcinoma 1094 112

COAD hsa05210 Colorectal cancer Colon adenocarcinoma 284 40

KIRC hsa05211 Renal cell carcinoma Kidney renal clear cell carcinoma 533 72

KIRP hsa05211 Renal cell carcinoma Kidney renal papillary cell carcinoma 290 32

LGG hsa05214 Glioma Brain lower grade glioma 515 0

LIHC hsa05225 Hepatocellular carcinoma Liver hepatocellular carcinoma 371 50

LUAD hsa05223 Non-small-cell lung cancer Lung adenocarcinoma 515 59

LUSC hsa05223 Non-small-cell lung cancer Lung squamous cell carcinoma 502 50

PAAD hsa05212 Pancreatic cancer Pancreatic adenocarcinoma 178 3

PRAD hsa05215 Prostate cancer Prostate adenocarcinoma 496 51

SKCM hsa05218 Melanoma Skin cutaneous melanoma 102 0

STAD hsa05226 Gastric cancer Stomach adenocarcinoma 415 35

THCA hsa05216 Thyroid cancer Thyroid carcinoma 504 59

UCEC hsa05213 Endometrial cancer Uterine corpus endometrial carcinoma 176 23

Abbreviations: BLCA, bladder carcinoma; BRCA, breast cancer; COAD, colon adenocarcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes;KIRC, kidney 
renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PRAD: prostate adenocarcinoma; SKCM, skin cutaneous melanoma; STAD, stomach 
adenocarcinoma; TCGA: The Cancer Genome Atlas; THCA, thyroid cancer; UCEC, uterine corpus endometrial carcinoma.
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reduced to the typically maximum likelihood estimation prob-
lem, while when ρ →∞ , Θ = 0  regardless what sample data 
sets are used in estimation. In this study, the graphical lasso 
procedure is deployed to estimate the sparse precision matrices 
corresponding to sparse gene regulatory networks.20 The glasso 
software version 1.10 was used.27

To apply graphical lasso to infer genetic networks, one 
important issue is to choose the optimal penalty parameter ρ , 
which controls the sparsity level of the estimated Θ  and 
ensures its stability. Any network to be learned from experi-
mental data unavoidably could include some irrelevant and 
unexpected interactions resulting from the intrinsic “noise” in 
the experimental data. We expect an estimated network robust 
with respect to different sample data. Therefore, models with 
certain stability require ρ  to be at a level so that the “noisy” 
edges in the estimated precision matrix are filtered out. 
Furthermore, genetic networks are typically considered sparse, 
and therefore, we expect that the estimated networks to be 
sparse as well, and the edges represent the true dependences of 
the genes.24,28,29 To select an optimal value of the penalty 
parameter ρ , we implemented and tested the subsampling-
based approach.30

Results
We inferred 15 cancer networks and 10 normal networks 
using TCGA RNA-Seq gene expression data sets and GGM 
with graphical lasso. During the process of penalty parameter 
selection, a P-value of .05 was used. The typical optimal value 
of ρ is found to be around 0.03. The edge/node ratio of 
KEGG networks ranges from 0.8 to 1.2 with an average of 
1.01, reflecting the sparsity of these networks. The initial 
learned GGM networks are much denser despite the applica-
tion of the graphical lasso. We believe that the edges with 
extremely low weights are false positive. There are possibly 
two types of error coming into play during the modeling pro-
cess: (1) noise in the RNA-Seq data due to variations in 
patients and experiments and (2) gene expression profiles are 
not perfect normal (some distributions, such as the one of 
CDK4, are only approximately normal). As a result, inaccura-
cies from GGM also contribute to the noise. To reduce the 
effects of the noise in the data, to strengthen the network 
stability, and to highlight the most important dependences 
between genes, we used a threshold of 0.2 to reduce false pos-
itives. The estimated network edges with weights below a 
threshold of 0.2, that is, the corresponding entries in the pre-
cision matrix <0.2, were removed. The resulting edge/node 
ratio is approximately 5.81.

We constructed a map of the gene interactions in 15 types 
of human cancer and a map of the gene interactions in 10 nor-
mal human tissue types. These two maps encapsulating all 25 
networks are shown in the Supplemental material Tables S1 
and S2. Through comparison and analysis of these derived can-
cer and normal networks, we identified the cross-cancer gene 

interactions that were altered in cancerous tissues. The consensus 
interactions that are unique to cancer networks are presented 
in Table 2 and Figures 2 and 3. These interactions are shared 
by at least five cancer networks but absent in all normal net-
works. The gene interactions that are mostly unique to cancer 
networks, that is, they appear in at least five cancer networks 
but also in one normal network, are shown in Table 3 and 
Figures 4 and 5. Figure 6 integrates the two networks shown in 
Figures 2 and 4 to illustrate both sets of strong gene interactions 
presented in cancer.

Table 2.  Cross-cancer gene interactions that are present in cancer but 
absent in all normal networks.

Consensus gene interactions Number of shared 
cancer networks

BAD-MAP2K2 9

CDKN1A-DDB2 9

PIK3CA-PIK3CB 9

MAP2K1-MAPK1 8

PIK3R1-POLK 8

ARAF-E2F3 7

GRB2-PIK3CD 7

POLK-RB1 7

SOS1-SOS2 7

BAD-SOS1 6

GSK3B-PIK3CA 6

HRAS-SOS2 6

KRAS-MAP2K2 6

MAPK1-NRAS 6

AKT2-BAX 5

BAD-KRAS 5

BAD-MAPK3 5

BAK1-CDKN1A 5

E2F1-RB1 5

E2F3-MAPK3 5

GADD45B-MAP2K2 5

GSK3B-PIK3CB 5

HRAS-SOS1 5

MAPK1-MTOR 5

MAPK1-PIK3CA 5

MTOR-PIK3R3 5

PIK3R1-SOS2 5

https://journals.sagepub.com/doi/suppl/10.1177/1177932219839402
https://journals.sagepub.com/doi/suppl/10.1177/1177932219839402
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Discussion
Gene expression is an extremely complicated process during 
which multiple genes and/or proteins interact in a coordinated 
way and directly or indirectly control each other’s expression 
levels. Highlighting the dependences of the coordination helps 
to elucidate the complicated process. In this study, we identi-
fied and analyzed the cross-cancer gene interactions hidden in 

the gene expression data sets and inferred 15 cancer networks 
and 10 normal networks using TCGA RNA-Seq gene expres-
sion levels and GGM. We focused on the subsets of genes pre-
sented in the 13 corresponding KEGG cancer pathways. We 
uncovered the gene interactions shared among the cancer net-
works and analyzed these cross-cancer gene interactions and 
created a map of the altered gene interactions in various types 
of cancer.

As illustrated in Table 2, Figures 2 and 3, significant num-
bers of the cross-cancer interactions are closely related to the 
signaling molecules on the two critical signaling pathways: 
phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway and 
Ras/Raf/MEK/ERK pathway. The PI3K pathway is an intra-
cellular signaling pathway that plays key roles in regulating cell 
cycle and is linked to many essential cellular processes such as 
cell proliferation, survival, growth, and motility. The signaling 
cascade is mediated through serine and/or threonine phospho-
rylation of a range of downstream molecules. The key proteins 
involved include PI3K, AKT, GSK3, BAD, BAX, and 
CDKN1A. It has been widely reported that the PI3K pathway 
is overactive in many cancers, thus reducing apoptosis and 
allowing proliferation and uncontrolled cell growth.31–35 In 
addition, the alterations of PI3Ks in cancer were detailed along 
with the therapeutic efficacy of PI3K inhibitors in the cancer 
treatment.35

Our results show that genes that encode several signaling 
proteins on the PI3K pathway, AKT2 and BAX, GRB2 and 
PIK3CD, GSK3B and PIK3CA, GSK3B and PIK3CB, 
MAPK1 and PIK3CA, MTOR and PIK3R3, PIK3CA and 
PIK3CB, PIK3R1 and POLK, and PIK3R1 and SOS2, are 
conditionally dependent on each other at their expression 

Figure 2.  A network of cross-cancer gene interactions that are unique to 

the inferred cancer networks.
A node in the network represents a gene, and an edge indicates the conditional 
dependence of the two incident genes. The conditional dependence depicts 
the interaction of the genes at the expression level. The thickness of an edge 
represents the degree of consensus of the interaction among the cancer 
networks. The edges in this network are shared by at least five cancer networks 
but absent in all normal networks.

Figure 3.  The map of consensus gene interactions that are appeared in at least 5 of the 15 cancer networks but not present in any normal network.
This map depicts a portion of the precision matrices, indicating the conditional dependence between a pair of genes in a specific cancer. The higher the value in the map 
is, the stronger the conditional dependence (interaction) of the pair of genes.
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levels in at least five different types of human cancer, and these 
interactions are unique to cancers and do not appear to be sig-
nificant in any normal organ tissue (Table 2, Figures 2 and 3). 
DNA polymerase kappa (POLK) encodes a specialized DNA 
polymerase that catalyzes translesion DNA synthesis, which 
allows DNA replication in the presence of DNA damages.36 
Although few reports find that POLK is linked to PIK3R1  
(a gene that provides instructions for making a regulatory 
subunit of PI3K), our results reveal that the expression level of 
POLK is conditionally dependent on that of PIK3R1 in eight 
different cancers, and the dependence is particularly strong in 
SKCM (Figure 3). One possible connection between PI3Ks 
and POLK is through the PI3K downstream transcription 
factor CREB, which is reported to be a regulator of POLK 
promoter activity.36 Furthermore, our results indicate that the 
expression levels of POLK and the well-known tumor sup-
pressor gene RB1 are conditionally linked to seven cancers 
(Figure 3).

Ras/Raf/MEK/ERK pathway is another key intracellular 
signaling pathway.37–42 Dysregulation of this pathway is a com-
mon event in cancer as RAS family, small guanosine triphos-
phatases (GTPases), is often the most frequently mutated 
oncogene in human cancer.42 Our study shows many identified 
cross-cancer gene interactions that are unique to cancer are 
linked to this pathway, including ARAF-E2F3, BAD-KRAS, 
BAD-MAP2K2, BAD-MAPK3, BAD-SOS1, E2F3-MAPK3, 
GADD45B-MAP2K2, HRAS-SOS1, HRAS-SOS2, KRAS-
MAP2K2, MAP2K1-MAPK1, MAPK1-MTOR, MAPK1-
NRAS, MAPK1-PIK3CA, and SOS1-SOS2. Ras/Raf/MEK/
ERK signaling cascade transmits signals from upstream recep-
tors such as epidermal growth factor receptor (EGFR) to tran-
scription factors such as CREB and E2F3, which in turn regulate 
gene expression and prevent apoptosis. Key molecules involved 
in this cascade are GRAB2, SOS, RAS, RAF, MEK, and MAPK. 
This study reveals how the expression levels of the genes that 
encode these proteins conditionally depend on each other and 
on other genes such as BAD, a pro-apoptotic member of the 
Bcl-2 gene family involved in initiating apoptosis, and E2F3, a 
transcription factor which is key to cellular proliferation and dif-
ferentiation.42–45 Figure 3 shows that the gene expression levels 
of MAP2K2 is conditionally dependent on the levels of BAD in 
nine cancer networks, and the conditional dependence is partic-
ularly strong in three different cancers, KIRC, KIRP, and pros-
tate adenocarcinoma (PRAD). Transcription factor E2Fs are key 
regulators of cell cycle progression and share a critical role in 
tissue homeostasis. Our results reiterate the critical roles MAPK 
signaling pathway plays in cell proliferation, differentiation, cell 
movement, and apoptosis.

Furthermore, this study elucidates several cross-talks 
between the PI3K/AKT/mTOR pathway and Ras/Raf/MEK/
ERK pathway, particularly through the gene that encodes 
BRAF, a proto-oncogene playing major roles in human 

Table 3.  Cross-cancer interactions mostly unique to the inferred 
cancer networks (appear in at least five cancer networks but also in 
one normal network).

Consensus gene 
interactions

Number of shared cancer 
networks

BRAF-PIK3CA 13

BAX-DDB2 9

MAP2K2-PIK3R2 9

BAD-HRAS 8

CDK4-E2F1 7

BAX-MAP2K2 6

BAX-PIK3CA 6

BRAF-HRAS 6

PIK3R1-PIK3R3 6

BAX-CDKN1A 5

HRAS-KRAS 5

HRAS-POLK 5

MAP2K2-PIK3CA 5

PIK3CA-SOS2 5

TGFB1-TGFB3 5

Figure 4.  A network of cross-cancer interactions that are mostly unique 

to the inferred cancer networks.
A node in the network represents a gene and an edge indicates the conditional 
dependence of the two incident genes. The conditional dependence depicts 
the interaction of the genes at the expression level. The thickness of an edge 
represent the degree of consensus of the interaction among the cancer 
networks. Edges in this network represent the interactions identified in at least 
five cancer networks but also appeared in one normal network.
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carcinogenesis,46 and the ones that code the downstream kinase 
mTOR and apoptosis regulator BAX.47,48

The almost unique consensus network shown in Figures 4 
and 5 supports the observations made from Figures 2 and 3. 
The PI3K-pathway-related interactions presented in Figure 4 
include BAX-PIK3CA, BRAF-PIK3CA, MAP2K2-PIK3CA, 
MAP2K2-PIK3R2, PIK3CA-SOS2, and PIK3R1-PIK3R3, 

whereas BAX-MAP2K2, BAD-HRAS, BRAF-HRAS, 
HRAS-KRAS, HRAS-POLK, MAP2K2-PIK3CA, and 
MAP2K2-PIK3R2 are associated with the MEK/ERK 
pathway.

Figure 6 integrates the two networks presented in Figures 2 
and 4. Six network motifs (small cliques) can be observed in 
the network, including BAD-HRAS-KRAS, BAD-HRAS-
SOS1, BAD-KRAS-MAP2K2, BAX-DDB2-CDKN1A, 
BAX-MAP2K2-PIK3CA, and GSK3B-PIK3CA-PIK3CB. 
These six cliques reveal the close dependences among the 
genes. GSK3B-PIK3CA-PIK3CB is linked with PI3K path-
way, BAD-HRAS-SOS1, BAD-KRAS-MAP2K2 and 
HRAS-SOS1-SOS2, are associated with MEK/ERK pathway, 
and BAX-MAP2K2-PIK3CA is linked with both pathways. 
In addition, our study identifies a network motif that is closely 
linked with cell apoptosis and cell cycle arrest, BAX-CDKN1A-
DDB2. It has been reported all three molecules in this clique 
are regulated by the most well-known tumor suppressor gene 
p53. The cyclin-dependent kinase inhibitor 1 (p21), encoded 
by the CDKN1A gene, is a critical player in cell cycle arrests at 
varies checkpoints after DNA damage.49–51 The coordination 
of CDKN1A and DDB2 in the cellular response to ultraviolet 
(UV) radiation has also been reported.52 Our study shows the 
expression levels of the apoptosis regulator BAX and the two 
cell cycle arrest regulator CDKN1A and DDB2 are condition-
ally dependent of each other in cancer.

Conclusions
This study provides rich insights for identifying and analyzing 
the cross-cancer gene interactions hidden in their expression 

Figure 5.  The map of consensus gene interactions that are appeared in at least 5 of the 15 cancer networks; these interactions are also present in one 

normal network. The higher the value in the map is, the stronger the conditional dependence (interaction) of the pair of genes.
A black square denotes the interaction is also appeared in the normal network of the corresponding organ.

Figure 6.  A network of strong cross-cancer interactions.
A node in the network represents a gene and an edge indicates the conditional 
dependence of the two incident genes. The conditional dependence depicts 
the interaction of the genes at the expression level. The thickness of an edge 
represents the degree of consensus of the interaction among the cancer 
networks. Edges in this network represent the interactions identified in at least 
five cancer networks, and they are either absent in any normal network or 
appear in just one normal network.
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levels as well as how the interactions are connected in networks. 
A total of 15 cancer gene interaction networks and 10 normal 
networks were constructed using TCGA RNA-Seq gene 
expression data and GGM with graphical lasso. The inferred 
networks reveal conditional dependences among the genes, and 
the weights of edges indicate the strength of the dependences. 
These networks confirm the essential roles played by genes that 
encode proteins involved in the two key signaling pathway 
PI3K/AKT/mTOR and Ras/Raf/MEK/ERK in human car-
cinogenesis. The stable conditional dependences presented in 
the networks elucidate the expression level interactions among 
the genes that are implicated in many different human cancers.

The genetic networks constructed in this study are based on 
RNA-Seq expression data and reveal conditional dependences 
among the genes at the expression level. We note that these 
dependences may not indicate the proteins encoded by these 
genes have direct interactions; in some cases, they belong to 
different cellular components. In signaling pathways such as 
PI3K/AKT/mTOR and Ras/Raf/MEK/ERK, the most 
important event is phosphorylation cascade. One enzyme 
phosphorylates another may not signify the expression level 
dependences between the two genes that code the two enzymes. 
Nevertheless, the expression level dependences of signaling 
protein-coding genes reveal, to a certain degree, the dynamic 
nature of phosphorylation cascades because, as concluded by a 
recent study, on the bulk level and for approximate steady-state 
conditions, protein levels are largely determined by their tran-
script concentrations.53 The cross-cancer gene interactions 
highlighted in the results derived from the expression levels 
provide another set of knowledge for cancer biologists to pro-
pose strong hypotheses so further biological investigations can 
be conducted effectively.
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