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Abstract

INTRODUCTION: The main goal of this work is to investigate the feasibility of estimating an 

anatomical index that can be used as an Alzheimer’s disease (AD) risk factor in the Women’s 

Health Initiative Magnetic Resonance Imaging Study (WHIMS-MRI) using MRI data from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), a well-characterized imaging database of 

AD patients and cognitively normal subjects. We called this index AD Pattern Similarity (AD-PS) 

scores. To demonstrate the construct validity of the scores, we investigated their associations with 

several AD risk factors. The ADNI and WHIMS imaging databases were collected with different 

goals, populations and data acquisition protocols: it is important to demonstrate that the approach 

to estimating AD-PS scores can bridge these differences.
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METHODS: MRI data from both studies were processed using high-dimensional warping 

methods. High-dimensional classifiers were then estimated using the ADNI MRI data. Next, the 

classifiers were applied to baseline and follow-up WHIMS-MRI GM data to generate the GM AD-

PS scores. To study the validity of the scores we investigated associations between GM AD-PS 

scores at baseline (Scan 1) and their longitudinal changes (Scan2 –Scan 1) with: 1) age, cognitive 

scores, white matter small vessel ischemic disease (WM SVID) volume at baseline and 2) age, 

cognitive scores, WM SVID volume longitudinal changes respectively. In addition, we 

investigated their associations with time until classification of independently adjudicated status in 

WHIMS-MRI.

RESULTS: Higher GM AD-PS scores from WHIMS-MRI baseline data were associated with 

older age, lower cognitive scores, and higher WM SVID volume. Longitudinal changes in GM 

AD-PS scores (Scan2 – Scan 1) were also associated with age and changes in WM SVID volumes 

and cognitive test scores. Increases in the GM AD-PS scores predicted decreases in cognitive 

scores and increases in WM SVID volume. GM AD-PS scores and their longitudinal changes also 

were associated with time until classification of cognitive impairment. Finally, receiver operating 

characteristic curves showed that baseline GM AD-PS scores of cognitively normal participants 

carried information about future cognitive status determined during follow-up.

DISCUSSION: We applied a high-dimensional machine learning approach to estimate a novel 

AD risk factor for WHIMS-MRI study participants using ADNI data. The GM AD-PS scores 

showed strong associations with incident cognitive impairment and cross-sectional and 

longitudinal associations with age, cognitive function, cognitive status and WM SVID volume 

lending support to the ongoing validation of the GM AD-PS score.
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INTRODUCTION

Machine learning is becoming an increasingly popular approach in biomedical research 

related to high-dimensional data. In Alzheimer’s disease (AD) research the challenge of 

early detection is of paramount importance, since pathological processes develop many 

years before the cognitive impairment is observed. Early detection of AD might help in 

selection of patients for clinical trials and improve the efficacy of clinical or behavioral 

interventions.

Massive amounts of data from different sources are being used to develop early detection 

models (Weiner, et al., 2013). One of the more common types of neuroimaging data is 

structural MRI. Brain MRI is used to identify neuropathologies such as brain atrophy. 

Traditional approaches to study the impact of AD on brain structure are based on specific 

regions of interest (ROI) or voxel-based morphometry; these are univariate and cannot reveal 

complex spatial patterns of atrophy related to AD. Machine learning approaches are well-

suited to address these challenges because they can capture complex patterns hidden in the 

data and build powerful prediction models based on high-dimensional data.
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Many recent studies have sought to derive machine learning models based on structural MRI 

to predict AD or MCI-AD conversion. Much of this work has used the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset, which was developed with highly standardized 

protocols to distinguish individuals with and without AD. For these methods to be adopted 

in practice, it is important to demonstrate their utility with different protocols for identifying 

dementia and MRI outcomes. These efforts could enable the AD research community to 

more fully use large amounts of imaging data already collected.

A few groups have developed machine learning models using one imaging database, and 

then applied them to other databases using different populations and imaging protocols. 

Kloppel and colleagues showed the feasibility of automatic classification of AD using whole 

brain MRI scans collected in different centers and support vector machines (SVM)(Kloppel, 

et al., 2008). Davatzikos and colleagues used the ADNI dataset to train a SVM classifier 

used to estimate an index of AD anatomical risk called Spatial Pattern of Abnormality for 

Recognition of Early Alzheimer’s disease (SPARE-AD). They investigated the association 

of this index with cognitive decline using longitudinal structural MRI data from cognitively 

normal participants and those with mild cognitive impairment (MCI) in the Baltimore 

Longitudinal Aging Study (BLSA)(Davatzikos, et al., 2009). Associations between the 

SPARE-AD index, plasma analytes, and AD risk factors have been investigated using other 

cohorts (Habes, et al., 2016a,Habes, et al., 2016b,Toledo, et al., 2013).

This study extends our previous research on AD pattern similarity (AD-PS) scores 

developed using structural MRI from ADNI (Casanova, et al., 2013). Our main goal here is 

to create a metric based on MRI to be used by Women Health Initiative investigators, as an 

AD risk factor reflecting the presence of AD-related spatial patterns in the brain. This study 

is part of an ongoing effort to investigate the feasibility and constructive validity of 

estimating a novel AD risk factor based on elastic net regularization and WHIMS-MRI data. 

To do this we computed AD-PS scores for the Women’s Health Initiative Memory MRI 

study cohort, and then we evaluated whether these scores are associated with classifications 

of cognitive impairment (normal, MCI, and probable dementia), incident cognitive 

impairment, age, performance on a test of cognitive function, and white matter 

hyperintensity volume and other risk factors.

MATERIALS AND METHODS

WHIMS-MRI

The Women’s Health Initiative Memory Study (WHIMS) investigated the effects of 

postmenopausal hormone therapy on the risk of dementia and changes in cognitive function 

in women aged 65–79 at enrollment (1996–1998) into the WHI randomized placebo-

controlled hormone therapy clinical trials (Espeland, et al., 2004,Shumaker, et al., 1998). 

The WHIMS-MRI study enrolled WHIMS participants from 14 of 39 sites (Jaramillo, et al., 

2007,Resnick, et al., 2009) from January 2005 through April 2006, an average of 8 years 

after they had enrolled in the WHIMS trial and 1–3 years after study medications ended 

(Coker, et al; 2014). WHIMS-MRI participants who continued WHIMS follow-up were 

invited to join the WHIMS-MRI2 study; a second MRI scan was obtained an average of 4.7 

years after the first one. WHIMS-MRI2 exclusion criteria included absolute 
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contraindications and health-related factors and were identical to those for WHIMS-MRI 

(Coker, et al., 2014,Jaramillo, et al., 2007).

We analyzed baseline and follow-up images from 1,365 and 712 participants, respectively, 

who met WHIMS-MRI reading criteria. This study was conducted in accordance with the 

Declaration of Helsinki. All participants provided written informed consent for both 

WHIMS-MRI studies.

MRI Data Acquisition and Processing

MRI scans were performed using a standardized protocol developed by the MRI Quality 

Control Center in the Department of Radiology of the University of Pennsylvania (Coker, et 

al., 2009,Resnick, et al., 2009). Briefly, the scans were obtained with a 22 cm field of view 

and a matrix of 256×256 in 1.5T scanners. Included were oblique axial spin density/T2-

weighted spin echo (TR:3200 ms, TE=30/120 ms, slice thickness=3 mm), fluid-attenuated 

inversion recovery (FLAIR) T2-weighted spin echo (TR=8000 ms, TI=2000 ms, TE=100 

ms, slice thickness=3 mm), and oblique axial three-dimensional T1-weighted gradient echo 

(flip angle=30 degrees, TR=21 ms, TE=8 ms, slice thickness=1.5 mm) images from the 

vertex to the skull base parallel to the anterior commissure-posterior commissure (AC-PC) 

plane. Total brain white matter hyperintensity volumes were computed based on a machine 

learning methodology previously described, validated and deployed in several imaging 

studies (Lao, et al., 2008,Launer, et al., 2011).

ADNI

ADNI database—The ADNI was launched in 2003 by the National Institute on Aging, the 

National Institute of Biomedical Imaging and Bioengineering, the Food and Drug 

Administration (FDA), private pharmaceutical companies, and non-profit organizations. Its 

primary goal was to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment could be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. From over 50 sites across the U.S. and Canada, 

in its first phase ADNI (ADNI-1) recruited 819 participants, aged 55 to 90 years, including 

229 cognitively normal (CN) individuals to be followed for 3 years, 398 people with MCI to 

be followed for 3 years, and 192 people with early AD to be followed for 2 years. For up-to-

date information about the cohort, see www.adni-info.org.

MRI Data

In this work, we used ADNI baseline structural MRI data from 359 Caucasians (Casanova, 

et al., 2013) (See Table S1). Of those, 188 were CN (86 women) and 171 had AD (76 

women) (Petersen, et al., 2010). Baseline 1.5T T1-weighted MRI scans were collected using 

3D MPRAGE sequences, as described in the ADNI acquisition protocol (Hua, et al., 

2008,Jack, et al., 2008). The ADNI protocol acquires 2 repeated scans of structural MRI 

data at each visit that are rated for image quality and artifacts by ADNI investigators. To 

enhance standardization across sites and platforms, the best dataset undergoes additional 

pre-processing, including corrections for gradient non-linearity and intensity non-uniformity.
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ADNI and WHIMS-MRI Image Processing

The open source package Advanced Normalization Tools (ANTs) was used to process the 

MRI images. Its capabilities include diffeomorphic transformations for image warping that 

preserve topology. These are based on symmetric normalization algorithms (Avants, et al., 

2008,Avants, et al., 2011a), which are among the top-performing image warping approaches 

in large comparative studies (Klein, et al., 2009,Murphy, et al., 2011). A more detailed 

description of the ANTs pipeline components is in Tustison et al. (Tustison, et al., 2014). All 

the necessary preprocessing steps consist of previously published algorithms for bias 

correction (Tustison, et al., 2010), brain extraction, n-tissue segmentation (Avants, et al., 

2011b), template construction (Avants, et al., 2010), and image normalization (Avants, et al., 

2011a). Further details of the MRI image processing and its implementation can be found in 

the appendix.

Cognitive Assessment

Participants underwent annual cognitive assessments during their in-person clinic visits to 

evaluate global cognitive function in the first phase of WHIMS (years 1–10), as described 

previously (Shumaker, et al., 1998). Briefly, the Modified Mini-Mental State Exam (3MS) 

(Teng and Chui, 1987) was administered to all participants. Age and education specific cut 

points determined which participants were referred for an extensive clinical evaluation, 

which involved additional cognitive testing and questionnaires, a physical exam by an 

experienced physician and proxy interviews (Shumaker, et al., 1998). All data were 

submitted to a central adjudication panel of expert clinicians who classified each case as no 

impairment, MCI using Petersen’s criteria (Petersen, et al., 1999,Petersen, et al., 2001) or 

probable dementia probable dementia(American Psychiatric Association, 1994).

Beginning in 2007, WHI clinic visits ceased and WHIMS transitioned to a telephone-based 

cognitive assessment battery (Rapp, et al., 2012), questionnaires, proxy interviews and 

central adjudication of cognitive impairment as in the initial phase of WHIMS. The 

telephone battery included the modified Telephone Interview for Cognitive Status (TICS-m), 

(Brandt, et al., 1988,Plassman, et al., 1994,Welsh, et al., 1993), a measure of global 

cognitive function and tests of memory, verbal fluency, attention, working memory and 

executive function; questionnaires assessing depression and sleep; and the Dementia 

Questionnaire (DQ) (Kawas, et al., 1994), a standardized interview assessing cognitive and 

behavioral changes and medical events related to dementia and MCI administered to a proxy 

informant. The DQ was administered when TICS-m scores fell below 31 points. All data 

were forwarded for central adjudication. Following central adjudication of dementia, each 

adjudicator was required to subtype the classification using DSM-IV diagnostic criteria for 

Alzheimer’s, Vascular and Other dementias. Disagreements were resolved in regular 

consensus conferences.

Estimation of the GM AD-PS scores in the WHIMS-MRI cohort

Once ADNI and WHIMS-MRI were aligned into a template (see appendix A) , we used 

high-dimensional machine learning methods to estimate GM AD-PS scores in the WHIMS-

MRI cohort. The general approach followed is depicted in Figure 1. Details of the machine 

learning algorithms were published previously (R. Casanova, et al., 2012,Casanova, et al., 
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2013) and also can be found in appendix B. An elastic net regularized logistic regression 

(EN-RLR) classifier was estimated using the GM probability maps (described above) from 

CN and AD participants in ADNI. The weights β estimated after solving the optimization 

problem associated with the EN-RLR classifier (Casanova, et al., 2013,Friedman, et al., 

2009) are used to estimate the conditional probabilities. These were computed as the median 

values of 5 repetitions of the computations, to account for variability due to random 

partitioning of cross-validation that occurred during model estimation (Casanova, et al., 

2013). The scores for WHIMS-MRI participants were estimated by providing the 

corresponding baseline and follow-up GM probability maps to the classifiers. Discriminative 

maps (voxels with coefficients different from zero) pinpointing the GM areas involved in 

discrimination of AD patients from CN participants were generated. For simplicity from 

now on we will refer to the GM AD-PS scores as AD-PS scores.

Analyses

The cross-sectional relationships of AD-PS scores of baseline WHIMS-MRI participants 

and three risk factors for cognitive impairment (age at MRI, most proximal cognitive 

function test score, and abnormal white matter volumes) were assessed with linear 

regression with covariate adjustment for age, education, race and hormone therapy 

assignment. Relationships between longitudinal changes in AD-PS scores and changes in 

age and WM SVID volumes were assessed with linear models.

When the initial MRIs were collected, the clinic-based cognitive assessment protocol of 

WHIMS was ongoing. When repeat MRIs were collected in a subset of women, global 

cognitive function assessment had transitioned to telephone-based TICS. To obtain a 

measure of relative change in global cognitive function over time, we standardized 3MS 

(administered in person) and TICS scores by subtracting them from the cohort-wide mean 

and dividing this by the cohort-wide standard deviation. We used the difference between the 

standardized 3MS and TICS scores as a measure of relative change, using the scores most 

proximal to the initial and repeat MRI. Linear models were then used to assess relationships 

between changes in AD-PS scores and changes in standardized cognitive function scores. 

Survival analyses, using proportional hazards regression, were performed to investigate 

associations of the AD-PS scores with time to diagnosis of cognitive impairment(Cox DR 

and D., 1984) as MCI, probable dementia, and MCI/probable dementia adjusted for age, 

education, HT treatment assignment and race/ethnicity, using the 27 cases of probable 

dementia and 33 cases of MCI that were observed among the 1365 women between their 

initial MRI through January 2010 (when follow-up MRIs began). Associations that changes 

in AD-PS scores between the initial and follow-up MRI (in 712 women) had with 

subsequent cognitive impairment was based on 54 cases of probable dementia and 37 cases 

of MCI that occurred during later follow-up. Analyses were adjusted for age, education, race 

and HT treatment assignment.

Boxplots, receiver operating characteristic curves (ROC), and area under the curve (AUC) 

estimates were generated for baseline, follow-up, and longitudinal changes in AD-PS scores 

to evaluate their sensitivity to cognitive status. To generate confidence intervals for AUC we 

used the R package pROC(Robin, et al., 2011). When generating these plots for the baseline 
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AD-PS scores, we used only participants who were CN at baseline MRI and with date of last 

cognitive assessment in 2010 or afterwards (4.5 years on average) or whose cognitive 

impairment was diagnosed between baseline MRI and January 1st 2010 (Total N = 834). Of 

those, 733 remained stable in that time period as CN, 33 converted to MCI and 28 to 

probable dementia, including 12 cases adjudicated as AD. For follow up AD-PS scores and 

change plots, we also used participants who were CN at baseline MRI, who had both scans 

and with date of last cognitive assessment in 2010 or afterwards or whose cognitive 

impairment was diagnosed at any point during the follow up (N = 571). Of those, 455 

remained stable as CN until 2009, 53 converted to MCI and 63 to probable dementia 

including 6 cases adjudicated as AD.

RESULTS

Women who had only a baseline MRI scan in WHIMS-MRI were older, more likely to be 

minority, hypertensive and diabetic, and had lower 3MS scores compared with women who 

had both baseline and follow-up MRI scans (p<0.05) (Table 1). Baseline AD-PS scores were 

significantly higher for the 653 women who only had baseline MRIs compared with the 712 

who had baseline and repeat MRIs (mean ± SD: 0.39 ± 0.25 versus 0.28 ± 0.20; p=0.0002). 

This is consistent with a previous report by WHIMS-MRI researchers indicating that women 

who had both MRI scans had greater hippocampal and brain volumes than those who had 

only the baseline scan (Coker, et al., 2014). For participants who had both scans, follow-up 

scores were significantly higher than baseline scores when adjusted by age, education, race 

and hormone therapy treatment (0.44 ± 0.26; p < 0.0001).

AD-PS scores were significantly associated with age at baseline MRI, 3MS scores, and WM 

SVID volume after adjusting for age, education, race and hormone therapy treatment 

assignment (p < 0.001) (Table 2). In participants who had baseline and follow-up MRIs, 

changes in AD-PS scores were also significantly related to changes in age, cognitive 

function, and abnormal white matter volumes. At baseline, women assigned to hormone 

therapy had slightly, but not significantly, higher mean (standard error) AD-PS scores 

compared to the placebo group (0.337 ± 0.008 versus 0.320 ± 0.008; p=0.14). There was no 

difference in mean changes in AD-PS scores over time between intervention groups.

Figure 2 shows the values of the AD-PS scores at Scan 1, Scan 2 and their longitudinal 

change for a subset of WHIMS-MRI participants CN at baseline and with cognitive follow-

up until 2010 or afterwards, or whose cognitive impairment was diagnosed during follow-up. 

In all cases the scores and their longitudinal change increased with the severity of the 

cognitive impairment. Additional plots of the scores can be found in Figures S2–S3 in 

supplementary materials. ROC curves evaluating discrimination of the cognitive impaired 

groups’ AD-PS scores relative to the CN are presented in Figure 3. Each panel evaluates 

discrimination of the data from the corresponding panel of Figure 2. The level of 

discrimination according to the estimated AUC increases as the severity of the cognitive 

impairment increases.

Baseline AD-PS scores and change sin AD-PS scores over time were both significantly 

(p<0.0001) associated with the incidence of cognitive impairment (Table 3). For baseline 
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(Scan 1) scores, hazard ratios per 0.1 greater score were 1.84, 1.29 and 1.50 for probable 

dementia, MCI and MCI/probable dementia respectively. For the longitudinal changes in 

scores, hazard ratios per 0.1 increases of the AD-PS scores were 1.63, 1.38 and 1.51 for 

probable dementia, MCI and MCI/probable dementia respectively.

Figure 4 shows a discriminative map indicating the areas involved in discrimination of AD 

from CN, derived from the elastic net regularization constraints. In addition, in the 

supplementary materials, Figure S3 shows a mask to indicate the location identified by the 

elastic net algorithm as relevant. The map includes many regions thought to be involved in 

AD (e.g. amygdala, hippocampus, parahippocampal gyrus, thalamus, bilateral inferior 

temporal lobe areas)(Braak and Braak, 1991,Mu and Gage, 2011,Poulin, et al., 2011,Zanchi, 

et al., 2017), but others less reported as well (e.g. midbrain)(Lee, et al., 2015). This part of 

the midbrain corresponds to substantia nigra which is formed by dopaminergic neurons. 

Very likely few voxel-based machine learning studies (or none) have included this area in 

the parameter space which is part of the GM segmentation provided by ANTS. There are 

some groups that promote the idea of early involvement of the brainstem in AD (Simic, et 

al., 2009). There is also a growing literature that suggests midbrain and dopamine 

involvement in AD (D’Amelio and Nistico, 2018,D’Amelio, et al., 2018,Koch, et al., 

2014,Martorana and Koch, 2014,Nobili, et al., 2017,Uematsu, et al., 2018). However, it 

should be kept in mind that possibility that the maps are affected by noise coming from 

errors in the segmentation, normalization process or other causes.

DISCUSSION

WHIMS is a cohort where AD biomarkers (e.g. amyloid PET, blood or cerebrospinal fluid 

biomarkers, etc.) are not available however MRI scans are available for a relatively large 

number of participants. The long term goal of this work is to provide the WHIMS-MRI 

database with a metric (AD-PS scores) based on MRI that can be used by WHIMS 

investigators as an anatomical AD risk factor to address research questions. This is part of an 

ongoing work aiming at validating the AD-PS scores in the WHIMS-MRI cohort. Here we 

develop further our previous work (Casanova, et al., 2013) by estimating the AD-PS scores 

in a second cohort, the WHIMS-MRI study. The scores characterize how similar an 

individual’s patterns of atrophy are to those of AD patients. Previously in ADNI we found 

the scores to be associated with age, cognitive status, time to conversion from MCI to AD 

and physical function as assessed by the functional assessment questionnaire (Casanova, et 

al., 2013). In addition, a recent report of our group (Espeland, et al., 2018) found the AD-PS 

scores to be associated with trajectories of cognitive function tests scores in WHIMS-MRI. 

Women were grouped into five clusters of trajectories using a latent class approach(Jones 

BL and DS., 2007). AD-PS scores varied significantly among clusters of trajectories with 

relationships that were more strong and consistent than those for other traditional risk factors 

(education, diabetes, and APOE-e4 genotype).

In this work we further investigated the constructive validity of the WHIMS-MRI AD-PS 

scores founding that the WHIMS-MRI AD-PS scores had significant cross-sectional and 

longitudinal relationships with known risk factors and cognitive status. After adjustment, the 

AD-PS scores were associated with age, cognitive scores, and WM SVID volumes at 
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baseline. At follow-up, greater age, poorer cognitive test scores, and greater WM SVID 

volume were associated with higher AD-PS scores. The scores were correlated with age, as 

expected. However, distinguishing between effects attributable to normal aging versus AD 

could be challenging. In our case the strong association of the scores with incident 

impairment and the observation that including AD-PS scores in our survival analyses 

rendered non-significant the associations of age and other covariates suggest that the AD-PS 

scores are a stronger risk factor than age. There is growing evidence (Brickman, et al., 

2009,Prins, et al., 2004) that increased burden of WM small vessel disease increases the risk 

of AD. Furthermore, several studies have reported associations of GM tissue atrophy with 

WM lesion burden in older adults. Bilello et al. investigated the correlation of brain atrophy 

and white matter lesions with cognitive decline in CN, MCI and AD subjects finding that 

both were associated with cognitive decline(Bilello, et al., 2015). Three City Study 

researchers, using data from 1792 adults free of dementia, reported negative associations 

between WM lesion volumes with GM and hippocampal volumes(Godin, et al., 2009). In a 

cohort of 740 cognitive normal older adults, GM and WM lesions were found to be inversely 

correlated (Raji, et al., 2012). Crane et al. reported association between increased WM 

lesion burden and GM volume losses in several brain areas, including the hippocampus 

(Crane, et al., 2015). Recent work by Habes and colleagues supports the hypothesis that 

white matter hyperintensities also contribute to brain atrophy patterns in regions related to 

Alzheimer’s disease (Habes, et al., 2016a). In this context our work provides further support 

to this hypothesis based on a large cohort of older women with available baseline and 

follow-up MRI data. However, we should notice that we did not take any measure to mask 

out the WM hyperintensities from the images which could be a source of confound in our 

analyses. Higher baseline AD-PS scores predicted which CN women would transition to 

poorer cognition. Changes of the AD-PS scores in time (Scan 2 – Scan 1) were also 

associated with changes in cognitive scores: increases in the AD-PS scores predicted 

decreases in cognitive scores and increases in WM SVID volume. The scores were also 

strongly associated with incident cognitive impairment. An increase of 0.1 units in AD-PS 

scores between MRI scans increased the hazard for cognitive impairment (combined group 

of MCI/probable dementia cases) was associated to a hazard ratio of 1.51 (1.31–1.75) (see 

Table 3). There are a few other studies that investigated value of MRI measures to 

investigate the progression of CN individuals to MCI and AD. Csernansky et al. used 

hippocampal volume and shape to predict conversion to cognitive impairment in a cohort of 

49 individuals followed for 4.9 years (Csernansky, et al., 2005). They reported both 

measures predicted time to conversion. Toledo et al. investigated in ADNI the risk of 

conversion from CN to MCI/AD based on combinations of biomarkers, using 326 subjects 

with 7 years of follow-up. They reported hazard ratios of 3.11 (1.84–5.25) and 1.46 (1.12–

1.92) for hippocampal volume and SPARE-AD respectively.(Toledo, et al., 2014). Albert et 

al. followed a cohort of 224 individuals cognitive normal individuals for an average of 11 

years (Albert, et al., 2018). The volumes of the right hippocampus and entorhinal cortex 

thickness derived from MRI scans were associated with MCI incidence with HRs of 0.728 

(0.552 – 0.961) and 0.668 (0.492 – 0.905), respectively.

In addition, other unadjusted results (Table 1) support further the constructive validity of the 

scores. Women who had only a baseline MRI scan in WHIMS-MRI were older, more likely 
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to be minority, hypertensive and diabetic, and had lower 3MS scores compared with women 

who had both baseline and follow-up MRI scans. Baseline AD-PS scores were significantly 

higher for the 653 women who only had baseline MRIs compared with the 712 who had 

baseline and repeat MRIs. For participants who had both scans, follow-up scores were 

significantly higher than baseline scores when adjusted by age, education, race and hormone 

therapy treatment.

We did not attempt accurate classification according to cognitive status in WHIMS-MRI. 

There are several reasons why classification of participants may not align with the 

adjudication of probable dementia implemented in WHIMS-MRI. It presents an unbalanced 

classification problem. The overwhelming majority of WHIMS-MRI participants met study 

criteria for CN. This poses technical challenges because the overall accuracy is dominated 

by the intra-class accuracy of the majority group. A relatively large fraction of WHIMS-MRI 

women meeting study criteria for CN are miss-classified as AD, very likely because they 

present AD-like patterns but have not progressed sufficiently to meet study adjudication 

criteria based on cognitive testing. Also only women performing below a fixed threshold of 

the 3MS scores underwent adjudication process. Women above the threshold were presumed 

to be CN and not thoroughly tested which in addition could lead to the categorization as CN 

of MCI cases further confounding classification. Here instead we tackled successfully a less 

complex problem. Rather than an accurate classifier of cognitive status, in essence we 

derived a metric (AD-PS scores) in WHIMS-MRI that acts as a “detector” of AD-like 

patterns in the brain of WHIMS participants. Though we have shown significant statistical 

associations of the scores with cognitive status in WHIMS-MRI (among several other 

factors) these statistical associations across groups do not necessarily translate in accurate 

classification per class.

We used the Advanced Normalization Tools software to put both databases into a common 

coordinate system. This software warped all images into a customized ADNI template based 

on a subset of subjects. Many other strategies are possible, but testing all of them is a very 

time- and storage space-consuming exercise, which was well beyond our resources.

The AD-PS scores can potentially be used as an anatomical AD risk factor in research, since 

they seem to capture subtle spatial patterns of AD-related tissue atrophy. They could also 

help to select subjects for clinical trials of AD prevention or treatment (Weiner, et al., 2013) 

or as a criterion to select participants more or less likely to progress to greater cognitive 

impairment. These strategies could increase statistical power while saving resources.

To the best of our knowledge, only the SPARE-AD index (Davatzikos, et al., 2009) 

originally computed for the ADNI dataset has been estimated for one cohort with 

longitudinal data, BLSA. The SPARE-AD index was associated with age and could 

discriminate which CN subjects were more likely to convert to MCI or remain stable as CN. 

The approach presented here differs from that behind the SPARE-AD in several respects. 

Our classification method is not based on a support vector machine model, but on elastic net 

regularized logistic regression. We determined cognitive classifications directly in the voxel 

space (via GM probability maps) taking advantage of the sparsity properties of the elastic 

net regularization and the speed of the coordinate descent (Friedman, et al., 2009). We used 
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a different image warping approach based on high-dimensional diffeomorphic 

transformation and cross-database alignment strategy. Finally, here we investigated the 

feasibility of using ADNI MRI data to estimate the AD-PS scores in WHIMS-MRI. ADNI is 

a clinical dataset designed for AD research, whereas WHIMS-MRI was a clinical trial 

focused on hormone therapy, with data collected across multiple sites with different MRI 

protocols. Our work further demonstrates the value of cross-database machine learning 

analyses aimed at AD applications, pioneered by others (Davatzikos, et al., 2009,Kloppel, et 

al., 2008). It also demonstrates the feasibility of performing cross-database high-dimensional 

machine learning analyses at the voxel level using the elastic net regularization approach.

Our study has several limitations. Although WHIMS-MRI includes only women, we used 

data from both women and men in ADNI to train our classifiers: this provided a larger 

sample size that would be expect to increase prediction performance. In addition, the 

classifiers were trained using MRI data from Caucasians ADNI participants. While the 

WHIMS-MRI cohort is overwhelmingly composed by Caucasian women (91% at baseline 

and 93% at follow-up) there are still some participants of other race/ethnicities for whom 

generalization may be unwarranted until further validation. In WHIMS-MRI relatively few 

women had adjudicated MCI or dementia, and many women did not have a second MRI. 

These rates are in line with the full WHIMS cohort (Espeland, et al., 2015). This may be 

attributable to a healthy volunteer effect, i.e. the women who enrolled in WHIMS were 

healthier than more general cohorts. As we noted, the WHIMS study shifted to a telephone 

assessment of cognitive function, so not all data were collected in person.

CONCLUSIONS

In this work we applied a high-dimensional machine learning approach to estimate the AD-

PS scores based on GM for WHIMS-MRI study participants, using ADNI imaging data. To 

investigate the value of the scores as an AD anatomical risk factor we studied their 

associations with several AD risk factors using WHIMS-MRI data. The scores of AD risk 

showed associations with incident cognitive impairment, age, cognitive function, cognitive 

status and WM SVID volume. Our work lends additional support to the utility of this 

machine learning-derived score. Future work will aim at refinement of the machine learning 

methodology and its applications to other available imaging databases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Group template generation

Images from participants in both studies were aligned into a group template created using 

ADNI MRI images of female participants. Images of 50 CN women (mean age 76.8) from 

the ADNI study were selected at random to generate a group template. The template 

generation process consists of four main stages: (1) group template assembly, (2) brain 

extraction, (3) brain tissue labeling, and (4) generation of the prior probability images.

Group template assembly

uses the antsMultivariateTemplateConstruction.sh ANTs script to build an anatomical 

template based on the input images (Avants, et al., 2011a). This script first creates an initial 

group template based on the average of the input images. The input images are then 

registered and warped to the initial group template. These warped images are then averaged 

again, creating a second group template image. The original input images are again 

registered and warped to the refined group template, and the cycle repeats for 16 iterations. 

The averaged image from the final iteration is the anatomical (T1 space), non-segmented 

group template.

Brain extraction

uses the antsBrainExtraction.sh script, which strips the skull from the group template image, 

producing a usable, skull-stripped group template. This procedure registers a brain 

extraction template (Tustison N.J, et al., 2017,Tustison, et al., 2014) to the group template. 

The brain extraction template includes a brain extraction mask, which is warped to the group 

template. The mask is then applied to the group template to produce a skull-stripped version 

of the group template.
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Brain tissue segmentation

uses a multi-atlas segmentation technique (Wang, et al., 2013) via the 

antsJointLabelFusion.sh ANTs script. This script uses a set of 15 independent anatomical 

images (“atlases”), each of which is paired with an expert-segmented label image that 

identifies the tissue type of each voxel in the anatomical image (Tustison, et al., 2014). The 

atlas images are warped to the group template and the resulting deformations are applied to 

the label images, which are then combined using the joint label fusion technique referenced 

above. The atlas images used for brain template segmentation include six tissue types: 

cerebrospinal fluid (CSF), cortical gray matter, white matter, subcortical gray matter, brain 

stem, and cerebellum. The group template segmentation is thus labeled with the same tissue 

types.

Prior probability generation:

Prior probability images depict the prior spatial probability of each voxel being of a 

particular tissue type. To obtain these from the segmented group template image, we 

combined two approaches. First, a set of prior probability images for each tissue type is 

obtained via the antsJointLabelFusion.sh script, which propagates labels from a set of 

expert-labeled atlases onto the skull-stripped template. Second, the antsCorticalThickness.sh 

script is used to produce a prior image for the CSF. This additional CSF prior probability 

image is subtracted from the other tissue type prior probability images to correct for a bias in 

differentiating between CSF and grey matter, wherein the latter is favored over the former 

(Tustison, et al., 2014).

The result is a set of prior probability images for the aforementioned tissue types. Several 

additional prior images are created from combinations of these six, by adding single-tissue 

prior probability images together using the ANTs ImageMath program. In this report, we use 

a GM prior probability image that combines cortical gray matter and deep gray matter 

structures.

Processing of the individual images

Once the ADNI group template was generated, all MRI images from both studies were 

segmented and warped into the ADNI template. We briefly describe the main steps. The 

antsCorticalThickness.sh script registers input images to the group template. This script 

consists of six stages: brain extraction; template registration; tissue segmentation; an 

optional, improved template registration; cortical thickness estimation; and quality control 

and summary measurements. To obtain a registration of input images to the group template 

image, only the first four stages are needed. These stages produce a number of output 

images and transform files. The output images are all in the space of the original input 

image; they include a brain extraction mask, an N4 bias field-corrected version of the input 

image, and segmented posterior probability images for the six tissue types previously 

described. The transforms include affine transformation matrices and high-dimensional 

deformation fields for transforming an image from the input subject’s space to the group 

template space and vice-versa. The output images are warped to the group template space 

via the antsApplyTransforms program. Finally, we produce a Jacobian determinant image 
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and a log-Jacobian image using the CreateJacobianDeterminantImage program on the high-

dimensional deformation field. The GM posterior probability maps from all participants 

were used as input for the machine learning algorithms that generate the AD-PS scores. The 

images were thresholded using a mask derived from the group template GM prior 

probability map retaining voxels above 0.4. This generated a set of 441,678 features. The 

images were not modulated nor smoothed. Intracranial volume is estimated from the brain 

extraction mask in the space of the original input image. This mask is a binary image in 

which voxels corresponding to brain tissue are assigned a value of one and all other voxels 

are assigned a value of zero. Thus, the sum of all of the mask’s voxels gives the number of 

voxels corresponding to brain tissue. Multiplying the number of brain tissue voxels by the 

image’s voxel volume gives the total volume of brain tissue.

Implementation details

For these analyses, we used a cluster of over 1500 CPUs available at Wake Forest School of 

Medicine. ANTs provides support for several parallelization mechanisms (e.g. Sun Grid 

Engine, pexec, Apple Xgrid, and PBS/Torque); our cluster uses the SLURM resource 

scheduler, which was not supported by ANTs. However, because of the open source 

philosophy of the ANTs developers, we could adapt their code to support parallelization 

based on SLURM. These enhancements were contributed back to the core ANTs 

development team by way of a GitHub pull request, which was merged into the main code 

base (https://github.com/stnava/ANTs/pull/230). SLURM support is now available to the 

ANTs user community.

Appendix B

Machine learning methodology

The RLR method used here is based on the implementation provided by the GLMNET 

library (Friedman, et al., 2010), which uses a very efficient optimization technique called 

coordinate-wise descent technique (Friedman, et al., 2007). The general form of the 

optimization problem solved by the library is of the form:

min
β0 , β ∈ RP

C β0, β, xi, yi + λP(β) (1)

C β0, β, x, y = 1
N ∑

i = 1

N
yi β0 + xi

Tβ − log 1 + e
β0 + xi

Tβ
(2)

P(β) = ∑
j = 1

p (1 − α)
2 β j

2 + α β j (3)
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where xi ∈ Rp is the ith sample or feature vector containing the ith participant MRI data, p is 

the number of variables (voxels) entering the analysis, yi ∈ {0,1} is the ith label (0 for 

cognitively normal participants, 1 for participants with Alzheimer’s disease),β0,β ∈ Rp are 

the parameters of the model, and λ is the regularization parameter. The regularization 

scheme described by Eq.(1) contains two terms: a loss term C(β0,β,x,y) and a penalty term P 
called elastic net penalty, which is given by Eq.(3). The regularization parameter λ 
establishes a trade-off between the two terms and it is determined from the data using cross-

validation combined with grid search. Our software implementation is based on MATLAB, 

where the GLMNET library is called using a freely available MATLAB wrapper developed 

by Hui Jiang (http://www-stat.stanford.edu/~tibs/glmnet-matlab/).

2.6 Optimization of regularization parameters

To estimate the optimal values of the regularization parameters, we combined a three-way 

split of the data (training-validation-testing) with 10-fold cross-validations (CV) and grid 

search. This was done to avoid upward bias in the metrics of performance estimates 

(Casanova, et al., 2011,Ryali, et al., 2011,Zhang, et al., 2011). We implemented an external 

K1-fold CV where at each step we leave one fold for testing and use the remaining K1-1 

folds for training and validation. These last two procedures are implemented by using a 

nested K2-fold CV. We divided the K1-1 folds into K2 folds and we left one fold for 

validation and K2-1 folds for training combined with a grid search to determine the optimal 

parameters. The grid we used in our analyses was λ = 0.5,1,5,10,11,12…

98,99,100,200,500,1000. For the sMRI data, we fixed in advance one of the regularization 

parameters (α = 0.001) and optimized the second. We have observed in practice working 

with high-dimensional imaging data that this choice works well, avoiding the heavier 

computational burden related to the optimization of both parameters while still producing a 

sparse solution (R Casanova, et al., 2012). At each grid point, the classifier is trained and its 

performance is assessed using the fold left for validation by estimating the classification 

accuracy. We select the regularization parameters that produce maximum average accuracy 

across the K2 folds of the internal CV procedure. The classifier is then retrained using the 

data in the K1-1 folds left for training and validation and the selected optimal regularization 

parameters. The classifier’s generalization capability is then evaluated by computing the 

classification accuracy, sensitivity and specificity using the fold originally left for testing in 

the external CV. This is repeated K1 times and the average classification accuracy is 

reported. In our analyses we used K1= 10 and K2= 10.
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Figure 1 - 
General approach to estimate Alzheimer’s disease pattern similarity (AD-PS) scores for the 

WHIMS-MRI cohort once the images from both datasets have been processed.
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Figure 2 - 
The upper panel shows the baseline (Scan 1) AD-PS scores for only participants who were 

cognitively normal at baseline MRI and with date of last cognitive assessment in 2010 (4.5 

years in average) or afterwards. The abbreviation PrD stands for probable dementia. Of 

those 733 remained stable as CN in that time period, 33 converted to MCI and 28 converted 

to probable dementia probable dementiaincluding 12 cases adjudicated as AD. For the 

follow up AD-PS scores and change plots we also used only participants who were CN at 

baseline MRI with date of last cognitive assessment in 2010 or afterwards whose cognitive 

impairment was diagnosed at any point during the follow up (N = 571). Of those 455 

remained stable as CN until 2009, 53 converted to MCI and 57 converted to Probable 

dementia including 6 cases adjudicated as AD during follow up.
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Figure 3 - 
The ROC curves evaluating discrimination of the AD-PS scores for each impaired cognitive 

group with respect to the CN group. Each panel in this Figure shows discrimination of the 

data from the corresponding panel in Figure 2. The abbreviation PrD stands for probable 

dementia.
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Figure 4 - 
Discriminative maps indicating the areas involved in discrimination of AD from CN derived 

from the elastic net regularization constraints are shown in neurological convention. Some of 

the pinpointed areas are amygdala, hippocampus, parahippocampal gyrus, thalamus, inferior 

temporal lobe areas and midbrain (all bilateral).
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Table 1 -

Baseline characteristics of WHIMS-MRI participants

Variable Mean (SD) or Frequency (%)

Had Baseline MRI 
(n=1365)

Had Baseline MRI 
Only (n=653)

Had Baseline and 
Follow-up MRI (n=712)

P-value*

Age 70.53 (3.63) 71.02 (3.76) 70.08 (3.47) p<0.0001

Body mass index 28.23 (5.42) 28.28 (5.79) 28.18 (5.08) p=0.7388

Race/Ethnicity p=0.0008

Black/African - American 61 (4.47%) 44 (6.74%) 17 (2.39%)

 Hispanic/Latino 19 (1.39%) 11 (1.68%) 8 (1.12%)

 White 1245 (91.92%) 577 (88.36%) 668 (93.82%)

 Other 40 (2.93%) 21 (3.22%) 19 (2.67%)

Education p=0.1566

 < High school 60 (4.41%) 30 (4.59%) 30 (4.23%)

 High school/general education degree 317 (23.27%) 137 (20.98%) 180 (25.39%)

 > High school 985 (72.32%) 486 (74.43%) 499 (70.38%)

Smoking p=0.9134

 Never 784 (57.90%) 372 (57.32%) 412 (58.44%)

 Past 513 (37.89%) 249 (38.37%) 264 (37.45%)

 Current 57 (4.21%) 28 (4.31%) 29 (4.11%)

Cardiovascular disease ever 86 (6.30%) 49 (7.50%) 37 (5.20%) p=0.1503

Hypertension ever 650 (47.62%) 333 (51.00%) 317 (44.52%) p=0.0254

Prior use of hormone therapy 449 (32.89%) 201 (30.78%) 248 (34.83%) p=0.1116

Diabetes treated ever (oral therapy or 
injected insulin)

73 (5.35%) 47 (7.20%) 26 (3.65%) p=0.0036

Baseline score on Mini-Mental Examination 96.10 (3.45) 95.68 (3.88) 96.50 (2.96) p<0.0001

*
Comparing those with a baseline MRI only versus those who had both baseline and follow-up MRIs.
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Table 2 -

Cross-sectional and longitudinal relationships that risk factors for cognitive impairment have with AD-PS 

scores and their longitudinal changes, with covariate adjustment for age, education, race and hormone therapy 

assignment.

Risk Factor Cross-sectional Relationships Between Risk 
Factors and AD-PS at Time 1

Relationships Between Changes in Risk Factors and 
Changes in AD-PS From Time 1 to Time 2

Slope* (SE) p-value Slope**
(SE)

p-value

Age, yrs 0.027
(0.002)

t= 17.17
<.001

0.034
(0.001)

t= 29.55
<.001

Cognitive Function, SD −0.036
(0.004)

t= −8.81
<0.001

−0.019
(0.008)

t= −2.41
0.02

WM SVID volume, SDs 0.024
(0.004)

t= 4.22
<0.001

0.149
(0.008)

t= 18.36
<.001

*
Unit AD-PS score per year (for age) or per Time 1 standard deviation (for cognitive function and WM SVID volume)

**
Unit change in AD-PS score between Time 1 and Time 2 per year (for age) or per standard deviation (for cognitive function and WM SVID 

volume)
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Table 3 -

Survival analyses investigating associations of AD-PS baseline scores and their longitudinal change with date 

of cognitive impairment diagnosis.

Category Hazard ratio per unit = 0.1 95% Confidence Interval p-values

Baseline AD-PS scores

MCI 1.29 1.10 – 1.52 0.002

Probable dementia 1.84 1.55 – 2.18 <.0001

MCI+probable dementia 1.51 1.35 – 1.69 <.0001

AD-PS Change (FUP-BS)

MCI 1.38 1.09 – 1.74 0.0069

PrD 1.63 1.36 – 1.95 <.0001

MCI+probable dementia 1.51 1.31 – 1.75 <.0001

For baseline analyses 27, 33 and 60 cases of probable dementia, MCI and MCI/probable dementia were available while 1132, 1099 and 1099 were 
censored respectively. For longitudinal change analyses (which spans the time from the second MRI until the end of follow-up) 54, 37 and 90 cases 
of probable dementia, MCI and MCI/probable dementia were available while 485, 448, and 448 were censored respectively. Analyses were 
adjusted by age, education and race and HT assignment.
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