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Abstract

The privileged uptake of nucleosides into cells has generated interest in the development of 

nucleoside-analog libraries for mining new inhibitors. Of particular interest are applications in the 

discovery of substrate mimetic inhibitors for the growing number of identified glycan-processing 

enzymes in bacterial pathogens. However, the high polarity and the need for appropriate protecting 

group strategies for nucleosides challenges the development of synthetic approaches. Here we 

report an accessible, user-friendly synthesis that branches from a common solid phase-

immobilized uridinyl-amine intermediate, which can be used as a starting point for diversity-

oriented synthesis. We demonstrate the generation of five series of uridinyl nucleoside analogs for 

investigating inhibitor structure-activity relationships. This library was screened for inhibition of 

representative enzymes from three functional families including a phosphoglycosyl transferase, a 

UDP-amino sugar acetyl-transferase, and a glycosyltransferase. These candidates were taken from 

the Gram-negative bacteria Campylobacter concisus and Campylobacter jejuni, and the Gram-

positive bacterium Clostridium difficile, respectively. Inhibition studies show that specific 

compound series preferentially inhibit selected enzymes, with IC50 values ranging from 35 ± 7 μM 

to 174 ± 21 μM. Insights from the screen provide a strong foundation for further structural 

elaboration, to improve potency, which will be enabled by the same synthetic strategy. The solid-

phase strategy was also used to synthesize pseudouridine analogues of lead compounds. Finally, 
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the compounds were found to be non-toxic to mammalian cells, further supporting the 

opportunities for future development.

Graphical Abstract

Nucleoside analogs, including both complex natural products and simpler synthetic 

derivatives, represent an important class of compounds with significant potential as selective 

tools for biological research and as therapeutic agents. Synthetic nucleosides, such as those 

that cause premature termination of DNA and RNA polymerases, represent a mainstay of 

current antiviral and antitumor therapy regimes.1-3 Nucleoside natural products show equally 

fascinating biological activities, exhibiting, for example, antibacterial activity by inhibition 

of peptidoglycan and O-antigen biosynthesis.4 A significant impediment however, to 

exploiting these useful bioactivities is the complexity of the natural product structures, 

which makes chemical manipulation to reduce toxicity and improve selectivity and 

pharmacokinetic properties, a major challenge. Nevertheless, nucleosides show 

advantageous properties for intracellular delivery.5 For example, it is known that nucleoside 

analogs used in the clinic are absorbed across the intestinal epithelium by nucleoside 

transporters,6 and many uridine derivatives, such as tunicamycin and mureidomycin, are 

known to be taken up into bacterial and mammalian cells.7, 8 Additionally, nucleoside 

derivatives often show advantageous binding of the constituent nucleobases to target 

proteins.9 As a result, nucleosides represent important targets, and their synthetic analogues 

are recurrent in the structures of antiviral, antibiotic, and antifungal agents based on 

competition with the binding of uridine-based substrates.10, 11

As understanding of the biological significance of bacterial glycan-modifying and 

processing enzymes in virulence and pathogenesis grows,12, 13 so does the need for versatile 

methodologies for the synthesis of small molecule inhibitors targeted at these processes. 

However, although the potential of selective inhibitors of these enzymes both as tools and 

therapeutics is clear, very few compounds have advanced beyond research applications. In 

many cases, inhibitor discovery for glycan-modifying and processing enzymes is hampered 

by a lack of structural information about the target, low target specificity, class promiscuity, 

and poor physicochemical properties for biological applications. A noteworthy exception is 

the glycosyl transferase (GT) inhibitor N-butyl deoxynojirimycin (Zavesca), which is 

important for the treatment of Type I Gaucher’s disease.14 However, in many cases, although 

many glycan-targeted natural products show excellent bioactivity, their clinical application is 
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limited. For example, the potent bacterial GT inhibitor moenomycin shows very slow 

development of antibiotic resistance in in vitro experiments, but its pharmacokinetic 

properties limit development, and it has been primarily used in animal feed stocks.15

Many bacterial GTs, phosphoglycosyl transferases (PGTs), and sugar-modifying enzymes 

utilize uridine diphosphate (UDP)-activated sugar substrates, therefore there is considerable 

interest in UDP-sugar analogs as substrate mimetics.16 A review by Gloster and Vocadlo 

examined classes of carbohydrate-like and medicinal chemistry-like inhibitors for glycosyl 

hydrolases and transferases, delineating the advantages and disadvantages of various 

approaches.17 Polar molecules tend to have reduced nonspecific protein binding, and the 

carbohydrate-like inhibitors can display excellent potency against glycan-processing 

enzymes, albeit often accompanied by class promiscuity with off-target effects that can be 

challenging to overcome. Additionally, high aqueous solubility may limit permeability 

through cellular membranes. Alternatively, inhibitors derived from library-screening 

approaches do not depend on the same protein interactions exploited by native substrates and 

are less likely to display class promiscuity. However, compounds from such screens are 

often highly lipophilic and poorly soluble, which limits use in cells and in vivo and 

furthermore, show a higher likelihood of general target promiscuity.18 As an alternative 

approach, inhibitor discovery efforts have focused on analogs of donor or acceptor substrates 

of these enzymes, wherein the negatively-charged phosphate functionality is replaced with 

an isostere. Additional review articles have compared substrate-like and nonsubstrate-like 

inhibitors in the context of GTs.19, 20

The screening of modified uridine-based compounds in a variety of organisms and pathways 

has been the subject of several reports. Approaches developed through solution-phase21-27 

and solid-phase28-30 chemistry, have resulted in multiple lead compounds. In particular, 

solid-phase approaches have ranged from small, focused libraries for specific enzymes29 to 

large libraries prepared using microscale approaches that were not subject to inhibition 

analysis.28, 30

Here we present development of a versatile solid-phase synthesis (SPS) platform that can be 

customized to target nucleoside analog inhibitors of GTs, PGTs and other sugar-modifying 

enzymes, which builds on advantageous aspects of previous approaches. The SPS 

methodology accommodates phosphate mimetics, is free from multiple purification steps 

and protecting group manipulations and is readily adapted to provide compounds for 

analysis with diverse enzymes that act on UDP-sugars. The SPS approach proceeds through 

three to five reactions from a common building block. Following assembly, compounds are 

cleaved from the solid support and purified by reverse phase HPLC (RP-HPLC), yielding 

desired products in good overall yields (4-25%). Compounds are then assayed in the context 

of selected glycan-processing enzymes for inhibitory activity, yielding multiple potential 

leads.
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RESULTS AND DISCUSSION

Description of enzyme targets and SPS strategy design.

We present the SPS of five series of uridine analogs and examine activity with three types of 

bacterial glycan biosynthesis enzymes of interest to the community. GTs such as TcdA and 

TcdB from C. difficile play crucial roles in toxin release.31 PGTs such as PglC from C. 
jejuni are essential for bacterial N-linked protein glycosylation,32 which is important for 

adhesion to and invasion into human intestinal epithelial cells.33 Finally, UDP-aminosugar 

acetyltransferases such as PglD from the C. jejuni pathway are also important for virulence.
34 PglD has recently been the subject of small molecule, non-nucleoside, inhibitor 

development efforts.35

Each of the series of uridine analogs was designed to investigate multiple structure-activity 

relationships (SAR) (Figure 1). These include: 1) Variation of the distance between the 

uridine and an aryl group that was designed to occupy the sugar-binding site of the UDP-

sugar; 2) functionality, provided by amino acid side chains, that include metal ion-binding or 

metal ion-displacing groups; 3) a bifunctional squaramide moiety, which represents a well-

studied diphosphate mimetic; 4) variation of the aryl (sugar-binding site occupant) group 

including size, electron density and hydrogenbonding properties, which is introduced using 

copper-catalyzed azide-alkyne cycloaddition (CuAAC). By exploiting several points of 

diversification, the goal is to access different sets of inhibitors, which are active in distinct 

glycan-modifying enzymes. If the different sets of molecules are effective inhibitors of 

specific enzyme families, this would expand the utility and customizability of the SPS 

method towards given targets. If however, the same set of compounds are found to be 

effective towards different enzymes, such ‘frequent hitters’ would be avoided, as this 

promiscuity would suggest non-specific activity, and would not be valuable as leads for 

optimization.36

The SPS methodology was also applied to the synthesis of compounds containing 

pseudouridine, thus expanding the repertoire and potential scope of the approach. As the 

most abundant modification in RNA,37 there is considerable interest in the properties of this 

nucleoside in therapeutics, and recently pseudouridimycin was found to inhibit bacterial 

RNA polymerase in otherwise drug-resistant pathogens.2 Since its discovery in the 1950s, 

pseudouridinyl analogs have been relatively understudied, due to cost and poor synthetic 

accessibility.

Solid-phase synthesis of uridine analog library.

The synthesis is based on the approach developed by Epple et al.30 The optimized route 

features resin immobilization via the ribose 2’ and 3’ hydroxyl groups as a stable aliphatic 

acetal and an efficient, resin-based route from the 5’-hydroxyl intermediate to the 5’-amino-

uridine, 10. In general, uracil protecting groups were avoided, to simplify the overall 

schemes; thus the initial steps were optimized to minimize side reactions at the N-3 position. 

This immobilized intermediate serves as the common starting point for diversification and 

has been prepared on a 3.0 mmol scale, which provides sufficient material for the 

preparation of ten nucleoside analogs that were aliquoted into 10 mM stock solutions 
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sufficient for hundreds of assays. The purity of each resin-bound intermediate was assessed 

by LC-MS analysis. To prepare 10, the keto ester 7 was synthesized by O-alkylation of 4-(4-

hydroxyphenyl)-2-butanone 6 with 5-bromovaleric acid methyl ester (Scheme 1). The 

ketone was activated with trimethylorthoformate (TMOF) and p-toluenesulfonic acid 

(pTsOH), which underwent condensation with the ribose diol to yield the acetal 8. Ester 

hydrolysis provided the uridine-carboxylate 9. The carboxylate was immobilized through 

amide bond formation with H-Ala-Wang polystyrene resin using 2-(1H-benzotriazol-1-

yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and N,N-

diisopropylethylamine (DIPEA). The 5’-OH of the uridine was then converted to the 

corresponding 5’-NH2, by means of a Mitsunobu reaction with 3,4,5,6-

tetrachlorophthalimide (TCP), followed by treatment with ethylenediamine (EDA) in 

dimethylformamide (DMF) to afford the on-resin 5’-NH2 uridine 10 (see Scheme 1).

Starting from 10, nucleoside analogs 1-5 were assembled in either three or five on-resin 

manipulations (Scheme 2). Series 1 and 2 (compounds 1a-e and 2a-e) were synthesized by 

standard amide coupling of 10 with either α-azido-Lys(Boc)-OH or 2-azidoacetic acid, then 

CuAAC using the tris-(3-hydroxylpropyltriazolyl)methylamine (THPTA) ligand and 

commercially-available terminal alkynes. Finally, global deprotection with 95% TFA/2.5% 

triiso-propylsilane (TIS)/2.5% H2O afforded the two series with the shortest linker lengths. 

Series 3 and 4 (compounds 3a-e and 4a-e) were synthesized by amide coupling of 10 to N-

α-Fmoc-protected amino acids (here Fmoc-Lys(Boc)-OH or Fmoc-Glu(OtBu)-OH), Fmoc 

deprotection with 20% piperidine in DMF, followed by amide coupling with 2-azidoacetic 

acid, then CuAAC with diverse terminal alkynes, and finally deprotection from the resin. 

The squaramide series 5 (compounds 5a-c and 5f) was generated via two sequential 

nucleophilic substitutions on diethyl squarate, first with the 5’-amino-uridine 10, followed 

by addition of a benzyl or homobenzylic primary amine. Resin deprotection was carried out 

as with Series 1-4.

All crude products were then precipitated from the cleavage cocktail with cold ether, 

resuspended in 20% acetonitrile in water, and purified by RP-HPLC to yield the final 

products 1-5. Overall compound yields were 4-25% based on the initial loading of 

carboxylate 9 on the resin.

Enzyme inhibition by uridine analog library.

Purified compounds were assayed for inhibition activity against the three target enzymes 

using convenient assays in a multiwell plate format. The assays included the UDP-Glo GT 

assay (Promega), which detects production of UDP, the UMP/CMP-Glo PGT assay 

(Promega)38 which detects UMP release, and the amino-sugar acetyltransferase assay based 

on Ellman’s reagent (DTNB), which is applied to monitor the release of coenzyme A 

(CoASH) upon acyl transfer.39

Inhibition of PglC Measured by Luminescence Using the UMP-Glo Assay.—
Bacterial PGTs catalyze transfer of a phosphosugar from a UDP-sugar to undecaprenol 

phosphate (Und-P) with the release of UMP.40 In C. jejuni, the monotopic PGT PglC 

catalyzes the first membrane-committed step in N-linked glycosylation, and involves transfer 
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of di-N-acetylbacillosamine (diNAcBac) phosphate from UDP-diNAcBac to Und-P (Figure 

S1). Recently, the structure of a PglC homolog from C. concisus, which shares 72% 

sequence homology with the C. jejuni enzyme has been reported.41 Therefore, in the 

interests of later applying structure-driven nucleoside analog inhibitor optimization, the C. 
concisus enzyme was pursued in these inhibition studies. The UMP-Glo assay is based on a 

previously-reported procedure,23 and begins with pre-incubation of PglC in the reaction 

buffer with Und-P and 100 μM inhibitor for 10 minutes at room temperature (RT). Upon 

addition of UDP-diNAcBac, the reaction was allowed to proceed for 15 min before 

quenching with the detection reagent and was transferred into a 96-well plate and 

luminescence data was collected. Assay results were plotted as the percentage of remaining 

activity compared to the positive control (no inhibitor).

We note that the Promega Glo assays detect free UMP or UDP generated during the course 

of the PGT or GT reactions. However, due to the structural similarity between synthesized 

inhibitors and the UDP and UMP-detecting enzymes used in the Glo assays, we also 

controlled for off-target inhibition of the Glo reagent enzymes. Glo assay control 

experiments were first conducted in the presence and absence of inhibitors at 2 μM UMP 

(for PglC) or 1 μM UDP (for TcdB). These concentrations of UMP and UDP represent the 

amount of nucleotide released in a typical assay.38 Using this information the percent of 

background inhibition was used to adjust the luminescence readout.

Figure 2 shows the background-corrected inhibition of PglC in the presence of the 24 

inhibitors. A clear grouping from the glutamic acid Series 4 (4a-e) show marked inhibition 

of PglC relative to the other compound series. In particular, compounds 4b and 4e (solid 

bars), are the most active. Further evaluation of inhibition over a range of concentrations 

showed IC50 values of 72 ± 7 μM for compound 4b and 116 ± 18 μM for compound 4e 
(Figure S2). Additionally, Lineweaver-Burk analysis supported competitive binding of 4b 
(Figure S3). This observation is consistent with previous work which showed that 

negatively-charged metal-coordinating groups provide greater inhibitory activity. 23 This 

informs us that further improvement of potency might be achieved through optimization of 

the metal-binding moiety. Along with the recently obtained crystal structure of PglC,41 a 

more refined SAR around the sugar mimetic should also allow for the synthesis of more 

potent inhibitors, readily obtained from the SPS strategy. Finally, this information, could 

potentially provide access to small molecules that disrupt protein glycosylation in related 

pathogens.

Inhibition of PglD Measured Using the Ellman’s Reagent Assay.—PglD from C. 
jejuni is a prokaryote-specific UDP-amino sugar acetyltransferase (Figure S1).39 For 

inhibition studies, PglD was pre-incubated in the reaction buffer with 100 μM inhibitor for 

20 minutes at RT, followed by addition of UDP-4-amino-NAcBac, acetyl-CoA, and DTNB. 

Initial rates were determined by monitoring absorbance at 412 nm in the 6-minute linear 

portion of the reaction curve, and compared against a positive control without inhibitor. 

Figure 3 shows the activity of PglD in the presence of the 24 inhibitors. In this case, 

compound 2b emerged as the best lead. Assays in the presence of a range of concentrations 

of 2b afforded an IC50 of 35 ± 7 pM (Figure S2). However, Lineweaver-Burk analysis in this 

case suggests that 2b is a non-competitive inhibitor of PglD (Figure S4, Table S1). Co-
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crystallization of 2b with PglD will be valuable to understand the binding mode, which can 

then be used to refine the design of structurally-targeted inhibitors. The ability of compound 

2b to disrupt enzymatic activity provides multiple points of variation for the next generation 

of inhibitors, which would readily accessible through the SPS method. Combined with the 

recent development of potent nM inhibitors of the acetyl-CoA binding pocket,35 a new class 

of inhibitors bearing a nucleoside, which may exhibit privileged entry into target bacterial 

cells, may advance in vivo inhibition studies with C. jejuni.

Inhibition of TcdB-GTD Measured by Luminescence Using the UDP-Glo Assay.
—The primary virulence factors of C. difficile are Toxins A and B (TcdA and TcdB) 

proteins, which belong to the family of multidomain clostridial glucosylating toxins that 

inactivate small GTPases, which are key players in eukaryotic signaling.31 Inactivation is the 

direct consequence of threonine glycosylation in RhoA-C, RhoG, Rac1, and Cdc42 proteins 

by the N-terminal glucosyltransferase domain (GTD) of the toxins.31 In the inhibition 

studies we used the catalytically-active TcdB-GTD domain with Cdc42-His6 as the glycosyl 

acceptor and followed previously-reported assay conditions.42 TcdB-GTD was pre-

incubated with Cdc42-His6 and 100 μM inhibitor for 10 minutes at RT. Upon addition of 

UDP-Glc, the reaction was allowed to proceed for 5 min before quenching with detection 

reagents and was transferred into a 96-well plate and luminescence data collected. Assay 

results were plotted as the percentage of remaining activity compared to the positive control 

(no inhibitor).

Figure 4 shows the percent activity of each GT reaction in the presence of the 24 inhibitors. 

In this case, two of the squaric acid derivatives (5c and 5f) from series 5 showed the most 

significant inhibition. Additionally, a single member of series 2 (2e), was also active. The 

lowest IC50 value was 174 ± 21 μM for squaric compound 5c (Figure S2), for which a 

Lineweaver-Burk plot indicated competitive binding (Figure S5). Analysis of the crystal 

structure of TcdB-GTD shows a very deep and structured binding site with little space for 

extra substitution near the 5’-substituent of the uridine, but with more open space near the 

glucose binding site of the UDP-glucose substrate.43 From this we can reason that extended 

structures, as in series 3 and 4 and analogs with longer amino acid side chains, as in series 1, 

3, and 4, might not compete efficiently with the native substrate. Conversely, analogs with 

unsubstituted amino acids (series 2 and 5) featured a few compounds with inhibitory 

potential, and would be a focus of further syntheses. TcdB-GTD contains the GT-A specific 

DXD motif, where two catalytically-essential aspartates bind Mn2+, which then binds to the 

diphosphate of UDP-Glc.44 An inhibitor scaffold which binds divalent cations would then be 

highly desirable, making squaramide compounds promising, and informing on future 

directions. This approach opens the possibility of developing competitive inhibitors of the 

glycosyltransferase domain in C. difficile toxins, to complement other efforts that have 

focused on noncompetitive inhibitors.42

Synthesis of Pseudouridine-containing Inhibitor Compounds.

Following screening of the 24-membered nucleoside analog library at a fixed concentration, 

three of the promising leads were resynthesized as the corresponding pseudouridinyl 

variants (Scheme S1). The SPS and purification followed the established protocols for the 
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uridine analogs (Scheme S1). Overall, the three compounds, PU2e, PU4b and PU4e, 

showed similar inhibitory activity relative to the corresponding uridine analogs (Figure 5). 

This indicates that the uracil binding sites of these enzymes may allow for this modification 

without a detrimental impact on binding, perhaps by binding to the face of the uracil that 

shares a similar hydrogen-bond “acceptor-donor-acceptor” pattern. This finding gives way to 

the opportunity to pursue pseudouridinyl variants of any potent hits identified in the future, 

which could provide a means of reducing off-target effects in inhibitor development for cell-

based studies.

Mammalian Cell Viability Measured by ATP-Glo Assay in Presence of Inhibitors.

The cytotoxicity of the presented nucleoside analogs was measured in a mammalian cell 

model. As membrane permeation of nucleoside analogs can occur via active transport, this is 

a major advantage in bacterial target accessibility, but may also be a concern as inhibitors 

could affect functionally-related glycan-modifying enzymes containing structurally similar 

active sites.16 One such example is the potent antibiotic tunicamycin which competitively 

inhibits WecA, but has not been used as an antibiotic in humans because of cytotoxicity in 

mammalian cells, due to off-target inhibition of the PGT at the inception of the dolichol 

pathway.40, 45 Nucleoside analogs can also act as antimetabolites that chain terminate DNA 

and RNA polymerization particularly with 3’-OH substitution with H, N3, F, or alkylation.1 

However, the latter is unlikely to be a concern as all of the analogs are modified at ribose 

C-5’ site and therefore cannot be activated as a polymerase building block.

To probe for general toxicity, we examined the nucleoside analogs through the use of a well-

established cell line, IMR-90 human lung fibroblasts. This cell line was chosen because it is 

a non-carcinoma line that grows well in culture, is often used for proof-of-principle 

experiments, and is a robust model with a clear cell rounding index for future toxicity-

related studies.42, 46 Cell toxicity was measured using Cell Titer Glo (Promega), which is a 

luciferin-based assay that reports on the number of viable cells based on quantification of 

ATP, thus indicating the number of metabolically active cells. For the assay a 96-well plate 

with 20,000 cells per well was incubated overnight to allow adherence, followed by 

incubation with 50 μM inhibitor in complete media for 24 or 48 hours. Control wells 

contained either media, untreated cells, cells treated with 0.5% DMSO (inhibitor vehicle), or 

cells treated with 1 μg mL−1 doxorubicin (a known DNA-damage agent). The Cell Titer Glo 

reagent was added to induce lysis, and ATP measured by luminescence. Data was plotted as 

percentage of cell death compared to cells treated with vehicle (Figure S6). No significant 

cell death was observed after 48 h with the nucleoside analog library, indicating a lack of 

cytotoxicity in this cell model. In contrast, 50% of cells treated with doxorubicin were dead 

at 24 h, with near complete cell death at 48 h. Cells treated with 10% DMSO showed 

complete rounding and detachment from wells after 24 h. Cells treated with 0.5% DMSO 

were basically unaffected and used to normalize the data from cells treated with nucleoside 

analogs. Different sets of plates were used at the 24 h and 48 h time points to maintain 

sterility, with minimal plate variation observed in reference to controls.
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Conclusions.

In summary, we have established a practical and versatile SPS method for the facile 

generation of uridine-based nucleoside analogs. The synthetic route will be highly accessible 

to a broad range of laboratories, owing to the limited number of simple steps, minimal 

purification of intermediates, and lack of protecting groups manipulations. The SPS 

approach has also been shown to be compatible with the synthesis of pseudouridine 

analogues, which have recently gained interest among researchers, due to promising effects 

against drug-resistant pathogens. The representative library of 27 uridine or pseudouridine-

based compounds were assayed in plate-based formats against three different glycan-

modifying enzymes: the phosphoglycosyl transferase PglC from C. concisus, the UDP-4-

amino-sugar acetyltransferase PglD from C. jejuni, and the glycosyltransferase domain of 

TcdB from C. difficile. These three enzymes were chosen based on available structural 

information, to help facilitate future efforts to optimize lead compounds via a structure-

driven approach.

Individual compounds exhibited increased inhibitory activity for each enzyme; the more 

effective compounds for TcdB did not contain amino acid side chains, whereas glutamic 

acid-containing constructs inhibited PglC to a greater degree, and one 3-fluoro compound 

showed good inhibition of PglD, with an IC50 of 35 ± 7 μM. The identification of distinct 

leads in each enzyme class tested is a good sign towards the minimization of class 

promiscuity that can plague many enzyme-targeted approaches. Each enzyme is also highly 

relevant to the pathogenicity of the organisms. Additional support towards minimized off-

target effects was given by the lack of compound cytotoxicity in human lung fibroblasts 

upon 48h exposure.

These studies now provide the springboard for further adaptation of specific analogs, and 

can guide understanding of structural features of glycan-processing enzymes. Together, the 

ease of access to a broad class of customizable nucleoside analogs, along with the 

identification of multiple leads for further inhibitor development, provides a platform for 

small molecule inhibitor discovery for sugar-nucleotide modifying enzymes that have not 

been commonly pursued.

METHODS

UMP-Glo Assay.

PglC assays were performed using the Promega UMP-Glo assays, which detects UMP. Due 

to the structural similarity between the synthesized inhibitors and UMP, we also controlled 

for off-target inhibition of the Glo reagent enzymes by the nucleoside analogues and 

subtracted it from the total inhibition. The quenching solution was prepared as described by 

Promega. Assays contained 20 μM Und-P, 10 % DMSO, 0.1 % Triton X-100, 50 mM 

HEPES pH 7.5, 100 mM NaCl, 5 mM MgCl2, 20 μM UDP-diNAcBac39 and 0.2 nM PglC in 

a final volume of 20 uL. Inhibitors were added from a 2 mM stock in DMSO, at a final 

concentration of 100 μM. PglC was pre-incubated in the reaction mixture lacking UDP-

diNAcBac for 10 minutes at RT. The reaction rate was predetermined to be linear over 20 

minutes at the given concentrations. Upon addition of UDP-diNAcBac, the reaction was 
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allowed to proceed for 15 min before addition of quenching solution. The reaction mixture 

was transferred to a 96-well plate (white, nonbinding surface, Corning). The plate was 

shaken at low speed for 16 min, incubated for 44 min at RT and luminescence was read 

using a Synergy H1 hybrid plate reader (Biotek). Data was plotted using GraphPad Prism, as 

percentage remaining activity compared to the positive control (no inhibitor).

Ellman’s Reagent Assay.

PglD assays were performed by monitoring the production of CoASH over the course of the 

reaction using DTNB. Absorbance was measured in continuous mode at 412 nm. Using a 

96-well clear bottom plate, the inhibitors were added from a DMSO stock solution at a final 

concentration of 100 μM, followed by PglD in 50 mM HEPES, pH 7.4, 1 mM MgCl3, 0.05 

mg mL−1 BSA, 0.001% Triton X-100. Inhibitors and enzyme were preincubated 20 min at 

RT, followed by addition of substrate and Ellman’s reagent cocktail to final concentrations 

of 6 nM PglD, 274 μM UDP-4-amino-NAcBac,47 295 μM AcCoA, 2 mM DTNB, and 3% 

DMSO in 100 μL volume. Initial rates were measured in the linear portion of the reaction 

curve over a 6-min time period at RT, and absorbance was read at 412 nm on the plate 

reader.

UDP-Glo Assay.

TcdB assays were performed using the Promega UDP-Glo assay, which detects UDP 

generated over the course of the reaction. Due to the structural similarity between the 

inhibitors and UDP, we also corrected for off-target inhibition of the Glo reagent enzymes by 

the nucleoside analogues. The quenching solution was prepared as described by Promega. 

Assays contained 30 μM Cdc42, 5% DMSO, 0.1 % Triton X-100, 50 mM HEPES pH 7.5, 

100 mM KCl, 4 mM MgCl2, 1 mM MnCl2, 20 μM UDP-Glc, and 0.5 nM TcdB-GTD in a 

final volume of 20 μL. Inhibitors were added from a 2 mM stock in DMSO, at a final 

concentration of 100 μM. TcdB-GTD was pre-incubated in the reaction mixture lacking 

UDP-Glc for 10 minutes at RT. The reaction rate was pre-determined to be linear over 15 

minutes at the given concentrations. Upon addition of UDP-Glc, the reaction was allowed to 

proceed for 5 min before addition of quenching solution. The reaction mixture was 

transferred to a 96-well plate (white, nonbinding surface, Corning). The plate was shaken at 

low speed for 30 s, and incubated for 1 h at RT, and luminescence was read on the plate 

reader. Data were plotted as in the UMP-Glo assay.

Expression and Purification of Enzymes.

PglC from C. concisus was expressed and purified as described previously.38 PglD from C. 
jejuni was expressed and purified following the reported procedure.35 For cloning, 

expression, and purification of TcdB-GTD from Clostridium difficile, see Supporting 

Information.

Mammalian Cell Viability.

Mammalian Cell Viability. IMR-90 human lung fibroblasts were obtained from the 

American Tissue Culture Collection (ATCC) and maintained in Eagle’s Modified Essential 

Medium (VWR) supplemented with 10% (v/v) fetal bovine serum (FBS) and Pen-Strep 
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(P/S), in a humidified incubator with 5% CO2 and 37 °C. Proliferating cells were sub-

cultured at a ratio of 1:3 when confluent, and plated in 96-well TC-treated white clear-

bottom plates with lids at 20,000 cells per well, as determined by hemocytomer counting. 

Overnight incubation with 200 μL complete media allowed adherence of cells to the plate, 

which were fully confluent by microscope inspection. Growth media was removed from 

cells by aspiration, followed by the addition of 50 μM nucleoside analogs 1-5 in growth 

media with 0.5% DMSO. Additional wells instead received either 1.7 μM doxorubicin 

hydrochloride, 10% DMSO, or 0.5% DMSO in complete media to serve as controls for cell 

toxicity. Plates were then incubated for 24 h and 48 h time points. Media was then removed 

by aspiration, 100 μL complete media was added to each well, and 100 μL Cell Titer Glo 

reagent (Promega) was added to induce lysis. One row of media without cells was used as a 

background measurement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Library of uridine analogues showing the scaffolds of series 1-5 compounds and details of 

the variable R groups (upper right).
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Figure 2. 
PglC activity was measured by UMP-Glo monitoring luminescence after 10 min pre-

incubation with inhibitor and a 15-min reaction with UDP-diNAcBac, in reference to control 

with no inhibitor. Solid bars indicate compounds with the highest inhibitory activity. Error 

bars indicate mean ± SD; n=3.
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Figure 3. 
PglD activity measured by CoASH release using DTNB. Percent inhibition was determined 

after 20 min pre-incubation with inhibitor and a 6-min reaction with UDP-4-amino sugar, in 

reference to control with no inhibitor. Solid bars indicate compounds with the highest 

inhibitory activity. Error bars indicate mean ± SD; n=3.
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Figure 4. 
TcdB-GTD activity was measured by UDP-Glo monitoring luminescence. Substrate 

conversion was measured after 10 min pre-incubation with inhibitor followed by a 5-min 

reaction time with UDP-Glc. Conversions are normalized to control reaction without 

inhibitor. Solid bars indicate compounds with the highest inhibitory activity. Error bars 

indicate mean ± SD; n=3.
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Figure 5. 
A. Structures of pseudouridinyl inhibitors. B. Comparison of uridinyl vs pseudouridinyl 

inhibitors for three selected analogs referenced to control with no inhibitor. Error bars 

indicate mean ± SD; n=3.
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Scheme 1. 
Synthesis of common intermediate 10 from 4-(4-hydroxyphenyl)-2-butanonea
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Scheme 2. 
Synthesis of analogs 1-5 from common intermediate 10
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