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Abstract

An improvement of the monotone fast iterative shrinkage-thresholding algorithm (MFISTA) for 

faster convergence is proposed. Our motivation is to reduce the reconstruction time of compressed 

sensing problems in magnetic resonance imaging. The proposed modification introduces an extra 

term, which is a multiple of the proximal-gradient step, into the so-called momentum formula used 

for the computation of the next iterate in MFISTA. In addition, the modified algorithm selects the 

next iterate as a possibly-improved point obtained by any other procedure, such as an arbitrary 

shift, a line search, or other methods. As an example, an arbitrary-length shift in the direction from 

the previous iterate to the output of the proximal-gradient step is considered. The resulting 

algorithm accelerates MFISTA in a manner that varies with the iterative steps. Convergence 

analysis shows that the proposed modification provides improved theoretical convergence bounds, 

and that it has more flexibility in its parameters than the original MFISTA. Since such problems 

need to be studied in the context of functions of several complex variables, a careful extension of 

FISTA-like methods to complex variables is provided.
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I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a versatile modality for qualitative and quantitative 

imaging of the human body [1]. However, data acquisition usually requires a long scan time. 

Compressed sensing (CS) [2, 3] can be deployed to reduce this time. CS uses undersampled 

data and sparsity promoting reconstruction, achieving almost exactly the same image quality 
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as the reconstructions with fully sampled data, but with much faster acquisition. Several 

important MRI applications [4] became more efficacious by using CS. For example, CS can 

increase spatiotemporal resolution while reducing motion-related artifacts in dynamic MRI 

[4] and can reduce the necessary time for data acquisition in quantitative mapping 

applications up to 10 times [5], with very small mapping error.

Image reconstruction in MRI using CS (CS-MRI) can be posed as an optimization problem 

defined over complex vectors x ∈ ℂn; that is vectors with complex components. We consider 

problems of the following kind: Find an x* that minimizes

Ψ(x) = f (x) + ϕ(x), (1)

where f : ℂn → ℝ is convex, continuously differentiable and satisfies 

‖∇ f (x) − ∇ f (y)‖ < ℒ‖ x−y ‖ for some constant ℒ ∈ ℝ (such an ℒ is referred to as a 

Lipschitz constant for the gradient ∇f), while ϕ : ℂn → ℝ is also convex, but may be 

nonsmooth. Here ‖x‖ denotes the Euclidean norm of x. Definitions and notation used here 

and elsewhere in this paper are summarized in the Appendix, based on material in [6].

In the context of CS-MRI problems f (x) = 1
2‖g − Ax‖2 where the vector x ∈ ℂn represents 

the images, the vector g ∈ ℂm represents the captured k-space data, and the transform A 

represent the system matrix (described in more detail in the experimental Section V). The 

choice for the second (regularization) function in (1) is usually the ℓ1-norm of a transformed 

version of x [3, 7], such as ϕ(x) = λ ‖Tx‖1, or a low-rank imposing nuclear-norm [8, 9], such 

as λ ‖x‖∗, or a combination of both, such as in low-rank plus sparse decomposition [5, 10].

The reconstruction time, i.e. the computation time to minimize (1), is extremely important in 

CS-MRI applications. In particular for radial and other non-Cartesian MRI (and similar 

problems with ill-conditioned system matrices), fast algorithms able to deal with non-

differentiability of ϕ(x) are required. The proximal-gradient methods can deal with non-

differentiability of ϕ(x). These methods make use of a proximal-gradient step (with step-size 

1/L):

PL(y): = prox
ϕ, L

y− 1
L ∇ f (y) , (2)

where

prox
ϕ, L

(x): = arg min
z ∈ ℂn

ϕ(z) + L
2 ‖ z−x ‖2 , (3)

is the proximal operator [11] of ϕ for parameter L ∈ ℝ.
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It was almost a decade ago when the proximal-gradient methods called fast iterative 

shrinkage-thresholding algorithms (FISTA) and monotone FISTA (MFISTA) were proposed 

by Beck and Teboulle [7, 12]. (Other proximal-gradient algorithms appeared in the 

optimization literature even earlier, in particular in the context of image processing [13, 14].) 

These methods successfully combine a proximal-gradient step [11, 15] with a so-called 

momentum step as suggested in [16] to obtain fast convergence satisfying the following 

(based on theorems from [7, 12]): Let L ≥ ℒ, xk denote the k-th iterate generated by FISTA 

or MFISTA with constant parameter L in the proximal operator, and let x∗ be any minimizer 

of the Ψ in (1), then it is the case that

Ψ(xk) − Ψ(x∗) ≤
2L‖x0 − x∗‖2

(k + 1)2 . (4)

In [17], Kim and Fessler modified FISTA inspired by the Performance Estimation Problems 

(PEP) technique [18], with practical improvement in convergence. They named the 

algorithm optimized ISTA (OISTA), due to its similarity to their optimized gradient method 

(OGM) for smooth functions in [19]. For OGM, in the convergence result that corresponds 

to (4), the upper bound is reduced by a factor of 2, but no such a bound is known for OISTA. 

Recently, a new version of the fast and optimal proximal-gradient methods, with a similar 

bound, appeared in [20]. Another practical way to accelerate FISTA and obtain monotonicity 

is by restarting FISTA when Ψ(xk) < Ψ(xk + 1), as shown in [21].

However, theoretical convergence speed can, in fact, be improved over (4) by more than the 

factor 2 suggested in [17, 19]. Our main contribution in the present paper is the introduction 

of an algorithm with a convergence upper bound such that the L in the right-hand side of (4) 

is replaced by Lk /ηk where Lk may be smaller than ℒ and/or ηk may be larger than 1. The Lk 

may be known before algorithm execution, but the ηk is not; it is calculated during the 

execution of the k-th iterative step of the new algorithm (see Step 7 of Algorithm 2 below). 

The ηk is then used in the calculation of the multiplier of the proximal-gradient step in the 

extra term in the momentum formula (see Step 8 of Algorithm 2); it is in this sense that the 

new algorithm uses “variable acceleration.” We will see that in practice the obtained 

convergence bound for the new algorithm is very often less than half of the right-hand side 

of (4) and it can be proven that the upper bound is no larger than the right-hand side of (4). 

A similar method is the overrelaxed MFISTA (OMFISTA) [22], which also uses an extra 

term in the momentum formula and variable step-size Lk. Our proposed method goes further 

by taking advantage of gaps in the relations used in the convergence analysis and converting 

them into larger ηk, resulting in faster convergence.

In Section II the MFISTA algorithm is reviewed. In Section III the proposed revisited 

version of MFISTA is presented, and its convergence analysis is provided in Section IV. 

Some experimental results illustrating convergence performance on compressed sensing for 

MRI problems are shown in Section V. A discussion is presented in Section VI, and a 

summary is provided in Section VII.
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II. REVIEW OF MFISTA

The version of MFISTA that we use in this paper to minimize (1) is specified in Algorithm 

1, with the following parameters: x0 (the initial iterate), N (the number of iterations) and a 

sequence (L1, …, LN) of positive real numbers (that determine the step-sizes 1/Lk to be used 

in the iterative steps).

As an example, with the f (x) = 1
2‖ g−Ax ‖2 and with ϕ(x) = λ ‖x‖1, the proximal-gradient 

operator computed in Step 4 of Algorithm 1 becomes (see [12, 23]):

PLk
(yk): = Sλ/Lk

1
Lk

A†(g − Ayk) + yk , (5)

where A† is the adjoint of A (see [6, (A.4)]) and Sα, the shrinkage-thresholding operator, is 

defined for any given

Algorithm 1 MFISTA
1: set t1 = 1

2: set y1 = x0
3: for k = 1 to N do
4: set zk = PLk

(yk)

5: set xk = arg min
x ∈ zk,xk − 1

Ψ(x)

6: set tk + 1 = (1 + 1 + 4tk
2)/2

7: set yk + 1 = xk +
tk − 1
tk + 1

(xk − xk − 1) +
tk

tk + 1(zk − xk)

8: end for

complex vector u = (u1, …, uN)T and real number α by: Sα(u) = (v1, …, vN)T, with

vn =
0 , if un < α,

un − α
un
un

, otherwise .
(6)

When the nuclear-norm ϕ(x) = λ ‖x‖∗ is used, the shrinkage-thresholding is still part of the 

proximal operator [8], but it is applied on the singular values of the Casorati matrix 

constructed with the vector x [10].

Compared to algorithms like FISTA, MFISTA introduces an extra computation of the cost 

function, as shown in Step 5 of Algorithm 1. For CS-MRI applications, the costs of the 

operations Ax or A†x are extremely high, and such is required by FISTA and MFISTA. For 

this reason, efficient implementations that reuse these operations for computing the cost 
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function are essential for achieving computation times for each iteration that are similar to 

those of FISTA.

III. THE PROPOSED IMPROVEMENT TO MFISTA

The purpose of this section is to indicate the ideas that lead us to the algorithm MFISTA 

with Variable Acceleration (MFISTA-VA) that we claim to be an improvement over 

MFISTA. First we state, in Algorithm 2, a mathematically precise specification of MFISTA-

VA. This is followed by an informal discussion of the algorithm. A mathematically rigorous 

analysis of the convergence properties of the algorithm is provided in the next section.

Algorithm 2 MFISTA‐VA
1: set t1 = 1

2: set y1 = x0
3: for k = 1 to N do
4: set zk = PLk

(yk)

5: set xk = arg min
x ∈ xk, zk, xk − 1

Ψ(x)

6: set tk + 1 = 1 + 1 + 4tk
2 /2

7: set ηk = 1 + 2
QLk

(zk, yk) − Ψ(xk)

Lk‖zk − yk‖2

8: set yk + 1 = xk +
tk − 1
tk + 1

(xk − xk − 1) +
tk

tk + 1
(zk − xk) +

tk
tk + 1

(ηk − 1)(zk − yk)

9: end for

Both MFISTA and MFISTA-VA share the same step zk = PLk
(yk) (Step 4 of MFISTA in 

Algorithm 1, and Step 4 of MFISTA-VA in Algorithm 2). This step arises from the 

minimization of the quadratic surrogate QL(z, y) (seen in Step 7 of Algorithm 2) that is 

defined, for L ∈ ℝ and z, y ∈ ℂn,as:

QL(z, y) : = f (y) + ℜ( ∇ f (y), z − y ) + L
2 ‖ z−y ‖2 + ϕ(z), (7)

where both the gradient ∇ and the scalar product ⟨⟩ are to be interpreted as the complex 

ones; see (53)–(56) of the Appendix. However, one of the major convergence conditions of 

FISTA and MFISTA is

Ψ(zk) ≤ QLk
(zk, yk) . (8)
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Note that if L ≥ ℒ, then Ψ(z) ≤ QL (z, y) for all z, y ∈ ℂn, as can be derived from [12, 

Lemma 2.1]), using (54) and (56) of the A This implies that any step-size 1/Lk longer than 

1/ℒ, in FISTA or MFISTA, requires (8) to be satisfied. That condition, together with Lk ≤ 

Lk+1 from [12, Lemma 4.1]), limits the convergence speed of FISTA and MFISTA.

In the revisited convergence analysis of the next section, (8) is relaxed. There (see Lemma 3) 

we take advantage of the gap

ζk : = QLk
(zk, yk) − Ψ(zk) (9)

between the surrogate and the cost function to replace (8) by the weaker convergence 

condition

1 + 2
ζk

Lk‖zk − yk‖2 > 0, (10)

guaranteeing algorithm convergence with proximal-gradient steps with step-size 1/Lk in (2) 

larger than what was allowed by (8). Note that the gap ζk can be negative, in which case (8) 

is not satisfied for the chosen Lk. However, this is not necessarily a problem in the new 

algorithm, as long as (10) is satisfied, as seen further in the next section.

The gap ζk is easily computed. In fact, due to (7) and (1):

ζk = QLk
(zk, yk) − Ψ(zk)

= f (yk) + ℜ( ∇ f (yk), zk − yk ) − f (zk)

+
Lk
2 ‖zk − yk‖2,

(11)

which does not depend on ϕ, but depends on f.

In addition, we may use line search such as in [24, 25], or any rule that give us a point xk not 

worse than zk, in the sense Ψ(xk) ≤ Ψ(zk), to further accelerate the algorithm. With this idea 

in mind, at Step 5 of the proposed MFISTA-VA method, described in Algorithm 2, we 

introduce an arbitrary point xk that will be chosen to be the current iterate xk instead of the 

proximal-gradient zk or the previous iterate xk−1, which are the only choices in Step 5 of 

MFISTA (Algorithm 1), if Ψ(xk) is the smallest value in the set Ψ(xk), Ψ(xk − 1), Ψ(zk) . In 

our experiments reported in Section V we use xk = xk − 1 + μ(zk − xk − 1), where the 

coefficient μ is a user-selected parameter. This choice of xk is similar to the one used in 

OMFISTA, however, according to [22, Theorem 1], only μ ≤ 1 is allowed in OMFISTA.
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When MFISTA-VA obtains Ψ(xk) ≤ Ψ(zk), it generates the extra gap (always nonnegative)

δk = Ψ(zk) − Ψ(xk) (12)

which is then used with ζk to compute the parameter

ηk : = 1 + 2
ζk + δk

Lk‖zk − yk‖2 , (13)

used in Step 8 of Algorithm 2. The extra gap δk had never been exploited before, and may 

produce a large ηk, improving the convergence speed as clarified in what follows.

Proposition 1. Let x0 ∈ ℂn, N be a positive integer, (L1, …, LN) be a sequence of positive 
real numbers, xk, yk, zk and ηk be the sequences generated by Algorithm 2. For 1 ≤ k ≤ N, if 
(10) is satisfied, then ηk > 0.

Proof: The sum of the positive left hand side of (10) and an appropriately selected 

nonnegative multiple of the nonnegative right hand side of (12) is in fact ηk. ■

Theorem 5 of the next section guarantees the following convergence speed result for 

MFISTA-VA: If x∗ is a minimizer of the Ψ in (1), then

Ψ(xk) − Ψ(x∗) ≤
2Lk‖x0 − x∗‖2

ηk(k + 1)2 , (14)

provided that Lk /ηk ≤ Lk + 1/ηk + 1, for 1 ≤ k < N. We remark that this monotonicity condition 

for the ratios Lk/ηk makes the mathematical expression for the convergence bound simpler, 

but we conjecture that similar convergence results still hold under less stringent conditions.

By using (12) and (9) in (13), we have

ηk = 1 + 2
QLk

(zk, yk) − Ψ(xk)

Lk‖zk − yk‖2 . (15)

Note that if Ψ(zk) ≤ QLk
(zk, yk) then (15) implies ηk ≥ 1. Therefore, by comparing (4) with 

(14) we conclude that if, in addition, Lk ≤ L, then MFISTA-VA has a better theoretical 

convergence bound than FISTA and MFISTA. The improvement in the theoretical 

convergence bound is by a factor ηk, that can be larger than 2 in practice. This is not always 

guaranteed to be the case, however, since it depends on ζk and δk, which in turn depend on 

the chosen Lk and the procedure that yields xk. For example, if Lk is such that 
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Ψ(zk) = QLk
(zk, yk) and if xk is such that Ψ(xk) = Ψ(zk), then we have ηk = 1 and thus the last 

term 
tk

tk + 1
(ηk − 1) (zk − yk) on the right-hand side of the assignment in Step 8 of Algorithm 

(2) has no effect. In this case our proposed algorithm reduces itself to FISTA and the 

convergence bound reduces itself to the same as for FISTA.

The convergence bound in (14) is better when the ratio Lk /ηk is small, that is, when Lk is 

small and/or when ηk is large. Unfortunately, when the user-defined parameter Lk decreases, 

the ηk returned by Step 7 of Algorithm 2 also decreases. A search procedure for Lk that 

minimizes Lk /ηk is not always a viable option, because it potentially requires multiple 

computations of the proximal-gradient operator, which is the time-consuming operation of 

the algorithm. Here, the introduction of the xk makes a difference, by obtaining good ratios 

Lk /ηk without resorting to costly operations. This new variable gives to the proposed 

algorithm more flexibility and the potential to be even faster. The xk may be obtained by any 

other algorithm or procedure, such as line search, arbitrary shifts or other combination of 

previous iterates. According to Step 5 of Algorithm 2, if Ψ(xk) reduces the cost function 

more than Ψ(zk) or Ψ(xk − 1), it will be chosen as Ψ(xk), increasing ηk and, consequently 

improving the ratio Lk /ηk.

IV. CONVERGENCE ANALYSIS

In this section we provide a mathematical convergence analysis of the proposed algorithm. 

We start with a mathematical proposition that is relevant to all proximal-gradient methods. 

After that we state and prove the key Lemma 3, which will be used to prove our Theorem 5 

on the rate of convergence.

Proposition 2. Let y be in ℂn and let L be a positive real number. Let f, ϕ and PL be as 
defined in (1) and (2) and let ϕ′ (PL(y)) be a subgradient of ϕ at PL(y); see (59). Then

∇ f (y) + ϕ′(PL(y)) = − L(PL(y) − y) . (16)

Proof: As stated after (59) in the Appendix, z is a minimizer of F : ℂn → ℝ if, and only if, 

the zero vector 0 is a subgradient of F at z. Considering (2) and (3), let

PL(y) = arg min
z ∈ ℂn

ϕ(z) + L
2 ‖z− y− 1

L ∇ f (y) ‖
2

. (17)

The proposition follows from the material after (59) in the Appendix. ■

Lemma 3. Let L be a positive real number. Let Ψ, f, ϕ, PL and QL be as defined in (1), (2) 
and (7). Let y, u ∈ ℂn and ζ, δ ∈ ℝ be defined by
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ζ = QL(PL(y), y) − Ψ(PL(y)) (18)

and

δ = Ψ(PL(y)) − Ψ(u) . (19)

Then, for every x ∈ ℂn,

Ψ(x) − Ψ(u) ≥ L
2 ‖PL(y) − y‖2

+ Lℜ( PL(y) − y, y − x ) + ζ + δ .

(20)

Further,

Ψ(x) − Ψ(u) ≥ ηL
2 ‖PL(y) − y‖2

+ Lℜ( PL(y) − y, y − x ),

(21)

with

η = 1 + ζ + δ
L
2 ‖PL(y) − y‖2 . (22)

Proof: Since f is convex and differentiable we get that

f (y) ≤ f (x) + ℜ( ∇ f (y), y − x ), (23)

see (58) in the Appendix, and

ϕ(PL(y)) ≤ ϕ(x) + ℜ( ϕ′(PL(y)), PL(y) − x ), (24)

for any x, y ∈ ℂn, where ϕ′ (w) is a subgradient of ϕ at w, see (59) in the Appendix. Now, 

because of (18), from (9) and (7) with z = PL(y) we have

Ψ(PL(y)) = f (y) + ℜ( ∇ f (y), PL(y) − y ),

+ L
2 ‖PL(y) − y‖2 + ϕ(PL(y)) − ζ .

(25)
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Therefore, after including (23) and (24),

Ψ(PL(y)) ≤

f (x) + ℜ( ∇ f (y) + ϕ′(PL(y)), PL(y) − x )

+ L
2 ‖PL(y) − y‖2 + ϕ(x) − ζ .

(26)

After using (16), we get

Ψ(x) − Ψ(PL(y)) ≥ ℜ( L(PL(y) − y), PL(y) − x )

− L
2 ‖PL(y) − y‖2 + ζ .

(27)

and then

Ψ(x) − Ψ(PL(y)) ≥ Lℜ( PL(y) − y, y − x )

+ L
2 ‖PL(y) − y‖2 + ζ .

(28)

Using (19) this leads to (20), proving the first part of Lemma 3. The second part. which is in 

(21), follows trivially. ■

We note that Lemma 3 is quite general; it does not depend on the algorithm chosen to solve 

the optimization problem.

Proposition 4. Let x0 ∈ ℂn, N be a positive integer, (L1, …, LN) be a sequence of positive 
real numbers, xk, yk, zk and ηk be the sequences generated by Algorithm 2. Consider a fixed 
integer k, 1 ≤ k ≤ N. In Lemma 3, let L = Lk, y = yk, u = xk and define ζ and δ so that (18) 

and (19) hold. Then, for any choice of x in Lemma 3, the η of (22) is equal to ηk.

Proof: This follows immediately from (18), (19) and Steps 4 and 7 of Algorithm 2. ■

Theorem 5. Let x0 ∈ ℂn, x* be a minimizer of the Ψ in (1), N be a positive integer, (L1, …, 
LN) be a sequence of positive real numbers, xk, yk, zk and ηk be the sequences generated by 
Algorithm 2 such that, for 1 ≤ k ≤ N, (10) is satisfied. Then, for 1 ≤ k ≤ N, (14) holds 
provided that Lk/ηk ≤ Lk+1/ηk+1 for 1 ≤ k < N and

Ψ(xk) − Ψ(x∗) ≤
2L1‖x0 − x∗‖2

η1(k + 1)2 (29)

holds provided that Lk/ηk ≥ Lk+1/ηk+1 for 1 ≤ k < N.
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Proof: Let k be a fixed integer, 1 ≤ k < N. In Lemma 3, let L = Lk+1, y = yk+1, u = xk+1 and 

define ζ and δ so that (18) and (19) hold. With these assignments, we restate below versions 

of (21) of Lemma 3 for two different choices of x ∈ ℂn. By Proposition 4, for any choice of 

x, the η of (22) is equal to ηk+1.

Our first choice is x = xk. Using Step 4 of Algorithm 2,

2
Lk + 1

(dk − dk + 1) ≥ ηk + 1‖zk + 1 − yk + 1‖2

+ 2ℜ( zk + 1 − yk + 1, yk + 1 − xk ),

(30)

where dk := Ψ(xk) − Ψ(x*). Note that dk ≥ 0.

Our second choice is x = x*, which leads to

2
Lk + 1

( − dk + 1) ≥ ηk + 1‖zk + 1 − yk + 1‖2

+ 2ℜ( zk + 1 − yk + 1, yk + 1 − x∗ ) .

(31)

Multiplying (30) and (31) by tk+1(tk+1 − 1) and tk+1, respectively, and then adding the 

results, we get

2
Lk + 1

(tk + 1
2 − tk + 1)dk − tk + 1

2 dk + 1 ≥

ηk + 1tk + 1
2 ‖zk + 1 − yk + 1‖2 +

2ℜ tk + 1(zk + 1 − yk + 1), tk + 1yk + 1 − (tk + 1 − 1)xk − x∗ .

(32)

Considering that tk + 1(tk + 1 − 1) = tk
2 is satisfied, due to Step 6 of Algorithm 2, this results in

2
Lk + 1

tk
2dk − tk + 1

2 dk + 1 ≥ ηk + 1tk + 1
2 ‖zk + 1 − yk + 1‖2 +

2ℜ tk + 1(zk + 1 − yk + 1), tk + 1yk + 1 − (tk + 1 − 1)xk − x∗ .

(33)

Now, we apply the easily-derivable relationship:

ℜ( x,y ) = 1
2η ‖ηx + y‖2 − ‖ηx‖2 − ‖y‖2 , (34)
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to obtain

2
Lk + 2

tk
2dk − tk + 1

2 dk + 1 ≥ ηk + 1tk + 1
2 ‖zk + 1 − yk + 1‖2

+ 1
ηk + 1

‖ηk + 1tk + 1(zk + 1 − yk + 1)

+tk + 1yk + 1 − tk + 1 − 1 xk − x∗‖2

− 1
ηk + 1

‖ηk + 1tk + 1(zk + 1 − yk + 1)‖2

− 1
ηk + 1

‖tk + 1yk + 1 − (tk + 1 − 1)xk − x∗‖2 .

(35)

In order to simplify the calculations, denote, for 1 ≤ k ≤ N,

vk: = tk(1 − ηk) yk − (tk − 1)xk − 1 . (36)

Then, the equation in Step 8 of Algorithm 2 can be written as

tk + 1yk + 1 = ηktkzk + (tk + 1 − 1)xk + vk . (37)

This way we can rewrite (35), rearranging the elements, as

2
Lk + 1

tk
2dk − tk + 1

2 dk + 1 ≥

+ 1
ηk + 1

‖ηk + 1tk + 1zk + 1 + vk + 1 − x∗‖2

− 1
ηk + 1

‖ηktkzk + vk − x∗‖2 .

(38)

Since 0 < ηk+1,

2ηk + 1
Lk + 1

tk
2dk − tk + 1

2 dk + 1 ≥ ‖uk + 1‖2 − ‖uk‖2, (39)

with uk = ηktkzk + vk − x∗.

Assuming Lk /ηk ≤ Lk + 1/ηk + 1, we got (for 1 ≤ k < N)

2ηktk
2dk

Lk
−

2ηk + 1tk + 1
2 dk + 1

Lk + 1
≥ ‖uk + 1‖2 − ‖uk‖2 . (40)
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We work our way to proving (14) by noting that its left hand side is dk. To get an upper 

bound, we rewrite (40) as ak − ak+1 ≥ bk+1 − bk and note that, consequently, ak ≤ a1 + b1, for 

all k ≥ 1 (this is stated as Lemma 4.2 in [12]) .

In Lemma 3 and Proposition 4, let x = x*, u = x1, y = y1, L = L1 and define ζ and δ so that 

(18) and (19) hold. Then

Ψ(x∗) − Ψ(x1) ≥
η1L1

2 ‖z1 − y1‖2

+ L1ℜ z1 − y1, y1 − x∗ .

(41)

Using (34)

Ψ(x∗) − Ψ(x1) ≥
η1L1

2 ‖z1 − y1‖2

+
L1
2η1

‖η1z1 + (1 − η1) y1 − x∗‖2

−
L1
2η1

‖η1(z1 − y1) ‖2 −
L1
2η1

‖(y1 − x∗) ‖2 .

(42)

Therefore

d1 = Ψ(x1) − Ψ(x∗) ≤
L1
2η1

‖y1 − x∗‖2

−
L1
2η1

‖η1z1 + (1 − η1) y1 − x∗‖2 .
(43)

Expanding ak ≤ a1 + b1, we get (for 1 ≤ k < N) that

2ηktk
2dk

Lk
≤

2η1t1
2d1

L1
+ ‖η1t1z1 + v1 − x∗‖2 . (44)

Steps 1 and 2 of Algorithm 2 joined with (36) and (43) yield

dk ≤
Lk‖x0 − x∗‖2

2ηktk
2 . (45)

It is easy to prove, based on Step 6 of Algorithm 2, that tk ≥ (k + 1) /2 (this is stated as 

Lemma 4.2 in [12]), which leads us to the desired result in (14).
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Following the alternative path, we assume that Lk /ηk ≥ Lk + 1/ηk + 1 for 1 ≤ k < N. In that 

case,

tk
2dk − tk + 1

2 dk + 1 ≥
Lk + 1
2ηk + 1

‖uk + 1‖2 −
Lk
2ηk

‖uk‖2 . (46)

Invoking Lemma 4.2 of [12], and this time considering (46) as ak − ak+1 ≥ bk+1 − bk, we 

have that ak ≤ a1 + b1 for every k ≥ 1.

Again, t1 = 1, but now a1 = Ψ(x1) − Ψ(x*) and b1 = L1/2η1 ‖η1z1 + 1 − η1 y1 − x∗‖, then 

(41) leads to

a1 = Ψ(x1) − Ψ(x∗) ≤
L1
2η1

‖y1 − x∗‖2

−
L1
2η1

‖η1z1 + 1 − η1 y1 − x∗‖2,

(47)

and a1 + b1 ≤ c = L1/2η1 ‖x0 − x∗‖2
, due to y1= x0. Now, tk ≥ (k + 1) /2 gives the desired 

result in (29). ■

V. EXPERIMENTS

In the present section, we compare the performance of the discussed algorithms when 

applied to specific problems of (sparse) MRI reconstruction. We note, however, that they are 

also applicable to reconstruction problems for other modalities of (sparse) data collection, 

for example by the Brazilian Synchrotron Light Source [25].

We used f (x) = 1
2‖ g−Ax ‖2, where the vector x ∈ ℂn represents the dynamic images, with n 

= Nx×Ny×Nt, where Nx is the horizontal image size, Ny is the vertical image size, and Nt is 

the number of time points of the imaging sequence. The vector g ∈ ℂm represents the 

captured radial k-space, originally with size m = Ns×Nr×Nc×Nt, where Ns is the number of 

samples on each radial k-space line, Nr is the number of radial lines, or spokes, and Nc is the 

number of receive coils. The transform A = SFC is composed of the multiple coil 

sensitivities C, which is a (Nx×Ny×Nt)×(Nx×Ny×Nc×Nt) mapping, the Fourier transforms F, 

for all coils, and the compressed sensing sampling pattern S. For radial or other non-

Cartesian CS MRI problems, SF is a (Nx×Ny×Nc×Nt)×(Ns×Nr×Nc×Nt) mapping, performed 

by the undersampled Non-Uniform Fast Fourier Transform (NUFFT) [26].

The acquisition of MR images for T1ρ (spin–lattice relaxation time in the rotating frame) 

mapping requires a long scan time [5, 27]. Undersampling the k-space data coupled with 

parallel acquisition and CS reconstruction algorithms can greatly reduce acquisition time. 

Because even the undersampled data acquisition process will take some non-negligible time, 
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patient movement can happen and radial sampling of the k-space may increase the 

robustness of the process.

We applied MFISTA-VA to the reconstruction of two CSMRI problems for which data were 

originally captured with golden angle radial stack of stars [28] in 3D k-space. In these 

problems, data were fully sampled in the stacking direction, and were separated into 2D k-

space slices by 1D IFFT (Inverse Fast Fourier Transform). After this, the 2D slices were 

reconstructed independently. The central area of the 2D undersampled k-space was 

reconstructed with NUFFT gridding [29] at a lower resolution and used for coilmap 

estimation, using ESPIRiT [30]. The regularization parameter λ, used as in ϕ(x) = λ‖x‖∗ or 

ϕ(x) = λ‖Tx‖1, was manually chosen for the best visual results in both of the MRI problems 

that are presented next. The experiments were executed on a computer with Intel Xeon E5–

2603v4 @1.7GHz, 48GB RAM. The implementation of MFISTA-VA for these CS-MRI 

problems, that reused the operation Ay or A†y is presented in Algorithm 3. Note however, 

this implementation requires more memory since it uses extra variables. The implementation 

of MFISTA, FISTA and OISTA are simplified versions of it. In order to see the contributions 

of xk or ηk separated, we included a modified version of MFISTA (no effect of ηk) and 

MFISTA-VA with μ = 1.0 (no effect of xk). The modified MFISTA has the Line 5 of 

Algorithm 1 replaced by Line 5 of Algorithm 2. This version (denoted mod. MFISTA in the 

figures) illustrates the benefits of using only xk. MFISTA-VA with μ = 1.0 forces xk = zk, so 

one can see the effect of using only ηk (however, acording to Section III, we have no 

contribution of the extra gap δk in (13)). The Matlab codes of these experiments are 

available online at http://cai2r.net/resources/software/cs-mri-mfista-va-matlab-code.

a) MRI Problem A:

Ten sets of 3D data of the knee were captured with a 15-channel knee coil, with 128 radial 

spokes (256 samples each) with golden angle increments [28], and 64 slices each, resulting 

in the size Ns×Nr×Nc×Nt = 256×128×15×10 after separation of the 3D data into multiple 2D 

slices. A 6-fold undersampling was retrospectively done for the CS tests, undersampled data 

is of size Ns×Nr×Nc×Nt = 256×22×15×10. This data consists of 10 T1ρ-weighted 2D k-space 

sets with spin-lock times 2/4/6/8/10/15/25/35/45/55ms, similar to what was presented in [5]. 

The total acquisition time of the fully-sampled data is around 30 min. The CS image 

sequences (2D slices + time) were reconstructed using the low-rank imposing nuclear-norm 

[8, 9], defined by ϕ(x) = λ‖x‖∗, with image sequence size of n = Nx×Ny×Nt = 160×160×10, 

and were subsequently used for T1ρ fitting [5, 27], after reconstruction.

Two versions of the proposed MFISTA-VA, using xk = xk − 1 + μ(zk − xk − 1) with two 

constant coefficients μ = 1.0 and μ = 1.5, are compared with FISTA [12], MFISTA [7] and 

OISTA [17]. All methods utilize the same constant Lk = 30, which satisfies (8) in all 

iterations for convergence. A modified MFISTA, using xk = xk − 1 + μ(zk − xk − 1), with μ = 

1.5 is also shown. In Figures 1 through 4, the convergence of these six algorithms is 

illustrated for Problem A. In Figures 1 and 2, the convergence of the cost function Ψ(xk) − 

Ψ(x∗) is shown over iteration index and time, where x∗ is assumed to be the convergence 
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limit.1 In Figures 3 and 4, the distance ‖xk − x∗‖/‖x∗‖, to x∗ is shown, over iteration and 

over time. In Figure 7, some visual results for the first of the 10 T1ρ-weighted images are 

shown.

The improvement in convergence speed of MFISTA-VA (with μ = 1.5) over FISTA, 

MFISTA and OISTA is clear. For MFISTA-VA with coefficient μ = 1.0 we observed that 

1.426 ≤ ηk ≤ 1.997 with median value of 1.994. However, for MFISTA-VA with coefficient 

μ = 1.5, we observed that 1.534 ≤ ηk ≤ 12.081 with median value of 2.254. The modified 

MFISTA (with μ = 1.5) performed well at the final iterations, but it was slow in the initial 

iterations.

(b) MRI Problem B:

One 3D dataset of the liver was captured with a 20-channel abdominal coil with 128 spokes 

(384 samples each) with golden angle increments [28], and 88 slices, resulting in the size 

Ns×Nr×Nc×Nt = 384×128×20×1 after separation of the 3D data into multiple 2D slices. A 

1.6-fold undersampling was retrospectively done, undersampled data is of size 

Ns×Nr×Nc×Nt = 384×80×20×1. In this problem the regularization is ϕ(x) = λ‖Tx‖1, which is 

the ℓ1-norm of the first-order spatial finite difference transform, as T. This penalty is an 

anisotropic Total Variation (TV) penalty. In the implementation the proximal operator, in (2), 

was calculated using 25 iterations of the fast gradient projected algorithm [7]. The image 

matrix size is n = Nx×Ny×Nt = 160×320×1.

Two versions of the proposed MFISTA-VA, with two coefficients μ = 1.0 and μ = 1.5, were 

compared with the same methods as in the previous experiment. All methods utilized the 

same constant Lk = 60, which satisfies (8) in all iterations for this problem. Here, only the 

distance to x∗, i.e. ‖xk − x∗‖/‖x∗‖, is shown, over iteration and over time, in Figures 5 and 6, 

respectively. In Figure 9 some visual results are shown. In this example, for MFISTA-VA 

with coefficient μ = 1 we observed that 1.356 ≤ ηk ≤ 1.993 with median value of 1.991, 

while with coefficient μ = 1.5 we observed that 1.480 ≤ ηk ≤ 3.197 with median value of 

1.996.

We also illustrate with an experiment the initial motivation of this work, namely, the 

possibility of using proximal-gradient steps 1/Lk larger than allowed by previously existing 

theory. This may also be interesting either when the Lipschitz constant for the gradient of f 
is not known or not easy to compute. In Problem B, the constant step Lk = 60 satisfied(8) in 

every iteration of all methods, thereby simultaneously honoring theoretical sufficient 

convergence for each of the algorithms. However, as we illustrate in Figure 8 using the 

convergence of the cost function difference Ψ(xk) − Ψ(x∗), when a smaller Lk = 40 is used, 

some methods may no longer converge. In this example, OISTA diverged after the 4th 

iteration with Lk = 40, and FISTA diverged after the 11th iteration. The proposed method 

converged with Lk = 40 (0.678 ≤ ηk ≤ 1.091, with median value of 0.722). The proposed 

1The point x* was computed running MFISTA-VA with μ = 1.5 for four times more iterations than what was plotted in Figure 1, and 
Ψ(x∗) is the corresponding value of the cost function.
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method MFISTA-VA performed well, being more robust to the decrease in the value of Lk, 

and faster than FISTA and OISTA with the same Lk. Running the algorithms again starting 

from a small Lk, and increasing it while checking that the convergence conditions (8) and 

(10) are satisfied, revealed that the lower bounds for Lk were: FISTA Lk ≥ 48, OISTA Lk ≥ 
58, and MFISTA-VA Lk ≥ 30.

VI. DISCUSSION

As mentioned in Section III, the inclusion of the xk can help to improve the convergence 

ratio Lk /ηk by increasing ηk. The xk can be obtained by any method, procedure or algorithm. 

It can be used even to merge the proposed FISTA-like method synergistically with other 

algorithms for minimizing (1), similar to what was done in [31]. What really matters is that 

the computational saving due to the more rapid decrease of the cost function Ψ(xk) surpasses 

the computational cost of obtaining xk and computing Ψ(xk) (recall that decreasing Ψ 

improves the convergence ratio Lk /ηk). To see how this can affect positively the convergence, 

note that in the experiments for Problem A, a maximum ηk of 12.08 was obtained.

In this paper we report only on experiments using algorithms with the simple choice of 

xk = xk − 1 + μk(zk − xk − 1). The increase in computational cost is small in this case, see 

Algorithm 3 for details, but the approach is advantageous if good values for μk are know. 

Previous experience with line search for MFISTA in [25] indicates that 1 ≤ μk ≤ 2 is usually 

a reasonable guess, but this largely depends on the application, system matrix, and choice of 

other parameters of the algorithm, such as Lk. Empirically, we observe that small step-sizes 

1/Lk can be compensated by large coefficients μk. However, it is beyond the scope of this 

paper explore optimal values for all the parameters of the algorithm.

If xk = zk, which is the case in FISTA and OISTA, then δk = 0 in (12) and, according (13), 

ηk reduces to

ηk = 1 +
ζk

Lk
2 ‖zk − yk‖2

=

2 +
f (yk) − ℜ ∇ f (yk), zk − yk − f (zk)

Lk
2 ‖zk − yk‖2

.

(48)

Since f is convex and differentiable, it follows from (58) of the Appendix that the numerator 

of the second fraction in the formula above is not positive and so ηk ≤ 2. As compared with 

this, in MFISTA-VA we may select an xk resulting in Ψ(xk) = Ψ(xk) < Ψ(zk). This results in 

the δk of (12) being positive and may result in the ηk of (13) being greater than 2. That such 

larger-than-two values occur in practice can be seen from the results reported in the section 

on Experiments. See Table I for a comparison of the convergence formulas for FISTA/

MFISTA, OGM and MFISTA-VA.
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Algorithm 3 MFISTA‐VA for CS‐MRI
1: set t1 = 1

2: set y1 = x0
3: set y1 = Ax0
4: for k = 1 to N do
5: set ∇ f (yk) = A† yk − g ,

6: set f (yk) = 1
2 yk − g † yk − g ,

7: set zk = proxϕ, Lk
yk − 1

Lk
∇ f (yk)

8: set zk = Azk

9: set f (zk) = 1
2 zk − g † zk − g ,

10: set xk = xk − 1 + μk(zk − xk − 1)

11: set xk = xk − 1 + μk(zk − xk − 1)

12: set f xk = 1
2 xk − g † xk − g ,

13: set xk, xk, f xk arg min
x ∈ xk, zk, xk − 1

f (x) + ϕ(x)

14: set ζk = f (yk) − f (zk) + ℜ ∇ f (yk)†(zk − yk) +

Lk
2 ‖zk − yk‖2

15: set δk = f (zk) − f (xk)

16: set tk + 1 = 1 + 1 + 4tk
2 /2

17: set ηk = 1 + 2
ζk + δk

Lk‖zk − yk‖2

18: set yk + 1 = xk +
tk − 1
tk + 1

xk − xk − 1 +
tk

tk + 1
zk − xk +

tk
tk + 1

ηk − 1 zk − yk

19: set yk + 1 = xk +
tk − 1
tk + 1

xk − xk − 1 +
tk

tk + 1
zk − xk +

tk
tk + 1

ηk − 1 zk − yk

20: end for

VII. SUMMARY

Convergence analysis of MFISTA was revisited for flexibility in the parameters and a new 

version of MFISTA utilizing variable acceleration, which is faster than the original MFISTA, 

was proposed. The new version uses an extra term in the momentum, which connects it to 

optimized first-order gradient methods. By exploiting the difference between the surrogate 

and the cost function, including negative values of this difference, the new version is more 
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robust to the choice of the algorithmic parameter Lk, converging for Lk values much smaller 

than those originally allowed. This brings a practical advantage for problems with ill-

conditioned systems, or when the Lipschitz constant in not known or cannot be easily 

computed, such as radial MRI. Also, the convergence analysis shows that if any point better 

than the output of the proximal-gradient step is utilized as the next iterate, then this can be 

converted into faster convergence. Any procedure that gives a possibly better point, and has 

low computational cost, can be utilized. The performance of the proposed MFISTA with 

variable acceleration was illustrated on two CS problems in MRI using nuclear-norm 

regularization and anisotropic TV.
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Appendix

In this Appendix we summarize definitions and notation associated with real-valued 

functions of several complex variables. The definitions presented here are based on the 

standard way of thinking of the real and imaginary parts of a complex variable as two real 

variables. They are, however, essential to connect previous results for real-valued variables, 

such as those in [7, 12], with our problem.

Let ℂn denote the set of vectors x with n complex components. For any x ∈ ℂn, write 

x = x′ + ix'', where i = −1, and both x′ and x′′ are in ℝn. We also define xr ∈ ℝ2n by

x j
r =

x j′, if 1 ≤ j ≤ n,
x j − n′′ if n + 1 ≤ j ≤ 2 n, (49)

Conversely, for any x ∈ ℝ2n,we define xc ∈ ℂn by

x j
c = x j + ixn + j, for 1 ≤ j ≤ n . (50)

For any x ∈ ℂn, xr c = x and for any x ∈ ℝ2n, xc r = x.

With standard definitions of Euclidean norms ‖ ⋅ ‖r and ‖ ⋅ ‖c for real and complex vectors, 

respectively, we have, for any x ∈ ℂn, ‖x‖c = ‖xr‖r and, for any x ∈ ℝ2n, ‖x‖r = ‖xc‖c.

For any real-valued function F : ℂn → ℝ of n complex variables, we define the real-valued 

function Fr : ℝ2n → ℝ of 2n real variables by
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Fr x = F xc , for all x ∈ ℝ2n . (51)

Conversely, for any real-valued function F :ℝ2n ℝ of 2n real variables, we define the real-

valued function Fc:ℂn ℝ of n complex variables by

Fc x = F xr , for all x ∈ ℂn . (52)

It is easy to show that, for any real-valued function F : ℂn → ℝ of n complex variables, (Fr)c 

is the same function as F and, for any real-valued function F :ℝ2n ℝ of 2n real variables, 

Fr c
 is the same function as F.

We say that F : ℂn → ℝ is differentiable (respectively, continuously differentiable or 

convex) if Fr is differentiable (respectively, continuously differentiable or convex). Thus for 

a differentiable F : ℂn → ℝ, all partial derivatives of Fr exist everywhere in ℝ2n . For such a 

function F we define its gradient ∇cF(x) at x ∈ ℂn to be the element of ℂn whose jth 

component, for 1 ≤ j ≤ n, is

∇cF(x) j = ∂Fr

∂x j
r (xr) + i ∂Fr

∂xn + j
r (xr) ; (53)

see (49) for clarification of the variables x j
r and xn + j

r . Note the following: Let ∇r to denote 

the gradient operator for realvalued differentiable functions F :ℝ2n ℝ of 2n real variables. 

Then, for all differentiable F : ℂn → ℝ, we see that ∇cF(x)=(∇rFr (xr))c. Also, for all a and b 

in ℂn,

‖∇cF(a) − ∇cF(b)‖c = ‖∇rFr(ar) − ∇rFr(br)‖r . (54)

This implies that, for any real number ℒ and all a and b in ℂn,

‖∇cF(a) − ∇cF(b)‖c < L‖ a−b ‖c if, and only if,‖∇rFr(ar) − ∇rFr(br)‖r < L‖ar − br‖r. In other 

words, ℒ is a Lipschitz constant for ∇cF if, and only if, it is aLipschitz constant for ∇rFr

For a and b in ℂn, their (complex) scalar product is

a,b c =
j = 1

n
a j′b j′ + a j′′b j′′ + i a j′b j′′ − a j′′b j′ . (55)
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Let ℜ c  to denote the real part of the complex number c. Then ℜ a,b c = ℜ b,a c . 

Further,

ℜ a,b c = ar, br
r, (56)

where a, b r is the (real) scalar product of a and b in ℝ2n.

Suppose that F : ℂn → ℝ is convex and differentiable. By definition that means that Fr : ℝ2n 

→ ℝ is convex and differentiable. For such a function it is well-known that

Fr(z) ≤ Fr(x) + ∇rFr(z), z − x r, (57)

for all .x and z in ℝ2n. Consider now any x and z in ℂn. By letting x = xr,z = zr and applying 

previously derived equalities (51), (56) and (57), we get that

F(z) ≤ F(x) + ℜ ∇cF(z), z − x c . (58)

We call an element v of ℂn a subgradient of F at z if, for all x ∈ ℂn,

F(z) ≤ F(x) + ℜ v, z − x c . (59)

From this definition it follows that z is a minimizer of F over ℂn if, and only if, the vector 0 
∈ ℂn with zero-valued components is a subgradient of F at z.

The following facts are easy to prove. If a function is differentiable at a point then its 

gradient at that point is its only subgradient at that point. Also, the sum of a subgradient of 

F : ℂn → ℝ at a point x ∈ ℂn and a subgradient of G : ℂn → ℝ at x is a subgradient of F + 

G at x.
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Figure 1: 
Curves showing the cost function Ψ(xk) − Ψ(x*) over iteration index, for MRI Problem A.
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Figure 2: 
Curves showing the cost function Ψ(xk) − Ψ(x*) over time, for MRI Problem A.
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Figure 3: 

Curves showing the error ‖xk − x∗‖/‖x∗‖ over iteration index, for MRI Problem A.
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Figure 4: 

Curves showing the error ‖xk − x∗‖/‖x∗‖ over time, for MRI Problem A.
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Figure 5: 

Curves showing the error ‖xk − x∗‖/‖x∗‖ over iteration index, for MRI Problem B.
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Figure 6: 

Curves showing the error ‖xk − x∗‖/‖x∗‖ over time, for MRI Problem B.
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Figure 7: 
Visual example showing the first image of the reconstructed sequence of T1ρ-weighted 

images of MRI Problem A. (a) NUFFT gridding of the 6-fold undersampled data (22 spokes/

image), (b) MFISTA-VA of the 6-fold undersampled data, (c) NUFFT gridding of the fully 

sampled data (128 spokes/image), and (d) magnitude of the difference, with intensity 

amplified 10×, between MFISTA-VA and fully-sampled gridding.
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Figure 8: 
Curves showing the cost function Ψ(xk) − Ψ(x*) over iteration for MRI Problem B, for two 

different L values.
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Figure 9: 
Visual example showing the reconstructed abdominal images, obtained using the l1-norm of 

the first-order spatial finite difference transform regularization. (a) NUFFT gridding of the 

1.6-fold undersampled data (80 spokes), (b) MFISTAVA of the 1.6-fold undersampled data, 

and (c) NUFFT gridding of the fully sampled data (128 spokes).
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Table I:

Convergence results:

Method: Formula:

FISTA/MFISTA [7, 12] Ψ(xk) − Ψ(x∗) ≤
2L‖x0 − x∗‖2

k + 1 2

OGM [19] (not proved for OISTA) Ψ(xk) − Ψ(x∗) ≤
L‖x0 − x∗‖2

k + 1 2

MFISTA-VA Ψ(xk) − Ψ(x∗) ≤
2Lk‖x0 − x∗‖2

ηk k + 1 2
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