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Abstract

Cytoplasmic dynein-1 is an important microtubule-based motor in many eukaryotic cells. Dynein 

has critical roles both in interphase and during cell division. Here we focus on interphase cargoes 

of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A 

central challenge in the field is to understand how a single motor can transport such a diverse array 

of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to 

dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is 

a set of coiled coil proteins — ‘activating adaptors’ — which both recruit dynein–dynactin to their 

cargoes and activate dynein motility.

The microtubule cytoskeleton is responsible for long distance movements and spatial 

organization of intracellular vesicles, organelles, and large protein- and RNA-containing 

complexes in many eukaryotic cells. Microtubules are polarized structures with a minus and 

a plus end. In interphase cells microtubule plus ends are typically located near the periphery. 

Minus ends originate from microtubule organizing centres (MTOC), which are often located 

close to the nucleus, but are also found at other locations in the cell. In mitosis microtubules 

reorganize to form the spindle, with the microtubule minus ends focused at the two poles. 

The molecular motors, dyneins (minus-end-directed) and kinesins (primarily plus-end-
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directed), are responsible for many microtubule-based functions. Notably, plants and some 

algae lack dynein genes in their genome.

Dyneins were first discovered as the motors that drive flagellar beating in Tetrahymena 
pyriformis1. Subsequently, two dynein isoforms were found that are responsible for 

movement in the cytoplasm (cytoplasmic dynein-1) and cilia (cytoplasmic dynein-2)2–5. 

This review will focus on cytoplasmic dynein-1 (subsequently referred to as dynein). Dynein 

is an essential gene in a number of organisms, including Dropsophila melanogaster and 

mice6,7 and mutations in the dynein transport machinery have been linked to neurological 

diseases. These include neurodegenerative disorders such as the Parkinson’s-like Perry 

Syndrome, Spinal Muscle Atrophy with Lower Extremity Dominant (SMA-LED), 

Hereditary Motor Neuron disease, and Charcot-Marie-Tooth. They also include 

neurodevelopmental diseases such as lissencephaly [G], as well as other malformations of 

cortical development and intellectual disability8.

Remarkably, a single dynein functions in the cytoplasm in animal cells, in contrast to the 

~40 kinesins that perform related functions. This suggests dynein uses a different strategy to 

interact with its cargoes compared to kinesin. Here we address how a single dynein 

transports such a diversity of cargoes. We first discuss the structure of the dynein-based 

transport machinery. We then describe the main cargoes of dynein, which we group under 

four categories: membranes, RNAs, proteins, and viruses. We have limited this Review to 

interphase functions of dynein, as its mitotic and meiotic roles have been covered 

elsewhere9.

The dynein transport machinery

After the discovery of dynein, it became clear that other factors were required for its activity. 

A large molecular weight complex, later named dynactin, was found to be necessary for 

vesicle movement along microtubules10,11. However, the two complexes only interacted 

weakly in vitro12. This interaction was shown to become stronger in the presence of an 

amino-terminal domain of BICD2 (BICD2-N), which is predominantly coiled coil12. BICD2 

is the human homologue of bicaudal-D, which was originally identified as a polarity factor 

in D. melanogaster13. Recent studies demonstrated that BICD2-N dramatically activates the 

motility of isolated dynein–dynactin complexes to move long distances in vitro14,15. 

Additional coiled-coil-containing proteins have also been shown to activate dynein–dynactin 

motility (Table 1). We refer to these coiled-coil proteins as ‘activating adaptors’. These 

proteins have the dual property of both activating motility and linking dynein–dynactin to 

their cargoes. Collectively, these results suggest the ‘dynein transport machine’ consists of 

1) the dynein complex, 2) the dynactin complex, and 3) a coiled coil-containing activating 

adaptor (such as BICD2) (Fig. 1 and Table 1). Below we provide an overview of these three 

central components, as well as two additional regulators, Lis1 (PAFA1H1) and Nudel 

(NDE1 and NDEL1; collectively referred to as “Nudel” here), which associate with the 

dynein complex and are required for many dynein functions. Beyond activating adaptors, 

other connections between dynein and its cargoes have been shown to be involved in dynein 

transport (Box 1).
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Structure of dynein

Human dynein is a 1.4 MDa complex composed of six different polypeptides all of which 

are present in two copies (Fig. 1a). There is a single dynein heavy chain gene (DHC; 

DYNC1H1) and two isoforms of each of the other components: the intermediate chains 

(DIC; DYNC1IC1 and 2), the light intermediate chains (DLIC; DYNC1LI1 and 2) and the 

three light chain families (DLCs): Robl (DYNLRB1 and 2), LC8 (DYNLL1 and 2), and 

Tctex (DYNLT1 and 3).

The DHC is 4634 amino acids long, containing a carboxy-terminal motor domain and an 

amino-terminal tail domain. Starting from the amino-terminus of the DHC, the ‘tail’ 

contains a dimerization domain (residues 1–200), followed by an extended region made up 

of nine helical bundles (residues 201–1420)16–18 (Fig. 1b). The last helical bundle of the tail 

joins into the motor domain, which consists of the linker (itself also made of helical 

bundles), a ring of six AAA+ domains [G], and a carboxy-terminal domain. The motor binds 

to its track via a microtubule binding domain (MTBD) at the end of a coiled-coil stalk that 

emerges from the AAA+ ring19,20. Dynein moves along microtubules by coupling ATP 

induced conformational changes in the AAA+ ring with bending and straightening of the 

linker21.

The DIC contains a WD40 domain [G] that binds the DHC helical bundles 4 and 5, whereas 

the DLIC has a Ras-like domain [G] that contacts DHC helical bundles 6 and 716,18. The 

DLIC is further anchored onto the DHC by amino- and carboxy-terminal helices (α1 and 

α13, respectively) that span out from the Ras-like domain and contact DHC helical bundles 

8 and 5, respectively (Fig. 1b). The DICs have extended ~230 residue amino-termini that 

contact dimers of DLCs. One of these DLCs, Robl, binds both this amino-terminus and 

docks onto the WD40 domain of one of the DICs. The two DLICs have extended ~130 

residue carboxy-termini (Fig. 1a), which contains two alpha helices (α14 and α15)22. The 

DLIC carboxy-termini contact activating adaptors and in some cases may also provide a 

direct link to cargo23,24.

Structure of dynactin

The 1.1 MDa dynactin complex is composed of 23 subunits (11 different polypeptides; Fig. 

1c)25. Its central feature is a short actin-like filament, which contains 8 copies of the actin 

related protein (Arp) 1 (ACTR1A and B), and 1 copy of ß actin (ACTB). The filament is 

capped at the barbed end [G] by the actin capping protein CapZ (CAPZA1 or CAPZA2, and 

CAPZB) and at the pointed end [G] by another actin related protein, Arp11 (ACTR10). 

Three other proteins p62 (DCTN4), p27 (DCTN6) and p25 (DCTN5) bind Arp11 to form a 

pointed end complex. A ‘shoulder’ domain sits on the filament near the barbed end. It is 

composed of 2 copies of p150glued (“p150”; DCTN1), four copies of p50/dynamitin (“p50”; 

DCTN2), and 2 copies of p24 (DCTN3). Extended peptides corresponding to the amino-

terminus of p50 emerge from the shoulder and wrap around one side of the filament. The 

carboxy-terminus of p150 is buried in the shoulder and the amino-terminus forms a flexible 

extension with two stretches of coiled-coil (CC1 and CC2) interrupted by a globular domain. 

CC1 contains two halves, CC1a and CC1b, which form a hairpin structure. At the extreme 
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amino-terminus of p150 are the CAP-Gly and basic domains, which have been implicated in 

microtubule binding26.

Activating adaptors

At the time of writing, eight activating adaptors have been shown to promote long distance 

movement of dynein–dynactin complexes in vitro (Table 1, Fig. 1d). There are no sequence 

motifs that are common to all of these activating adaptors. Instead the common features are 

1) the presence of a long (> 200 residues) coiled coil, 2) a binding site for the DLIC 

carboxyterminus23,24,27, and 3) a binding site for proteins (e.g. Rab6, Rab11, RZZ, FTS) 

that link the adaptors to their cargoes (Fig. 1d).

Activating adaptors contain at least three different types of binding sites for the DLIC 

carboxy terminus. BICD2, the BICD-related protein BICDL1 (also called BICDR1), and the 

kinetochore binding adaptor SPDL1 (Spindly) likely bind the DLIC via a motif referred to a 

“CC1-box” in their coiled coil27. The CC1-box contains an AAxxG sequence (where x 

denotes any amino acid). In contrast, HOOK3 and HOOK1 use a small “Hook domain”, 

which is located amino-terminal to their coiled-coils24. The penultimate helix (α14) in the 

DLIC carboxy-terminus is the contact site for BICD2, SPDL1 and HOOK322. The activating 

adaptor RAB11FIP3 (Rab11 Family-interacting protein 3) also binds the DLIC carboxy-

terminus. The exact site of interaction is not yet known, but the region of RAB11FIP3 

(residues 2–43528) that interacts with DLIC contains a pair of EF-hands [G]. Interestingly 

the same type of domain is also found in the activating adaptors Ninein (NIN) and Ninein-

like (NINL), although these proteins have not yet been shown to bind the DLIC. All of the 

activating adaptors are known or predicted to be dimers.

Cryo-EM structures have been solved for dynein and dynactin in complex with three 

different activating adaptors (BICD2, BICDL1 and HOOK3)16,17. These cryo-EM maps are 

at medium (BICDL1) to low (BICD2, HOOK3) resolution in the regions around the 

activating adaptors, but are sufficient to reveal the main ways in which the activating 

adaptors bring dynein and dynactin together. In all cases an ~250 residue coiled-coil of the 

activating adaptor runs along the length of the dynactin filament (Fig. 1e). Their amino 

termini lie close to the barbed end of the dynactin filament and their carboxy-termini contact 

the pointed end complex. The coiled-coils of the activating adaptors interact with dynactin 

slightly differently, especially toward the pointed end. This is consistent with the lack of 

conserved motifs in the coiled-coils of different activating adaptors. Interestingly, BICD2, 

HOOK3 and BICDL1 can all recruit two dynein dimers at a time16,29, although for BICD2 

the recruitment of a second dynein dimer appears to be less efficient16. The second dynein 

lies next to the first along the dynactin filament (Fig. 1e). These interactions mediated by 

activating adaptors recruit dynein to dynactin so that the individual DHCs bind in grooves 

between dynactin filament subunits16,17. Importantly, these interactions induce large 

conformational changes in dynein that align its motor domains so that both microtubule 

binding domains can bind microtubules18. This likely underlies how activating adaptors 

increase the ability of dynein to move over long distances. The ability to recruit two dyneins 

to one dynactin further enhances this effect16,29.
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Dynein and dynactin also interact via the amino-terminus of the DIC contacting CC1 of 

p15030. This interaction may reinforce the interactions described above. Alternatively, a 

recent report suggested that this DIC–p150 interaction inhibits dynein31, raising the 

possibility that binding of an activating adaptor could disrupt this interaction.

The activation of dynein includes a number of steps in addition to binding activating 

adaptors. Dynein in isolation can exist in an inhibited form, referred to as the “phi 

particle”32, which not only binds weakly to microtubules, but is also unable to bind dynactin 

and activating adaptors18. The mechanism by which the phi-particle opens up is not yet 

known.

In addition to the known activating adaptors there are a number of possible candidate 

activating adaptors (Table 1, Fig. 1d). These proteins contain long coiled-coils and co-

immunoprecipiate with both dynein and dynactin. Sequence analysis suggests many of these 

putative activating adaptors have domains that bind the DLIC, although as of yet this has not 

been directly tested. TRAK1 (trafficking kinesin binding protein 1), TRAK2 and HAP1 

(Huntington interacting protein 1) contain the CC1-box motif27, whereas NuMA (Nuclear 

mitotic apparatus protein), CCDC88A/Girdin, CCDC88B/Gipie, and CCDC88C/Daple all 

contain Hook domains (Fig. 1d).

An interesting question is whether RILP (Rab interacting lysosomal protein) and JIP3 

(CJun-amino-terminal kinase-interacting protein3) are activating adaptors. Like known 

activating adaptors, both proteins can interact with dynein and dynactin33,34, with RILP 

directly binding to the DLIC23,35. While RILP and JIP3 both have regions of coiled-coil, 

they are not long enough to bind to dynein and dynactin in the same way as other activating 

adaptors (Fig. 1d). They may therefore fall into a category of non-activating adaptors (Box 

1) that serve as links between the dynein complex and cargo without the activation function.

Dynein regulation by Lis1 and Nudel

Two other central regulators of dynein are Lis1 and Nudel. They have been linked to dynein 

function genetically in many organisms (reviewed recently in36). Lis1, a dimer of two β-

propellers [G] binds directly to dynein’s motor domain at two distinct sites37,38. Nudel 

proteins are coiled coil-containing proteins that interact with the DIC and LC8, as well as 

Lis139–41. There is evidence that Nudel may tether Lis1 to dynein38,40. The molecular 

mechanism of Lis1mediated regulation appears to be complex as in vitro experiments have 

revealed a range of Lis1 functions including decreasing38,42,43 and increasing velocity of the 

dynein motor37,44,45. Based on experiments using Saccharomyces cerevisiae dynein, the 

effects Lis1 exerts on dynein depend on the nucleotide state at dynein’s 3rd AAA+ 

domain37. The function of Nudel also appears to be complex as it can both enhance38,46 and 

oppose Lis1 function in vitro42,43. Lis1 — likely in complex with Nudel proteins — has 

been implicated in multiple cellular processes, including localizing dynein to microtubule 

plus ends, initiating cargo transport, and supporting the ability of dynein to transport high-

load cargoes (reviewed recently in36).
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Dynein cargoes

The remainder of this Review focuses on the wide range of cargoes that dynein transports 

(Fig. 2). Studies with dextrans suggested that, while 500kDa molecules can diffuse freely 

across a cell, complexes larger than 2MDa are confined and effectively immotile47. Thus, 

cargoes for dynein are typically large objects, such as organelles and ribonucleoprotein 

(RNP) or protein complexes. Dynein can also act while it is anchored at the cell cortex [G], 
where it can act as a tether and/or generate pulling forces. Although many of these cargoes 

move bi-directionally owing to the interplay between dynein and kinesin, here we focus on 

dynein-based motility. For each cargo we describe its physiological role and discuss the 

evidence for the involvement of dynein in its dynamics. We also describe the current state of 

knowledge for how each cargo is linked to dynein–dynactin, highlighting the role of known 

or candidate activating adaptors (Table 1, Fig. 1d and Fig. 2). Our focus will be on 

vertebrates, although results from other organisms, such as flies and filamentous fungi, are 

also discussed.

Membrane cargoes

There are many discrete membrane-bound compartments in eukaryotic cells. Some of these 

are marked by small GTPases of the Rab family. Rabs bind effector proteins to direct 

trafficking processes including membrane tethering, fusion, and movement mediated by 

molecular motors48. Disrupting dynein function (Box 2) alters the cellular localization or 

motile properties of many of these membrane compartments.

Endoplasmic reticulum.

The endoplasmic reticulum (ER) is a meshwork of membranes consisting of tubules and 

sheets. Tubules are particularly dynamic and their movements require dynein as they are 

inhibited by overexpression of the dynactin component p50, which is a classic method for 

disrupting dynein–dynactin function (Box 2)49. Similarly, overexpression of p50 showed 

that dynein–dynactin is responsible for transporting ER membranes in neuronal dendrites50.

Dynein also moves vesicles originating from the ER, which is spread throughout the cell, to 

the cell centre. These vesicles coalesce to form the ERGIC (Endoplasmic Reticulum Golgi 

Intermediate Compartment), a precursor compartment of the Golgi. Evidence for this comes 

from visualization of a secreted viral protein (VSVG) that exits the ER and moves rapidly to 

the centre of the cell. This movement is disrupted by overexpression of p5051 and dynein 

colocalizes with markers of the ERGIC compartment52.

It is not yet clear how dynein associates with either the ER or the ERGIC. These interactions 

could either be direct, or mediated by attaching to another vesicle that then interacts with 

dynein. The latter process, called “hitchhiking”, has been observed in filamentous fungi53. 

In Ustilago maydis ER vesicles comigrate with early endosomes54, a cargo that requires 

dynein for movement in this organism55. It remains to be seen if ER hitchhiking is 

conserved in mammalian cells.
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Golgi.

The Golgi apparatus is made up of stacks of membranes typically positioned near the 

nucleus. However in some organisms and cell types, the Golgi stacks are dispersed 

throughout the cytoplasm. In Golgi stacks, secreted proteins move from the nuclear proximal 

cis-Golgi compartment through the stack to the trans-Golgi network (TGN). From the TGN 

components are transported in Golgi-derived vesicles to the plasma membrane or to other 

organelles such as endosomes and lysosomes.

Dynein plays a key role in Golgi positioning. The Golgi is dispersed by deletion of dynein in 

mouse cells7, injection of anti DIC antibodies, or over-expression of p5056 (Box 2). The 

BICD adaptors (BICD1 and BICD2), which are involved in Golgi vesicle movement (see 

below), are not involved in this process, as over-expression of a carboxy-terminal fragment 

of BICD2 displaces endogenous BICD2 but has no effect on Golgi morphology57,58. A 

candidate adaptor for dynein-based Golgi positioning is GOLGA3 (Golgin 160), as its 

knockdown leads to Golgi dispersal and it co-immunoprecipitates with both dynein and 

dynactin. When GOLGA3 is ectopically recruited to non-Golgi membranes, it drives their 

movement towards the centre of the cell (“relocation assay”, Box 2)59, which would be 

consistent with it acting as an activating adaptor for dynein–dynactin. While GOLGA3 is 

rich in coiled-coils, it lacks any obvious DLIC interacting motif and the region of the protein 

used in the relocation assay is too short to activate in a BICD2-like manner. Therefore, it is 

an open question whether GOLGA3 is a true activating adaptor.

Dynein has been directly linked to the movement of Golgi-derived vesicles via activating 

adaptors of the BICD family. In addition to bridging the dynein–dynactin interaction, BICD2 

binds the Rab6 GTPase and localizes to cytoplasmic vesicles and the TGN57,58 (Fig. 3a). 

Rab6-marked vesicles have been implicated in intra-Golgi, endosome to Golgi, Golgi to ER 

and Golgiderived exocytic vesicle trafficking48. Over-expression of a carboxy-terminal 

fragment of BICD2 displaces endogenous BICD2 from Rab6 vesicles and causes them to 

accumulate at the periphery of the cell57,58. This is presumably due to kinesin-driven 

transport dominating when dynein– dynactin is removed from the Rab6 vesicles60.

BICDL1 is another Golgi-associated activating adaptor, which also binds Rab6 and is 

predominantly associated with exocytic Golgi-derived vesicles61. Unlike BICD1 and 

BICD2, BICDL1 is expressed predominantly early in embryonic development in neural and 

kidney tissue and regulates neurite outgrowth61. A related isoform, BICDL2, binds to 

Rab1361 and is also associated with post-Golgi trafficking62. The activating adaptor NINL 

and the candidate activating adaptor HOOK2 (Table 1), have both been implicated in 

trafficking Rab8-marked Golgi derived vesicles that are destined for the base of the primary 

cilium63,64.

Endolysosomal system.

Endocytosis is the process of internalizing portions of the plasma membrane, which can 

contain receptors and their ligands. Internalized membranes are sorted to various 

destinations including recycling endosomes [G], late endosomes [G], multivesicular bodies 
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[G] (MVBs), the TGN, and the lysosome. Each compartment is marked by one or more Rab 

GTPases.

Dynein is required for trafficking throughout the endolysosomal system. For example, 

knockout of dynein in mouse cells disperses lysosomes and endosomes7. Overexpression of 

p50 disrupts early and late endosome and lysosome distribution56, inhibits trafficking of 

signalling receptors from the cell surface towards the centre of the cell65, and blocks 

transport of endosomes along nerve axons66.

Early endosomes are marked with the Rab5 GTPase. Activating adaptors of the Hook family 

have been implicated in linking these vesicles to dynein. Hook was first shown to have a role 

in endocytic trafficking in D. melanogaster67. Experiments in filamentous fungi 

subsequently linked Hook to dynein, showing that a Hook homolog was required to link 

Rab5marked early endosomes to the dynein machinery68,69. Mammals have three Hook-

related proteins (HOOK1, HOOK2 and HOOK3). HOOK1 and HOOK3 have been directly 

linked to dynein-driven movement of early endosomes in axons70.

Hook proteins are part of a complex called FHF, named after its components FTS (AKTIP), 

Hook, and FHIP (FAM160A2)68,71,72. The GTP-bound form of Rab5 interacts with the FHF 

complex in both D. melagoaster73 and human cell70 extracts. In Aspergillus nidulans FHIP 

can bind to early endosomes in the absence of the other two components72 and two-hybrid 

interaction studies with human proteins suggest that FHIP can bind directly to the GTP-

bound form of Rab570. This suggests the FHF complex binds directly to Rab5 on early 

endosomes via the FHIP component, and the Hook protein recruits the dynein–dynactin 

complex (Fig. 3b).

Another potential connection between dynein and early endosomes is via Huntingtin (Htt) 

and HAP1 (Box 1, Fig. 1d). Htt binds to the GTP-form of Rab573 and has been linked to the 

movement of signalling endosomes (see also below)74, as well as other membranous 

cargoes. In addition, Htt binds dynein75 and HAP1 binds dynactin76. HAP1 is a candidate 

activating adaptor based on its homology to other adaptors (Fig. 1d, Table 1). An intriguing 

question is whether both Htt/HAP1 and the FHF complex are found on the same early 

endosomes, or whether they provide alternate routes to recruit dynein–dynactin (Fig. 3b).

Late endosomes are marked with the GTPase Rab7. Rab7 forms a complex with the 

cholesterol sensor ORP1L (oxysterol-binding protein-related protein 1L) and RILP (Box 

1)77. RILP binds to GTP-bound Rab778, directly binds the DLIC23,35, and is required to 

recruit dynein and dynactin to late endosomes and lysosomes34 (Fig. 3c). Interestingly the 

ORP1L–Rab7–RILP complex also interacts with the HOPS complex [G]71, which is 

implicated in late endosome trafficking79. The HOPS complex binds to the Hook-containing 

FHF complex80,81, raising the possibility that late endosomes also engage Hook proteins to 

link them to dynein82 (Fig. 3c). If this is confirmed, it will suggest that, as with early 

endosomes, there are multiple ways in which dynein can be recruited to late endosomes. 

Late endosomes mature into lysosomes, which are found in a perinculear region in some cell 

types. This positioning has also been linked to dynein– dynactin56 and there is evidence that 
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lysosome motility and positioning is mediated by the same factors that are used by late 

endosomes83.

In addition to the adaptors described above, a number of other proteins have been implicated 

in dynein’s association with the endolysosomal system, including JIP333,84, AnkyrinB85, 

Snapin86 and Spectrin87 (Box 1, Figs. 3b and 3c). These proteins all lack long coiled-coils, 

suggesting they are not activating adaptors. This raises the question of whether these 

proteins act together with an activating adaptor or can provide an alternate means of 

activating dynein–dynactin.

A subset of endosomes contains receptors that signal in the cytoplasm after internalization. 

These endosomes, called signalling endosomes, have been well studied in neurons, where 

growth factors bind to receptors at the nerve synapse, undergo endocytosis, and are 

transported back along the axon to the cell body by dynein–dynactin. For example, nerve 

growth factor (NGF) and brain-derived neurotrophic factor (BDNF) bind to the receptor 

tyrosine kinases TrkA and TrkB, respectively88. These NGF–TrkA and BDNF–TrkB 

complexes colocalize with both Rab5 early endosomes89 and Rab7 late endosomes in 

axons90, suggesting that signalling endosomes may use the same adaptors as early and late 

endosomes.

Many cells also have an endosomal compartment near the MTOC that is a nexus for receptor 

recycling to the plasma membrane and is distinct from early endosomes. These recycling 

endosomes are marked by Rab1191. RAB11FIP3 is a Rab11 interacting protein that is 

required to maintain the structure of recycling endosomes92 and is a dynein–dynactin 

activator in vitro14 (Table 1 and Fig. 1d). RAB11FIP3 is also required to deliver membranes 

to cilia93 and the cytokinetic furrow94. As with endosomes, other adaptors may also recruit 

dynein–dynactin to recycling endosomes. For example, JIP3 has been shown to have a role 

in the movement of recycling endosomes during cytokinesis95.

Melanosomes.

Melanosomes are pigment-containing organelles related to lysosomes. In many vertebrates, 

their movements are regulated to control skin colour changes. In pigmented cells of Xenopus 
laevis, antibodies against the DLIC block melanosome movement towards the cell centre96. 

In zebrafish lacking the protein ninein-like (NINL), melanosome transport is severely 

impaired. NINL interacts with components of the dynein and dynactin complex as shown via 

mass spectrometry experiments97,98, and human NINL is an activating adaptor98, suggesting 

that NINL is the activating adaptor for melanosome motility.

Autophagosomes.

Autophagosomes are double membrane vesicles formed after engulfment of organelles and 

proteins destined for destruction by autophagy. They are marked with the ubiquitin-related 

protein LC3. In HeLa cells autophagosomes move to the cell centre and cluster with 

lysosomes99. In neurons, autophagosomes can form at the axon tip100 and then fuse with 

LAMP1- or Rab7-marked late endosomes to initiate transport towards the cell body100–102. 

Autophagosomes can also form in the soma103.
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A role for dynein in autophagy came from the observation that overexpression of p50 or 

p150 CC1 (Box 2) impairs autophagic clearance104. Furthermore, injection of an anti-DIC 

antibody inhibits clustering of LC3 autophagosomes in HeLa cells99 and p150 CC1 

overexpression inhibits their movement in neurons100. Because moving autophagosomes can 

fuse with late endosomes, a Hook protein may be the activating adaptor for dynein-mediated 

autophagosome transport. There is also evidence that Htt and the candidate activating 

adaptor HAP1 are important for autophagosome motility105. The protein JIP1 (c-Jun N-

terminal kinase interacting protein 1) is also necessary for autophagosome motility105,106. 

JIP1 is structurally unrelated to JIP3 and lacks any predicted coiled-coil, suggesting it is not 

an activating adaptor. Intriguingly, autophagosomes have different motile properties than 

endosomes and lysosomes107. It is not yet clear what accounts for these differences.

Mitochondria.

Mitochondria move bidirectionally along microtubules and pause frequently. Their motility 

can respond to changes in cell signalling or axon growth, for example, which can lead to 

their accumulation in areas with high metabolic requirements108. Mutations in D. 
melanogaster dynein impair movement of mitochondria in axons, suggesting a direct role of 

dynein in retrograde movement (that is from the periphery to the cell body) of 

mitochondria109. Both dynein and kinesin associate with mitochondria via Milton (TRAK 1 

and 2 in humans), which binds to the mitochondrial outer membrane protein Miro (RHOT1 

and RHOT2 in humans)110. TRAK proteins co-precipitate dynein and dynactin from brain 

extracts111, suggesting they interact with the dynein motor. TRAK1 and TRAK2 contain a 

region with similarity to BICDL1 and HAP160, raising the possibility that the TRAK 

proteins are activating adaptors of dynein–dynactin for mitochondrial motility (Box 1, Fig. 

1d).

Peroxisomes.

Peroxisomes perform a variety of metabolic functions, including the breakdown of fatty 

acids and metabolism of hydrogen peroxide. Peroxisomes are relatively evenly distributed in 

cells and only 10–15% of them are mobile in many cell types112. Overexpression of p50 

disrupts peroxisome motility in mammalian cells113. However, to date no peroxisome-

specific dynein–dynactin adaptor has been identified.

In filamentous fungi, where peroxisomes move in a kinesin- and dynein-dependent 

manner114, they do so by hitchhiking on moving early endosomes54,115. Peroxisomes co-

migrate with Rab5-marked early endosomes and require endosome motility for movement. 

In Aspergillus nidulans, PxdA, a long coiled-coil-containing protein is required for 

hitchhiking, and may act to tether the two organelles115 (Fig. 3d). It is not clear if the 

hitchhiking mechanism is used for peroxisome motility outside of filamentous fungi.

Lipid droplets.

Lipid droplets serve as lipid storage compartments and also provide a source of membrane 

lipid precursors116. Like peroxisomes they show both diffusive and microtubule-dependent 

movements117. Genetic studies in D. melanogaster and filamentous fungi have implicated 

kinesin and dynein in the bidirectional motility of lipid droplets54,118,119. In D. melanogaster 
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BicD, which is related to the mammalian BICD proteins, has been shown to have a role in 

lipid droplet movement120. However, it is unclear if this role is direct and no other adaptor 

proteins have been identified for lipid droplets to date. In the filamentous fungus, U. maydis 
lipid droplets hitchhike on early endosomes, like ER vesicles and peroxisomes54.

Nuclei.

Dynein-dependent movement and positioning of nuclei occurs in many organisms ranging 

from yeast to humans. In mitosis dynein positions the spindle, which ultimately leads to 

nuclear positioning121,122. In interphase cells dynein also has direct roles in nuclear 

movement or positioning. Early demonstrations of this include defects in nuclear positioning 

in filamentous fungi with mutations in dynein or dynactin subunits123,124 and defects in the 

movement of pronuclei [G] in Caenorhabditis elegans embryos depleted of dynein or 

dynactin125. In vertebrate cells dynein is responsible for the movement of nuclei during cell 

migration126,127, interkinetic nuclear migration [G] in neural progenitor cells128, and 

distributing and positioning nuclei in developing muscle cells (myoblasts)129,130.

These different nuclear movements can be driven by dynein that is directly connected to the 

nucleus or by cortically anchored dynein pulling on microtubules emanating from MTOCs. 

A number of proteins have been identified as being important for linking dynein to the cell 

cortex or nuclear membrane. In mitosis NuMA and the LGN complex anchor dynein to the 

cortex131. In interphase, dynein is anchored to the nucleus by BICD2 via the nucleoporin 

RANBP2132,133. The nucleoporin Nup133 and the dynein regulator Nudel also have a role in 

localizing dynein to the nucleus132,134. In some cell types dynein may be recruited by 

different mechanisms. For example, Par6 is required for dynactin localization to the nuclear 

envelope in myotubes, and its depletion reduces the movement of recently fused myoblast 

nuclei within myotubes133. In C. elegans a protein related to the Hook family of activating 

adaptors, Zyg-12, is important for attaching dynein to the nuclear membrane135.

RNA cargoes

Subcellular localization of mRNAs is a mechanism to locally control gene expression in 

many organisms136. The role of dynein in RNA localization was discovered in D. 
melanogaster137, where mutations in the DHC or injection of antibodies against the DHC or 

p50 all lead to defects in mRNA localization in fly syncytial blastoderm [G]138. In 

mammalian cells there is no direct evidence for the role of dynein in RNA localization, 

although the DIC co-immunoprecipitates with the RNA binding proteins Staufen139 and 

La140.

mRNAs are transported in complex with proteins, as ribonucleoprotein particles (RNPs). In 

D. melanogaster, the localization of many RNAs requires BicD and the formation of 

transport competent mRNP complexes requires the RNA-binding protein Egalitarian (Egl). 

Egl binds directly to RNA and the carboxy-terminal cargo-binding domain of BicD, thus 

linking RNA to the dynein transport machinery141. As an example, the dynein–dynactin–

BicD–Egl complex has an essential role during oogenesis in flies by controlling the 

localization of oskar and bicoid mRNAs, which are involved in anterior–posterior axis 

determination of the embryo142. These mRNAs, packaged as mRNPs, are transported from 
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nurse cells [G] into the oocyte along polarized microtubule arrays, requiring dynein, 

dynactin, BicD, and Egl for movement143,144. Once inside the oocyte, bicoid continues to 

require dynein to maintain its localization145. BicD also contributes to RNA localization in 

fly neurons, where it interacts with the RNA-binding factor, Fragile X mental retardation 

protein (FMRP)146. BicD and FMRP interact and move together bidirectionally in fly 

neurons, and both proteins are required for normal levels of dendritic branching [G]146.

In filamentous fungi, RNAs are distributed by hitchhiking on early endosomes147. For 

example, in U. maydis mRNA-containing polysomes [G] are distributed throughout the 

cytoplasm by their association with dynein and kinesin-driven early endosomes148,149. It 

remains to be explored if hitchhiking is used by higher eukaryotes as a means to distribute or 

localize mRNA transcripts.

Protein cargoes

Aggresomes and misfolded proteins.

Misfolded proteins are processed by either chaperones, which refold them, or the ubiquitin-

proteasome system, which removes them by proteolysis. When these pathways are 

overwhelmed, cells temporarily sequester these toxic protein species. The misfolded proteins 

are transported to juxtanuclear structures known as aggresomes that can be eventually 

processed by autophagy150. Overexpression of p50 (Box 1) prevents the formation of 

aggresomes, implicating dynein–dynactin in their formation151,152. Three pathways have 

been reported to recognize misfolded proteins and connect them to dynein– dynactin. The 

first depends on HDAC6, which links polyubiquitylated proteins to dynein– dynactin153. 

The precise protein–protein interactions underlying the connection of HDAC6 to dynein–

dynactin are not known. A second pathway uses SQSTM1 to link polyubiquitylated proteins 

to dynein through an interaction with the DIC153. HDAC6 and SQSTM1 interact with each 

other154, although depletion of HDAC6 increases the amount of SQSTM1 that interacts with 

dynein, suggesting that HDAC6- and SQTSM1-dependent pathways might act 

competitively155. A third pathway uses the Hsp70 co-chaperone BAG3 to couple misfolded 

proteins to the dynein–dynactin complex. This pathway does not require ubiquitylation to 

target proteins to the aggresome156. The BAG3–dynein interaction is bridged by the 14–3-3 

protein [G], which interacts with BAG3 and the DIC157. No known activating adaptor has 

been so far implicated in aggresome formation.

Transcription factors.

Although small proteins can move quickly by diffusion, there is evidence that some are 

transported by dynein. For example, transcription factors are translated locally in axons in 

response to nerve injury and then transported in a retrograde direction along microtubules. 

This relocalizes them to the nucleus where they activate a transcriptional response158. The 

transcription factor STAT3 immunoprecipitates with dynein and disruption of microtubules 

prevents its accumulation in the nucleus in response to axon damage159. The connection 

between dynein and STAT3 may involve importins [G], as a peptide that blocks the STAT3 

interaction with importin reduces the ability of STAT3 to immunoprecipitate with 

dynein159,160.
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Intermediate filaments and microtubules.

Intermediate filaments are cytoskeletal components that contribute to cell shape, motility 

and organelle positioning161. Dynein participates in the subcellular distribution of vimentin 

intermediate filaments. Vimentin moves along microtubules162, and overexpression of p50 

(Box 1) redistributes vimentin from the perinuclear region to the cell periphery163. In 

addition, vimentin co-immunoprecipitates with dynactin164. Depletion of the DHC also 

impairs the retrograde motility of intermediate filaments present in neurons, known as 

neurofilaments165. This might reflect a direct interaction of dynein with some 

neurofilaments, as neurofilament-M interacts with the DIC166.

It has also been shown that dynein can contribute to the movement of microtubules. Cell 

body-originating microtubules are transported into developing axons in rat neuron cultures 

via a process that is blocked by expression of p50 (Box 1)167. Because these dynein-

dependent microtubule movements are anterograde (in the opposite direction from normal 

dynein transport in the axon) it suggests that the microtubules move by sliding over dynein 

anchored to the cortex165. Cortically anchored dynein also drives the formation of a 

uniformly polarized microtubule network in D. melanogaster neurons168.

Centrosomal components.

Centrosomes are the sites of microtubule nucleation and typically anchor microtubule minus 

ends169. Dynein has a role in transporting proteins to the centrosome. For example, 

expression of the CC1 domain of the dynactin subunit p150 (Box 2) disrupts the localization 

of CDK5RAP2 (also known as CEP215) to the centrosome170. CDK5RAP2 is required for 

γ-tubulin [G] localization and microtubule polymerization171. CDK5RAP2 contains a long 

region of predicted coiled-coil and co-immunoprecipitates with the DIC, although further 

work will be required to determine if it is an activating adaptor for dynein cargos destined 

for the centrosome. There is evidence that the known or candidate activating adaptors, NIN, 

NINL and HOOK2 are enriched at the centrosome172–174. These proteins have a role in 

nucleating microtubules, suggesting that they may transport factors required for this process 

to centrosomes.

Centriolar satellites are smaller motile structures that contribute material to centrosomes and 

are important for ciliogenesis175. Dynein interacts with components of satellites176, and 

overexpression p50 (Box 1) disperses them177. In neuroblastoma cells, the activating adaptor 

HOOK3 localizes to and is important for the function of centriolar satellites, raising the 

possibility it activates dynein–dynactin to drive the movement of satellite components 

towards the MTOC178.

Finally, dynein also has a role in tethering centrosomes to the nucleus. Depletion of BICD2 

or RANBP2, which are located on the nucleus, severs the tight association of centrosomes 

and the nucleus133.

Viruses

There are seven classes of viruses and members from every class use dynein for some aspect 

of their life cycle (Table 2). The most common roles are related to viral replication. For 
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example, DNA and RNA viruses that replicate in the nucleus use dynein motility to reach 

it179–182. Some retroviruses, which reverse transcribe their RNA genomes into DNA in the 

cytoplasm, use dynein to deliver the DNA to the nucleus for integration into the nuclear 

genome183. In addition some DNA and RNA viruses that replicate in the cytoplasm in 

“perinuclear factories” also require dynein to accumulate at these sites184–188.

In addition to using dynein to reach their site of replication, some viruses use dynein at other 

stages of their life cycles. Rabies virus uses dynein for motility along neural axons, which 

allows it to spread from the site of infection to other parts of the nervous system189. Dengue 

virus uses dynein during the assembly of new viral particles188. Hepatitis C virus triggers 

dynein-dependent clustering of lipid droplets at the MTOC, which are then incorporated into 

newly formed viral particles190. Hepatitis B virus uses dynein to cluster mitochondria close 

to the nucleus, perhaps to provide energy for its replication191. Finally, there is evidence that 

Influenza virus requires dynein to disassemble the viral capsid to release its RNA to the 

cytoplasm. HDAC6 is also required for this release step, suggesting that HDAC6 serves as a 

dynein adaptor in this context192.

The connections between viruses and dynein during viral particle transport can either be 

direct or indirect. Examples of viruses that use direct interactions include Herpes Simplex 

Virus and Pseudorabies Virus193. In these cases, the viral inner tegument proteins (which are 

attached to the capsid) are required for dynein binding194. The prime candidate for 

interaction with dynein is pUL36, which is a potential activating adaptor of dynein, as it is 

active in a relocation assay (Box 2)195. Adenoviral particles may also travel by direct 

interaction with dynein after infection and may use this transport to reach the nucleus196. 

The adenovirus capsid protein, hexon, immunoprecipitates with dynein and interacts with 

both DLIC and DIC197. The interaction with dynein is stimulated by phosphorylation of the 

DLIC Ras-domain35, suggesting a direct interaction with dynein. However, the role of 

dynactin in adenoviral intracellular transport is less clear, as dynactin did not 

immunoprecipitate with hexon197, but p50 overexpression (Box 1) blocked nuclear 

accumulation of the adenovirus196. There is also evidence that other viruses interact directly 

with dynein–dynactin183,187,198.

Examples of indirect dynein-based transport involve viruses that move intracellularly within 

endosomes. Adeno-associated viral particles, for example, which move along neural axons, 

colocalize with Rab7 vesicles180. Rabies viral particles also move within vesicles and in this 

form are transported along neuronal axons189. Their dynein-directed movement depends on 

the envelope glycoprotein, as it was shown that incorporating this protein into retroviral 

capsids allows retrograde transport of retroviral particles along axons199. How the viral 

glycoprotein regulates dynein is a mystery, as it is localized within the moving endosome 

rather than on its cytoplasmic face.

Conclusions and perspectives

While a vast number of dynein cargoes have been described, there are likely to be many 

more. For example, recent proteomic experiments have identified a number of putative new 

cargoes linked to dynein by the BICD1, BICD2, HOOK1, HOOK3, NIN or NINL activating 
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adaptors98. Here we have focused largely on cargoes that dynein translocates along 

microtubules, but dynein can also function anchored at the cell cortex, where it can capture 

the plus ends of dynamic microtubules200. New dynein “cargoes” may include specific 

cortical sites that anchor dynein, as suggested by studies that find dynein on the cortex at 

adherens junctions201 and focal adhesions202, and the numerous cortically localized proteins 

found in the dynein interactome98.

This large number of dynein cargoes raises many questions related to how dynein achieves 

cargo specificity. What molecular interactions will mediate binding of dynein to new 

cargoes? Do some cargoes hitchhike rather than recruit dynein directly53?

In this Review we have emphasized the role of activating adaptors in dynein–dynactin 

motility. A question for the future will be to determine if all dynein cargoes, including 

viruses, require an activating adaptor. Reconstitution experiments will be required to verify 

if all current candidate activating adaptors (i.e. BICD1, HOOK2, CCDC88A, CCDC88B, 

CCDC88C, TRAK1, TRAK2, NUMA, and HAP1) are indeed able to activate dynein–

dynactin motility. If there are fewer activating adaptors than cargoes, how does dynein 

achieve cargo specificity? Additional proteins that are not activating adaptors are likely 

required to regulate dynein. For example, as discussed above, the dynein–dynactin 

interacting proteins, RILP, JIP3 and Htt may be involved in adding cargo specificity to an 

already activated dynein–dynactin complex.

There may also be mechanisms to activate dynein that do not require activating adaptors. 

Presumably these factors will also release dynein from its autoinhibited “phi” 

conformation18. It is also possible that large clusters of dynein motors could overcome the 

need for activating adaptors or even for the interaction with dynactin, as dynein groups can 

processively move beads in vitro in the absence of both dynactin and any activator203.

Finally, while we have focused on dynein-based movements in this Review, many cargoes 

move bi-directionally204. Some cargoes that move bidirectionally can switch directions 

rapidly implying that there is coordination between opposite polarity motors. What regulates 

this coordination? Do activating adaptors, some of which can also bind kinesins61,98,205, 

have a role in this process?
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Glossary terms

Lissencephaly
Derived from Greek for “smooth brain”, lissencephaly is a spectrum of developmental 

disorders characterized by defective neuronal migration and the resulting lack of brain folds 

and grooves.

Cell cortex
The cytoplasmic face of the plasma membrane.

AAA+ domain
An “ATPase associated with diverse cellular activities” domain is a highly conserved 

ATPase fold.

WD 40 domain
A structural domain formed from WD40 repeats, themselves composed of approximately 40 

amino acids and often ending in tryptophan (W), followed by aspartic acid (D).

Ras-like domain
A protein domain with sequence similarity to the GTPase domain of Ras.

Barbed end
When actin filaments are decorated with myosin motor domains and visualized by electron 

microscopy the barbed end is the end where myosins can be seen protruding; similar 

nomenclature is used to refer to the equivalent end of the Arp1 minifilament in dynactin.

Pointed end

Reck-Peterson et al. Page 16

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When actin filaments are decorated with myosin motor domains and visualized by electron 

microscopy the pointed end is the end where myosins cannot be seen protruding; similar 

nomenclature is used to refer to the equivalent end of the Arp1 minifilament in dynactin.

EF-hands
A helix-loop-helix protein structural domain that often confers a protein with calcium-

binding ability.

β-propellers
A protein structural domain characterized by 4–8 wedge-shaped beta sheets arranged 

similarly to the blades on a propeller.

Recycling endosomes
Endocytic vesicles characterized by the presence of the protein Rab11, which direct the 

anterograde trafficking of materials to the cell surface.

Late endosomes
Pre-lysosomal endocytic vesicles with lower internal pH relative to early endosomes, and 

characterized by the presence of the protein Rab7.

Multivesicular bodies
Late endosomes that contain multiple internalized vesicles.

HOPS complex
The “homotypic fusion and vacuole protein sorting complex” is a multisubunit membrane 

tethering complex that participates in organelle fusion events within the endolysosomal 

system in concert with Rab proteins.

Pronuclei
Refers to the distinct egg and sperm nuclei that are present within a single cell at the onset of 

fertilization before the fusion of their genetic material.

Interkinetic nuclear migration
The cell cycle-dependent movement of nuclei observed in neural progenitor cells.

Syncytial blastoderm
Drosophila melanogaster early embryos comprise a syncytial blastoderm, which is 

characterized by multiple nuclei residing in a shared cytoplasm, and is the result of multiple 

nuclear divisions in the absence of cytokinesis.

Nurse cells
A group of fifteen polyploid Drosophila melanogaster ovarian cells that share a cytoplasm 

with each other and the developing oocyte and function to support the development of the 

oocyte by providing nutrients and biomolecules (mRNAs and proteins) through intercellular 

connections called ring canals

Dendritic branching
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The process by which a dendrite, the portion of neuron that receives signals from other cells, 

forms the cellular projections it contributes to synapses.

Polysomes
The complex formed by two or more ribosomes simultaneously engaged in translation along 

the length of a single messenger RNA.

14–3-3 protein
A conserved family of adaptor proteins that interact with diverse proteins and regulate their 

function through, for example, altered localization, activity, or stability

Importins
Proteins that recognize and deliver proteins with nuclear localization signals into the nucleus 

through nuclear pores.

γ-tubulin
Tubulin family member that, as a component of γ-tubulin ring complexes, templates nascent 

microtubules.

SNARE
Proteins that are anchored to either donor or acceptor membranes, mediating fusion between 

distinct membranes.

BLOC-1 complex
(biogenesis of lysosome-related organelles complex-1) A multi-subunit protein complex that 

contributes to membrane tubulation, which is important for sorting and organelle biogenesis 

in the endolysosmal system.

Total internal reflection microscopy
This microscopy techniques results in illumination of only a region approximately 100 nm 

from the coverslip surface, allowing high signal-to-noise ratios to be achieved, which makes 

it feasible to image and track single molecules.
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Box 1 |

Other connections between dynein and its cargo.

In addition to the activating adaptors or candidate activating adaptors (Table 1) a number 

of other links between dynein–dynactin and its cargoes have been reported. Here we 

present some prominent examples.

RILP is required for dynein–dynactin recruitment to Rab7 lysosomes34. Because RILP 

interacts with the HOPS complex it may be involved in linking dynein–dynactin to Rab7 

(Fig. 3c). Purified RILP co-precipitates with purified dynein DLIC1, suggesting a direct 

interaction with the complex23,35.

Huntingtin (Htt) and Huntingtin-associated-protein1 (HAP1) associate with membrane 

vesicles75 and are transported in neurons along microtubules206. Htt is linked to 

signalling endosomes74 and autophagosomes105. Htt and HAP1 knockdown decreases 

retrograde movement of autophagosomes105. Htt binds purified dynein75, suggesting a 

direct interaction that does not require dynactin. HAP1 co-immunoprecipitates with p150 

from brain lysate76,207. HAP1 contains a coiledcoil and has sequence similarity to TRAK 

and BICDL160 (Fig. 1d, Table 1), raising the possibility that it is a BICD-like activating 

adaptor.

c-Jun N-terminal kinase (JNK) interacting proteins (JIPs) are implicated in the motility 

of dynein–dynactin cargoes. JIP1 depletion inhibits retrograde transport of amyloid 

precursor protein208 and autophagosomes106 in neurons. JIP3 co-immunoprecipitates 

with dynactin and colocalizes with dynein and dynactin on vesicles in neurons33. JIP1 

lacks coiled-coils, whereas JIP3 contains two short stretches of coiled coil (Fig. 1d). JIP4 

is closely related to JIP3 and shares the same domain architecture.

Ankyrin B (AnkB) knockout mice show reduction in the speed of fast axonal transport of 

early endosomes, lysosomes, mitochondria and synaptic vesicles. AnkB binds the lipid 

PI(3)P on membrane cargoes and directly contacts the pointed-end complex of 

dynactin85.

Sorting nexins (SNX) are a large family of membrane-associated proteins that contain a 

lipid binding PX domain. Affinity tagged SNX5 and SNX6 co-precipitate with dynein 

and/or dynactin from human cell lysates209,210.

Spectrin is a peripheral membrane protein that co-immunoprecipitates with dynactin87. 

While a two-hybrid screen reported an interaction between spectrin and Arp1211, the 

structure of the dynein– dynactin–BICD2 complex shows little fully exposed Arp1, 

which would be available for binding17.

Snapin, a SNARE [G] interacting protein that is part of the BLOC-1 complex [G]212, has 

been implicated in the retrograde movement of late endosomes and suggested to be a 

dynein adaptor86. Snapin is required for dynein to localize to late endosomes and GST-

snapin co-precipitates with dynein and dynactin components from brain lysate86. 

However, because these in vitro experiments were done in the absence of other BLOC-1 

complex members, they should be revisited.
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Direct cargo binding to dynein. In addition to its interaction with activating adaptors, the 

DLIC can form direct interactions with cargoes, such as the adenoviral hexon protein35, 

pericentrin213 and Par3214. The dynein light chains LC8 and Tctex bind motifs found in 

many proteins, leading to the idea that DLCs directly recruit proteins to dynein. However, 

because these motif binding sites on the DLCs bind to the DIC amino-terminus, the 

current consensus is that this is not the case215. Many of the DLC binding motifs likely 

recruit LC8 or Tctex for dynein-independent functions, such as dimerization. However, 

there is some evidence for cargoes connecting to dynein via DLCs, including some 

viruses181, rhodopsin216,217, and the Rho GEF Lfc (ARHGEF2)218. Additional structural 

studies will be required to determine if peptides from these proteins can bind to DLCs 

that are already in complex with the DIC amino-terminal peptides; NMR mapping 

experiments suggest that this may be possible218,219.
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Box 2 |

Methods to study dynein function and activation

Components of the dynein machinery have been depleted using RNA interference and 

CRISPR methods and genetic studies have revealed the functions of many components. 

Several other widely used methods have been important for determining if dynein or 

dynactin are involved in a process of interest. Over-expression of dynactin components, 

such a dynamitin/p50220 (Fig. 1c) or one of the coiled coil segments (CC1) of p150221 

(Fig. 1c) result in the disruption of many dynein–dynactin-dependent processes. The 

exact mechanism of disruption is not completely clear, but probably involves disruption 

of the dynein–dynactin interaction222. Antibodies raised against the DIC (Fig. 1a) have 

also been extensively used to block dynein function in cell-free systems or systems 

amenable to antibody injection223.

A number of methods have been used to provide evidence that a dynein adaptor is an 

activating adaptor. All activating adaptors co-immuoprecipitate with dynein and dynactin, 

providing an initial suggestion that a candidate adaptor could be an activating adaptor98. 

Cell-based “relocation assays” have also been used to provide evidence for dynein–

dynactin activation224,225. In these experiments, a candidate activator is targeted to a 

largely non-motile organelle, such as the peroxisome. Any increase in minus-end-directed 

peroxisome motility provides indirect evidence that a candidate adaptor could be an 

activating adaptor. For example, the amino-terminus of BICD2 can be fused to the 

rapamycin-binding domain FRB. FKBP, which also binds rapamycin, is fused to an 

organelle targeting protein, such as the peroxisomal protein PEX3. In the presence of 

rapamycin BICD2 enhances peroxisome motiltiy225 (see figure part a).

In vitro motility experiments can also provide indirect evidence for activating adaptors. 

For example, candidate activators can be used to immunoprecipitate dynein and dynactin 

from cell lysates or tissue extracts and then the motile properties of the 

immunoprecipitated complex can be assessed using single-molecule motility assays14,98. 

A variation of this method is to visualize dynein or dynactin directly in lysates without 

prior immunoprecipitation226.

The gold standard for determining if a candidate adaptor is a dynein–dynactin activator is 

to reconstitute motility from purified components, as has been done for BICD2, BICDL1, 

HOOK3, NIN and NINL14–16,24,98. In this approach each protein or protein complex is 

purified separately and at least one component is tagged with a fluorescent marker. 

Motility is then monitored using total internal reflection microscopy [G]. Bond fide 

activators lead to processive dynein–dynactin motility (see figure part b).
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Figure 1 |. The dynein transport machinery.
a | Cartoon of cytoplasmic dynein-1. The two dynein heavy chains (DHCs) are linked 

together by an amino-terminal dimerization domain (NDD) and have a carboxy-terminal 

motor domain with a microtubule binding domain (MTDB) at the end of a long anti parallel 

coiled-coil stalk. The intermediate chains (DIC) have extended amino-termini that bind 

dimers of the light chains Roadblock (Robl), LC8 and Tctex. The light intermediate chain 

(DLIC) has an extended carboxy-terminus. b | Structure of the dynein tail16,18 (PDBs 6F1T 

and 5NVU) showing the amino-terminal dimerization domain (NDD) and nine helical 
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bundles (1–9; neighbouring bundles are shown in different shades of blue to distinguish 

them) in the DHC and depicting interactions of DHC with DIC and DLIC. The DIC WD40 

domain binds bundles 4 and 5, whereas the Ras-like domain of DLIC binds to bundles 5 and 

7, using its amino- and carboxy-terminal helices (α1 and α13). The DIC and DLIC extended 

termini are not shown. The structure of helical bundles 8 and 9 is approximate. c | Dynactin 

is built around a filament of eight actin related proteins (Arp1). At the barbed end are 

capping proteins (CapZ). At the pointed end is an actin monomer, another actin related 

protein (Arp11) and a complex of three proteins (p62, p27 and p25). The shoulder domain 

binds the filament via extended amino-terminal peptides of p50/dynamitin. The p150 

component extends from the shoulder, containing stretches of coiled-coil (CC2, CC1b and 

CC1a). At the amino-terminus of p150 are the basic and CAP-Gly domains that can interact 

with microtubules. d | Domain structure of known and candidate activating adaptors (see 

also Table 1). Reported sites of interactions are indicated above each cartoon. Key shows 

domains identified in the literature or by InterPro. RH1 and RH2, RILP homology 1 and 2. e 
| Dynein–dynactin–activator complexes on microtubules. The activating adaptors BICD2 or 

BICDL1 run along the dynactin filament and recruit the dynein heavy chains. BICD2 

preferentially recruits one dynein dimer (left), whereas BICDL1 recruits two dimers (right).

Reck-Peterson et al. Page 35

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2 |. Many cargoes of dynein and their activating adaptors.
Many of the dynein cargoes discussed in this Review. Some cargoes are trafficked along 

microtubules, while in other cases the role of dynein is to position them. Known activating 

adaptors are marked with a star. Candidate activating adaptors are also listed.
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Figure 3 |. Mechanisms linking dynein and dynactin to membrane cargoes.
a | Dynein– dynactin associates with Golgi-derived vesicles using the activating adaptors 

BICD2 or BICDL1 depending on the cell type. Both BICD2 and BICDL1 bind, via their 

carboxy-terminal coiled-coils, to a dimer of the small GTPase Rab6. Rab6 binds to Golgi-

derived membranes via its prenyl tails, as do other Rabs48. b | Early endosomes recruit 

dynein–dynactin via the activating adaptors HOOK1 or HOOK3. These adaptors bind the 

FTS and FHIP proteins to form the FHF complex. FHIP is reported to bind directly to the 

early endosome marker Rab5. Rab5 also binds Htt, which is linked to HAP1, another 
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potential activating adaptor. The PI3P binding protein ANK-B binds the pointed end of 

dynactin and is also important for early endosome transport. How these and other dynein–

dynactin adaptors work together is unknown. c | Late endosomes are marked with Rab7, 

which binds RILP and the cholesterol sensor ORP1L. RILP binds the DLIC. RILP also 

binds the HOPS complex, which interacts with the FHF complex, raising the possibility that 

HOOK proteins also link dynein–dynactin to late endosomes. As with early endosomes, 

other potential dynein–dynactin links have been reported for the movement of late 

endosomes. d | In filamentous fungi some cargos (peroxisomes, ER, lipid droplets, and 

RNPs) associate with the dynein transport machinery indirectly by hitchhiking on early 

endosomes, which can directly recruit the transport machinery via the Hook-containing FHF 

complex (see part b). PxdA is a putative tether that links peroxisomes to early endosomes 

although how it interacts with both peroxisomes and early endosomes is unknown.

Reck-Peterson et al. Page 38

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reck-Peterson et al. Page 39

Table 1 |

Activating adaptors and candidate activating adaptors for dynein–dynactin.

Activator or candidate 
activator

Evidence Cargo

Confirmed activators (active in in vitro motility assays)

BICD2 Reconstituted motility14,15, relocation assay 224 COP1-independent Golgi-to-ER vesicles58, Golgi 
vesicles57, nuclear pore complexes133

BICDL1 (BICDR1) Reconstituted motility 16 Rab6 vesicles61

SPDL1 (Spindly) Co-IP motility14 Kinetochore227

HOOK1 Lysate motility and relocation assay226 Rab5 early endosomes70

Clathrin-independent cargoes228

HOOK3 Reconstituted motility24, Co-IP motility14, 
lysate motility and relocation assay 226

Rab5 early endosomes70, Golgi 229

NIN (Ninein) Reconstituted motility98 Unknown

NINL (Ninein-like) Reconstituted motility98 MICAL3 and RAB8A containing vesicles63

RAB11-FIP3 Co-IP motility14 Recycling endosomes28

Candidate activators

BICD1 Co-IP230 COP1-independent Golgi-to-ER vesicles58, microtubule 
arrays230

BICDL2 (BICDR2) Homology to BICD proteins61 Rab13 vesicles61

HOOK2 Homology to Hook proteins Centrosomal proteins174, spermatid intramanchette 
trafficking231

CCDC88A (Girdin) Co-IP98 Unknown

CCDC88B (Gipie) Co-IP232 Secretory lysosomes (lytic granules)232

CCDC88C (Daple) Co-IP98 Unknown

NUMA Co-IP233 Minus ends of microtubules in the spindle131,234

TRAK1 Co-IP111 Mitochondria111

TRAK2 Co-IP111 Mitochondria111

HAP1 Co-IP75,76,207 Many membrane cargos75

Each activator or candidate activator is listed along with its cargo(s). Cargos are defined by their reliance on dynein or dynactin for movement or 
localization. We have not included known activator interacting proteins where there is not yet evidence for dynein–dynactin involvement for their 
trafficking.
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Table 2 |

Viruses interacting with dynein during their life cycle.

Virus Presence of the viral envelope Replication site Role of dynein in 
viral life cycle

Evidence for dynein 
involvement

Class 1 (dsDNA)

Herpes Simplex Virus (HSV) Env Nuc Transport (direct) HSV movement 
requires 
microtubules235, p50-
blocks movement235

Pseudorabies virus Env Nuc Transport (direct) GFP-capsids move 
retrograde in axons 
236, pUL36 on 
mitochondria relocates 
them to perinuclear 
regions195

Adenovirus Non-Env Nuc Transport (vesicles) Virus does not co-
localize with 
endosomes by electron 
microscopy, p50 
blocks perinuclear 
accumulation196

Polyomavirus Non-Env Nuc Transport (vesicles?) p50-blocks virus at 
cell periphery237

Bovine papliomaviruses Non-Env Nuc Transport (vesicles) Transport in 
endosomes. Viruses 
remain at the 
periphery with 
Nocodazole 
treatment238

Vaccinia virus (Pox virus) Env Cyt Assembly (direct) p50-blocks perinuclear 
accumulation of newly 
assembled virus 
particles186

African swine fever virus Env Cyt Assembly (?) p50-blocks viral 
replication at 
perinuclear regions184

Class II (ssDNA)

Adeno-associated virus (parvovirus) Non-Env (replication defective) Nuc Transport (vesicles) Axonal transport of 
labelled virus in Rab7 
vesicles180

Circovirus Non-Env Nuc Transport (vesicles) Nocodozaole disrupts 
perinuclear 
accumulation179

Canine parvovirus Non-Env Nuc Transport (direct?) Anti-dynein antibody 
reduces perinuclear 
accumulation198

Class III (dsRNA)

Reoviruses (e.g. rotavirus) Non-Env Cyt Transport (vesicles) Viral particles in 
endosomes 
accumulate in 
perinuclear regions185

Class IV (+ssRNA)

Dengue virus (Flavivirus) Env Cyt Transport (vesicles) 
& Assembly 
(vesicles)

Virus colocalizes with 
endosomes and 
accumulates in 
perinuclear regions. 
Subsequently newly 
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Virus Presence of the viral envelope Replication site Role of dynein in 
viral life cycle

Evidence for dynein 
involvement

synthesized E-protein 
accumulates in 
perinuclear regions 
(p50 blocks it)188

Hepatitis C (Flavivirus) Env Cyt Cell organization HCV clustering of 
lipid droplets in 
perinuclear regions190 

requires viral protein 
NS5A and dynein239

Class V (-ssRNA)

Influenza virus Env Cyt Transport (vesicles) Anti-dynein antibody 
inhibits rapid 
endosome transport to 
perinuclear regions182

Rabies virus Env Cyt Transport (vesicles) Long distance tracking 
of labelled virus189, 
Rabies envelope-G 
protein can confer 
retrograde transport199

Hantaan virus Env Cyt Transport (direct) p50 blocks perinuclear 
accumulation of 
nucleocapsid (N) 
protein from virus or 
recombinantly 
expressed187

Class VI (ssRNA-RT)

Human foamy virus Env Cyt&Nuc Transport (vesicles) p50 blocks perinuclear 
accumulation of virus 
or Gag protein 
alone183

Mason-Pfizer monkey virus Env Cyt&Nuc Transport (direct) p50 blocks perinuclear 
accumulation of Gag 
protein240

Class VII (dsDNA-RT)

Hepatitis B Env ? Cell organization Triggers dynein 
clustering of 
mitochondria in 
perinuclear regions191

Viruses are listed by class: classification based on nucleic acid (DNA or RNA), strandedness (ss–single stranded, ds-double stranded), sense (+ 
strand or − strand), and whether they use a reverse transcriptase (RT). Dynein is involved in different aspects of the viral life cycle, irrespective of 
whether the viruses are enveloped (Env) or non-enveloped (Non-Env), or whether they replicate in the nucleus (Nuc) or cytoplasm (Cyt). Roles of 
dynein can include transport of viruses to the perinuclear region during infection (via a direct connection or by transporting them in endosomes). 
Dynein can also transport components during assembly of new viruses, or can have a role reorganizing the cell in response to viral infection. 
Evidence for the role of dynein in viral infection is accumulation near the nucleus (perinuclear). Further support comes from showing that the viral 
components are dispersed, or fail to accumulate, when nocodazole is used to depolymerize microtubules, p50 is over-expressed (p50-block), or an 
anti-dynein antibody is injected. Direct visualization of viruses moving in the retrograde direction in axons also indicates a role for dynein.
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