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Abstract

While recent clinical studies demonstrate the promise of cancer immunotherapy, a barrier for 

broadening the clinical benefit is identifying how tumors locally suppress cytotoxic immunity. As 

an emerging mode of intercellular communication, exosomes secreted by malignant cells can 

deliver a complex payload of coding and non-coding RNA to cells within the tumor 

microenvironment. Here, we quantified the RNA pay-load within tumor-derived exosomes and the 

resulting dynamic transcriptomic response to cytotoxic T cells upon exosome delivery to better 

understand how tumor-derived exosomes can alter immune cell function. Exosomes derived from 

B16F0 melanoma cells were enriched for a subset of coding and non-coding RNAs that did not 

reflect the abundance in the parental cell. Upon exosome delivery, RNAseq revealed the dynamic 

changes in the transcriptome of CTLL2 cytotoxic T cells. In analyzing transiently co-expressed 

gene clusters, pathway enrichment suggested that the B16F0 exosomal payload altered 

mitochondrial respiration, which was confirmed independently, and upregulated genes associated 

with the Notch signaling pathway. Interestingly, exosomal miRNA appeared to have no systematic 

effect on downregulating target mRNA levels.
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Introduction

Cancer immunosurveillance is the process by which the host’s immune system recognizes 

and eradicates nascent neoplastic cells, limiting cancer development. However, in some 

cases, transformed cells are not completely eliminated and tumor escape can occur after a 

dynamic equilibrium with immune cells. In this process, new tumor cell variants are selected 

due to their loss of immunogenicity and their increased ability to suppress anti-tumor 

immune effectors [1]. Cancer cells can actively induce T cell dysfunction through several 

mechanisms that involve conditioning the tumor microenvironment via soluble cues. 

Myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), tumor-

associated neutrophils (TAN) and regulatory T cells (Tregs) are expanded by tumor-derived 

soluble cues and inhibit anti-tumor T cell responses [2–7]. MDSC, TAM and TAN 

contribute to T cell dysfunction by expressing arginase 1 that can deplete L-arginine and 

MDSC limit L-cysteine availability, which are both essential amino acids for the 

proliferation of T cells [2, 3, 8]. MDSC-mediated production of reactive oxygen and 

nitrogen species, through NADPH oxidase and inducible nitric oxide synthase (iNOS), 

impairs antigen recognition, activation and function of T cells [9, 10]. Additionally, 

immunosuppressive molecules like IL-10, TGF-β, extracellular adenosine and prostaglandin 

E2 are preferentially released by Tregs and TAM, whereas IL-12 and TNF production by 

TAM and TAN, respectively, are significantly reduced [11, 3, 7, 5]. Other studies 

demonstrate that hypoxic conditions and the predominant metabolic pathways in cancer cells 

generate an acidic tumor microenvironment and deprive T cells of essential metabolites like 

glucose, both mechanisms associated with the impairment of T cell survival and effector 

functions [12–14].

Cell-to-cell communication is important in understanding the dynamic interaction between 

tumor and immune cells in the tumor microenvironment. In contrast to the soluble cues that 

condition the tumor microenvironment, exosomes are emerging as an important mode of 

intercellular communication. These nanoscaled extracellular vesicles are actively released by 

cells to transfer proteins, mRNA, and non-coding RNAs between cells. Interestingly, tumor 

cells release exosomes at a greater rate than normal cells, which suggests that they may play 

an important role in cancer [15]. Some of the earliest exosome studies suggest that exosomes 

mediate B cell transformations [16, 17]. Subsequent studies reinforce the notion of 

exosomes as immunoregulatory modulators and illustrate the ways in which tumor exosomes 

are capable of altering their microenvironment. Proteomic analysis suggests that exosomes 

from human breast cancer cell lines and not from normal human mammary cells are 

enriched in proteins involved in glycolytic metabolism [18]. Melanoma exosomes promote 

metastasis by delivering a payload that upregulates oncoproteins [19]. In mouse melanoma 

cell models, exosomes from B16F0 but not Cloudman S-91 or Melan-A cells inhibit 

cytotoxic T cell proliferation and are enriched for mRNA transcripts that target immune 
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pathways, such as Ptpn11 and Dnmt3a [20]. While many prior studies focus on 

characterizing exosomal payloads or systemic response at a single point in time to exosomal 

delivery, a systematic analysis of how gene expression changes with time in response to 

delivery of an exosomal payload to a target cell remains unclear. To better understand how 

exosomes can regulate anti-tumor immunity, the goal of this study was to evaluate how the 

transcriptional landscape in cytotoxic T cells is changed with time following the delivery of 

a exosomal payload from tumor cells using a mouse melanoma model. In short, the 

transcriptional landscape reflected the delivery of an exosomal mRNA payload while 

exosomal miRNA appeared to have no effect on transcript abundance. In addition, exosomal 

payload elicited a dynamic non-linear response associated with a number of pathways, 

which was supported by results from a mitochondrial function assay.

Results and Discussion

B16F0 exosomes contain mRNA and miRNA

Extracellular vesicles were isolated using a staged centrifugation protocol from serum-free 

media conditioned by B16F0 cells. These extracellular vesicles were then characterized in 

terms of morphology using scanning electron microscopy and protein biomarker context 

(Fig. 1). Fresh extracellular vesicles exhibited a round morphology with a Feret diameter of 

166 ± 15 nm (n = 26), which is consistent with prior studies of fresh exosomes [21, 20]. 

Probing for protein biomarkers associated with exosomes, we found that samples containing 

extracellular vesicles were positive for Hsp70, CD63, and CD9 and negative for CD81, β-

actin and β-tubulin. Compared to B16F0 whole cell lysates, Hsp70 and CD63 were present 

in both samples while the remainder were not. The absence of CD81 and enrichment of CD9 

in the extracellular vesicle samples has been previously reported for B16F0 exosomes [20]. 

The absence of β-actin and β-tubulin suggested that the extracellular vesicle sample does not 

contain cell fragments, such as vesicles released during cell death. These exosomes were 

also able to deliver GFP synthesized by B16F0 cells to CTLL2 cells (Fig. 1C). GFP was 

initially observed as bright punctae both in the media and within CTLL2 cells that became 

more dispersed with time within the CTLL2 cells. Functionally, 48 hour treatment with 0.2 

mg/mL of B16F0 exosomes had no impact on the proliferation or viability of CTLL2 cells 

(data not shown). Collectively, the results suggest that the extracellular vesicles isolated 

from the B16F0 cell-conditioned media are exosomes and that these exosomes can deliver a 

biological payload to CTLL2 cells.

As exosomes can carry a complex payload of coding and non-coding RNA, we next 

characterized the RNA payload within B16F0 exosomes compared to the parental cells. A 

Bioanalyzer was first used to characterize the overall RNA quality (Fig. 2A). Bioanalyzer 

results comparing RNA in the parental cells versus exosome samples suggested that 

exosomes appear to contain full-length mRNA transcripts in addition to smaller miRNA 

fragments while ribosomal RNAs dominate the signature derived from the parental cells. 

The broad distribution of RNAs between the characteristic 5S and 18S ribosomal RNA 

peaks indicated that much of the content of the RNAs are between 120 to 1869 nucleotides 

long. The presence of characteristic 5S, 18S, and 28S rRNA peaks within the exosome 

samples was likely residual cellular debris attached to the outside of the exosomes as 
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washing the exosome samples in PBS prior to analysis reduced these ribosomal RNA peaks 

(see Fig. 3A in [20]). Affymetrix microarrays were then used to quantify mRNA and 

miRNA within the exosome samples compared to parental B16F0 cells. Following isolation 

of mRNA from exosome and whole cell samples, exon-level mRNA microarrays were used 

to quantify the relative abundance of transcripts (see Fig. 3 in [20]). Similarly, the exosomal 

miRNA payload was characterized using an Affymetrix GeneChip miRNA 2.0 microarray 

(see Fig. 2). A Welch t-test was used to identify miRNAs that were present above 

background, where a cut-off p-value of 0.05 was used.

Similar to the distribution of mRNA between exosomes and parental cells, the distribution of 

miRNAs between exosomes and parental cells exhibited one of three different phenotypes: 

selectively enriched in exosomes, equally distributed between exosomes and parental cells, 

and more abundant in parental cells. To identify the fraction of the total number of miRNAs 

that are associated with each of these three phenotypes, we deconvoluted the cumulative 

distribution into three different subsets (Fig. 2B). Of the miRNAs present above background 

in either the exosome or parental cell samples, 30% of the miRNAs were more abundant in 

the exosomes, whereas 40% were more abundant in the samples obtained from the parental 

B16F0 cells. The remaining percentage of miRNAs were equally distributed between 

parental cell and exosomes, accounting for the last 30% of total recorded miRNA transcripts. 

A Venn diagram also summarizes the number of miRNAs detected above background, where 

30 miRNAs were only detected in exosome samples, 139 miRNAs were only detected in 

parental cell samples, and 124 miRNAs were detected in both samples. Of all miRNAs 

detected above background, 96 were more abundant in the exosome samples and 197 

miRNAs were either equally or more abundant in parental cell samples.

A heatmap visualized clustering between the samples and the miRNAs (Fig. 2D). Within 

this heatmap, clear division in the pattern of miRNA expression is evident between the 

samples such that all of the replicates cluster together. The abundance of miRNAs among the 

samples clusters similarly as the distributions shown in panel B. A cluster at the top of the 

heatmap represents those miRNAs that are equally distributed between parental cell and 

exosomes, a cluster in the middle of the heatmap represents those miRNAs with low 

abundance in the exosomes but higher abundance in the cell samples, a cluster at the bottom 

of the heatmap represents those miRNAs with high abundance in the exosomes and low 

abundance in the cell samples with a small set of miRNAs that are highly enriched in 

exosomes and nearly absent in the parental cells. This most highly enriched group included 

miRNAs: mmu-miR-711, mmu-miR-1187, and members of the miR-466 family (mmu-

miR-466j, mmu-miR-466f-5p, mmu-miR-466f-3p, mmu-miR-466f, mmu-miR-466g, mmu-

miR-466c-5p, and mmu-miR-466i-3p). While these miRNAs exhibited high exosomal 

enrichment, they were not the most abundant miRNAs in exosome samples. The twenty 

most abundant miRNAs and mRNAs found in the B16F0 exosome samples are listed in 

Table 1. Not surprising, the most abundant mRNA in exosomes was melanoma antigen 

(Mela). Interestingly, the most abundant miRNA, by a factor of 2.2 over the second most 

abundant miRNA, was mmu-miR-709, which has been reported to activate Wnt/β-catenin 

signaling by targeting GSK3β [22]. In comparing the results for probe sets that recognize the 

precursor hairpin versus mature miRNA, miRNAs in the exosomes were predominantly 

mature.
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A subset of mRNAs that exhibited differential and similar abundance between exosome and 

whole cell samples were subject to semi-qualitative RT-PCR that confirmed that these 

transcripts were intact full-length open reading frames (see Fig. 4 in [20]) and subject to 

quantitative RT-PCR that confirmed the relative abundance predicted by the microarray 

results (Fig. 3A). A correlation coefficient of 0.90 between the abundance ratio observed by 

microarray compared to that observed by qRT-PCR suggests a strong positive correlation 

between these two measurements. Similarly, a subset of miRNAs present in both exosome 

and parental cell samples were subject to quantitative RT-PCR to confirm the relative 

abundance predicted by the microarray results (Fig. 3B). While the value was lower than for 

mRNA, a correlation coefficient of 0.57 still suggests a strong positive correlation between 

these two measurements of miRNA differential abundance. Interestingly, miRNAs in the 

exosomes overlap in their targeting of specific mRNA transcripts and are predicted to impact 

multiple pathways (Fig. 4 and Supplemental Table 1). Two of the top three most 

significantly enriched pathways were associated with cell-mediated immunity. These 

pathways were the Type I Interferon Pathway and NEF-mediated downregulation of MHC 

Class I complex cell surface expression. Targeted transcripts of the Type I Interferon 

Pathway included the Janus Kinases JAK1 and TYK2 while transcripts targeted in the NEF-

mediated path-way included multiple components of the adaptor protein complex AP-1 

(AP1G1, AP1M1, AP1M2, AP1S1, AP1S2). Collectively, the results suggest that B16F0 

exosomes contain a payload of both coding and non-coding RNAs whose abundance does 

not reflect the abundance in the parental cell and can exert a concerted impact on the 

transcriptional landscape in recipient cells.

Signature associated with mRNA but not miRNA exosomal payload is observed in 
cytotoxic T cell transcriptome

Given the importance of exosomes as a mode of intercellular communication and the 

emerging importance of tumor-derived exosomes in shaping the tumor microenvironment, 

we wanted to assess the impact of tumor-derived exosomes on the transcriptome of cytotoxic 

T lymphocytes, an important effector cell in controlling tumor growth. As a model system, 

we exposed CTLL2 T cells, an immortalized cytotoxic T cell line, to exosomes derived from 

B16F0 cells and monitored the transcriptome as a function of time using RNA sequencing. 

Specifically, mRNA isolated from the starting population of CTLL2 cells (0 hr) and from 

treated and untreated cells at 4 different time points (0.5, 2, 4, and 8 hour) were subject to 

RNA-Seq analysis. Using three biological replicates for each experimental condition, 

samples were randomly assigned to one of two HiSeq1500 batch runs. On average, 25.5 

million raw reads (± 5.8 million reads) were generated for each sample and 22.5 million of 

these reads (± 4.7 million reads) were mappable to the host reference genomes. From the 

mappable reads, 2.3 million reads (± 0.6 million reads) were aligned to multiple positions in 

the reference genomes and were excluded. The resulting uniquely mapped reads, which 

averaged 19.5 million reads (± 4.0 with a range between 7.5 and 30.0 million reads), were 

retained for further analysis. In addition to controlling for batch effects, DESeq2 analysis of 

the uniquely mapped reads was used to identify differentially expressed (DE) transcripts 

[23], whereby we parsed the analysis into two comparisons. First, we identified transcripts 

that changed with time in the untreated samples. Second, we identified DE transcripts that 
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were changed in exosome-treated samples at specific time points. These analyses are 

summarized in Fig. 5.

In untreated cells, the number of DE transcripts relative to the 0 hour sample generally 

increased with time (Fig. 5A). Even with reducing the p-value from 0.1 to 0.04, the 8 hour 

time point had greater than 10 times more DE transcripts than any other time point. In the 

exploratory data analysis, a reduced p-value was used so that the 8 hour time point did not 

swamp the information contained in the samples obtained at other time points. As illustrated 

by the heatmap (Fig. 5B), no clear trends emerged in the untreated cells, while a residual 

batch effect can be seen in clustering samples. In comparing exosome-treated to untreated 

samples at each time point, we also found that the number of DE transcripts was greatest at 

the 8 hour time point but by a lower margin than in the time-course analysis (Fig. 5C). 

Interestingly, there was no overlap in the set of DE transcripts identified in the time-course 

analysis versus the set of DE genes in exosome-treated samples. In addition, a set of 17 DE 

transcripts were shared across the 0.5, 2, and 4 hour time points, which corresponded to the 

majority of DE genes at 2 and 4 hours. DE genes identified at the 0.5, 2, and 4 hour times 

points were solely increased in exosome-treated samples with no genes exhibited a decrease 

following exosome treatment. In analyzing the set of DE genes across exosome-treated 

samples, samples tended to cluster based on time point rather than by batch. Overall, the 

number of DE genes is expected to increase with time as replating CTLL2 cells or treating 

with exosomes can elicit a primary response in gene expression that then propagates through 

genetic regulatory networks to elicit secondary changes in gene expression. To explore the 

biological significance of the clustering results, we focused on three distinct clusters of DE 

genes associated with exosome treatment, which are highlighted to the right of the heatmap 

in Fig. 5D. Cluster 1 is composed of transcripts that were increased within all exosome-

treated samples. In contrast, transcripts within cluster 2 were upregulated at 8 hours in 

untreated CTLL2 cells compared to exosome-treated cells while cluster 3 includes 

transcripts that are downregulated at 8 hours in untreated samples relative to exosome-

treated CTLL2 cells.

Given that genes associated with cluster 1 seemed to increase in abundance immediately 

upon exosome treatment, we compared the change in normalized transcript counts upon 

exosome treatment to mRNA abundance in B16 exosome samples assayed by Affymetrix 

microarray for genes observed by both of these platforms (Fig. 6). The comparison between 

the RNA-seq analysis of exosome-treated CTLL2 cells and the Affymetrix microarray 

analysis of exosomal mRNA payload revealed a linear trend, whereby a correlation 

coefficient of 0.90 suggested a strong positive correlation. This trend becomes more defined 

with highly abundant transcripts while low abundant transcripts seemed to deviate from 

linearity. Such a trend may be due to observational bias as microarray data can have a 

broader dynamic range while sequencing data is biased towards highly abundant transcripts. 

Low abundant transcripts that trend towards the mean may have too low of a frequency to be 

observed at the stated sequencing depth. To illustrate the overall trend for individual genes 

associated with cluster 1, the abundance in exosome-treated and untreated samples of four of 

the most highly abundant transcripts are plotted over time (Fig. 6B–E). Noticeable 

differences can be seen across all time points when examining all four genes. Greatest 

differences among all of the plots is visible at the 0.5 hour time point, indicating these genes 
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are all initially upregulated following the exosome treatment and remain upregulated at the 

other time points. We also noted that not all highly abundant exosomal mRNAs that are 

listed in Table 1, such as Eif4ebp2, Fth1, Tcf20, and Mlec, were associated with cluster 1. 

High background levels of expression in CTLL2 cells of these transcripts coupled with the 

technical noise associated with RNA-seq analysis rendered the difference between untreated 

and exosome-treated CTLLs as not significant. Mela was an exception as it was not 

observed in any of the RNA-seq samples.

Of note, cluster 1 is associated with transcripts that increase with exosome-treated samples 

almost immediately. In contrast, clusters 2 and 3 develop over the course of 8 hours. We also 

noted that there were no transcripts that decrease in direct response to exosome treatment. 

This lack of a response has implications for the miRNA exosomal payload. There are three 

main functions associated with miRNA [24]. First, miRNAs may bind to the 3’ utr 

complementrary sequence of their target mRNA, thus inducing gene silencing and 

prohibiting the translation of proteins from that segment. Second, miRNAs may promote 

translational repression by cleaving and degrading mRNA sequences. Third, miRNAs have 

been shown to deadenylate and degrade mRNAs upon attachment. While all three functions 

of miRNA reduce protein abundance by interfering with translation, only the second two 

functions alter mRNA abundance. Given that there were no transcripts that were 

significantly decreased at the 0.5 and 2 hour time points, we concluded that transcript 

downregulation through miRNA targeting the 3’ utr for degradation is not a primary effect of 

exosome treatment. We note however that a decrease in mRNA target abundance by miRNA 

becomes more apparent when the miRNA is over-expressed, while exosomal delivery is 

closer to physiology.

Long non-coding RNA (lncRNA) can also regulate gene expression in cells [25, 26]. As the 

Affymetrix microarray platform does not assay lncRNAs, we used the RNA-seq data to 

identify lncRNA that were upregulated in CTLL2 cells upon stimulation with B16F0 

exosomes. Given the concordance between mRNAs assayed in exosomes and their 

corresponding rapid increase in CTLL2 cells, we assumed that the rapid increase in lncRNA 

observed in exosome-treated CTLL2 cells originated from the B16 exosomes. There were 

two lncRNAs that were significantly increased in exosome-treated CTLL2 cells: Gm26809 

and Gm26982. Gm26809 (ENSMUSG00000097815) was upregulated at all exosome treated 

time points (0.5hr untreated: 53 ± 11 counts, exosome-treated: 94 ± 14 counts, and p-value < 

0.025). This is a lncRNA that targets LSM8, which was observed to be decreased at the 8 

hour time point: (untreated: 988 ± 137 counts, exosome-treated: 719 ± 49, and p-value < 

0.006). Gm26982 is an antisense lncRNA (ENSMUSG00000097994) that was significantly 

increased in exosome-treated samples at 0.5 hours (untreated: 57 ± 4 counts, exosome-

treated: 93 ± 19 counts, and p-value < 0.05). Gm26982 overlaps with the protein-coding 

locus of ghrelin (Ghrl) on the opposite strand, although there was no significant difference in 

ghrelin transcript abundance associated with exosome treatment at any time point.

Bland et al. Page 7

FEBS J. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Exosome-elicited transcriptomic signature in cytotoxic T cells becomes apparent after 8 
hours

As the changes in gene expression associated with cluster 1 appears to be a direct result of 

exosome treatment, DE genes associated with clusters 2 and 3 characterize the secondary 

transcriptomic response to delivery of the exosomal payload, as both take hours to develop. 

Comparisons of overall gene expression of clusters 2 and 3 as a function of time between 

exosome-treated and untreated samples are illustrated by Fig. 7A–B, respectively. For genes 

associated with cluster 2, there was a significant increase in transcript abundance in 

untreated cells at the 8 hr time point while transcripts exosome-treated cells seemed to peak 

earlier at 4 hours and were not increased at 8 hours. The opposite effect was observed for 

cluster 3, whereby genes in untreated cells within cluster 3 undergo a reduction in transcript 

abundance at the 8 hour time point while these same genes in exosome-treated cells tended 

to decrease at the 2 and 4 hour time points and be upregulated at the 8 hour time point 

relative to untreated cells. Using the genes associated with either cluster 2 or 3, we 

performed gene enrichment analysis to identify cellular functions and pathways affected by 

the exosomal payload. As listed in Table 2, DE genes associated with clusters 2 and 3 

correspond to pathways essential to cellular function and phenotypic maintenance.

Specifically, cluster 2 is enriched with transcripts related to cellular energetics and 

mitochondrial function. The response of these genes with time was non-linear with an 

increase in transcript abundance in exosome-treated CTLL2 cells at 4 hours relative to the 0 

hour time point and to untreated cells at the 4 hour time point (p-value < 0.001). In 

exosome-treated CTLL2 cells, the abundance of these transcripts returned to baseline by the 

8 hour time point. In contrast, untreated CTLL2 cells increased expression of these genes 

over time suggesting that CTLL2 cells would increase their mitochondrial activity; yet, the 

timing between changes in gene expression and functional changes is unclear. Given the 

values at 8 hours, one might conclude that untreated cells would have increased 

mitochondrial activity as evidenced by annotation terms associated with this enriched 

pathway as many directly relate to ATP production. To validate this functional annotation 

results, we assessed mitochondrial respiration in CTLL2 cells pre-treated with B16F0 

exosomes for 16 hours and in untreated CTLL2 cells using a Seahorse XFe96 Analyzer (Fig. 

8A–D). Following the sequential addition of four chemical inhibitors, the measured oxygen 

consumption rate was analyzed to obtain the basal respiration, maximal respiration, ATP-

coupled respiration, spare capacity, proton leak, and non-mitochondrial respiration for these 

two experimental groups. Compared to untreated CTLL2 cells, basal respiration, maximal 

respiration, and ATP-coupled respiration were significantly increased upon exosome 

treatment. Non-mitochondrial respiration was also slightly increased in exosome-treated 

cells. In contrast, spare capacity and proton leak were not significantly different between 

groups. Generally, these changes in basal and ATP-coupled respiration persisted at 48 and 72 

hours, although the increase in maximal respiration diminished with time. Similar results 

were obtained when we increased the efficiency of exosomal payload delivery using the EV-

Entry system. These functional results suggest that the observed increase in gene expression 

in exosome-treated CTLL2 cells at 4 hours translates to an increase in mitochondrial 

respiration.
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Cluster 3 genes are related to the regulation of gene expression and DNA remodeling, 

including histone modification, histone methylation, and chromatin modification. Covalent 

modifications to both histones and DNA regulate transcription patterns within cells through 

mechanisms that alter the state of the nucleosome and influence the ability of proteins to 

access DNA. Such modifications can silence genes. Alternatively, a decrease in expression 

of genes that regulate the nucleosome suggests that the epigenetic state of DNA is less 

regulated with time in untreated cells and that some of the genes may no longer be 

effectively silenced. In contrast, epigenetic modification of gene expression seems to 

increase in exosome-treated cells upon prolonged tissue culture. In addition, a significant 

gene signature associated with cluster 3 is the down-regulation of genes, including Ncor2 

and Crebbp that are shared with the Notch signaling pathway, upon the loss-of-function of 

the transcription factor E2f2. Instead of the loss-of-function, transcripts for E2f2 were 

observed to be significantly increased upon exosomal treatment (Fig. 7C), which suggests 

that the exosomal payload activated the Notch pathway in CTLL2 cells.

In contrast to intrinsic benefits to malignant cells [27–29], the impact on oncogenesis of 

activating Notch signaling in cytotoxic T cells by tumor cells is less clear. One body of 

literature suggests that activating Notch signaling in cytotoxic T cells enhances anti-tumor 

cytotoxicity. For instance, activated cytotoxic T cells lacking both Notch-1 and Notch-2 

receptors have a reduced proliferation and impaired production of IFN-γ, TNF-α and 

granzyme B [30, 31]. By activating Notch through transgenic expression of the intracellular 

domain of Notch-1, antigen-specific cytotoxic T cells resist the immunosuppressive effect of 

tumor-induced MDSC and achieve higher reduction of 3LL-OVA tumor growth [30]. Notch 

signaling is also essential for differentiating short-lived effector cytotoxic T cells but is 

dispensable for generating memory precursor cells [31, 32]. This body of literature implies 

that an increase in Notch signaling would increase production of IFN-γ and TNF. 

Functionally, we observed that exosome treatment increased IFN-γ production while TNF-α 
was not increased over stimulating with IL-2 alone (Fig. 8E–F). In addition, CTLL2 cells 

did not produce IL-6, IL-10, IL-12p70, or MCP-1 under the conditions tested. Similar results 

were also obtained when we increased the efficiency of exosomal payload delivery using the 

EV-Entry system.

While most of these studies blocked Notch receptors or genetically modified their 

expression in cytotoxic T cells, the specific immune response depends on whether Notch 

signaling is triggered by either Delta-like or Jagged ligands. Interestingly, delivery of anti-

Jagged1 antibody or Delta1-Fc fusion protein exacerbates experimental autoimmune 

encephalomyelitis in mice, whereas anti-Delta1 antibody or Jagged1-Fc fusion protein 

ameliorate disease progression [33]. These opposing results were attributed to differential 

regulation of T helper cells. Jagged1-Fc increases IL-10 producing T helper cells and 

reduces Th1 polarization, while Delta1-Fc has the opposite effect [33]. In the context of 

antigen presentation, ectopic expression of Delta1 or Delta4 in APC promotes Th1 

differentiation while Jagged1 expression polarizes towards Th2 [34, 35]. In vivo, injecting a 

soluble Jagged1-encoding plasmid reduces the disease severity in an experimental arthritis 

model through the inhibition of cytotoxic T cell proliferation and effector functions [36]. 

Therefore, a potential increase of Notch signal activation in cytotoxic T cells by tumor 

exosomes could lead to activation or suppression of this population depending on subtleties 
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of the transcriptional response, as similarly elicited by the Jagged and Delta-like ligands. 

While an increase in IFN-γ production and the absence of IL-10 are suggestive, finer 

resolution of the specific transcriptional response would be required to identify the specific 

impact on cytotoxic T cells by Notch signaling activation.

In summary, B16F0 exosomes seem to modify the epigenetic landscape and mitochondrial 

respiration within cytotoxic T cells. In vivo, metabolic changes in tumor infiltrating 

lmyphocytes reflect the collective effect of metabolic substrate deprivation, oxygen 

deprivation, and changes induced by tumor-immune cell crosstalk via a variety of 

mechanisms, including exosome transfer. As these factors are confounded in vivo, we have 

parsed the contribution of tumor-derived exosomes on immune cell function from metabolic 

changes elicited in cytotoxic T cells by the tumor microenvironment by delivering tumor-

derived exosomes to cytotoxic T lymphocyte in vitro. While additional experiments may 

help clarify the longer-term effects of exosome transfer on anti-tumor immunity, these 

results suggest that B16 tumors produce exosomes that can alter mitochondrial respiration of 

tumor-infiltrating cytotoxic T lymphocytes independent of substrate and oxygen deprivation. 

Parsing how these mechanisms help condition the tumor microenvironment is the first step 

in developing therapeutic strategies that can enhance the functional persistence and efficacy 

of tumor-infiltrating cytotoxic T lymphocytes to control and eliminate malignancy.

Materials and Methods

Reagents and cell line culture

Cytokines, drugs, kits, and pharmacological inhibitors were obtained from commercial 

sources and used according to the suppliers’ recommendations unless otherwise indicated. 

The mouse melanoma cell line, B16F0, and a cytotoxic T lymphocyte cell line, CTLL2, 

were acquired from American Type Culture Collection. Base media for CTLL2 cells 

included RPMI 1640 (Cellgro/Corning) supplemented with 10% heat-inactivated fetal 

bovine serum (FBS-HI, Hyclone), 2.5% Glucose, 0.15% sodium bicarbonate, 10 mM 

HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate, 100 U/ml penicillin and 100 µg/ml 

streptomycin (Pen/Strep, Gibco), and 0.4% beta-mercaptoethanol. Complete media for 

CTLL2 cells comprised base media supplemented with10% T-STIM without ConA 

(Corning). B16F0 complete media was DMEM (Cellgro/Corning) with 10% FBS-HI, Pen/

Strep, and 2 mM L-glutamine (Sigma). Extra-cellular vesicle (EV)-cleared media was 

prepared by removing EVs from the FBS-HI via ultracentrifugation, as described in the next 

paragraph, prior to making complete media.

Exosome isolation, electron microscopy (EM) imaging and Western blot analysis

Fresh extracellular vesicles were isolated from serum-free media conditioned by B16F0 cells 

for 24 hours and imaged with scanning electron microscopy (SEM) as described previously 

[18, 21]. Briefly, EVs were isolated from cell-conditioned media by differential 

centrifugation as follows: 300xg for 10 minutes to remove cells, 2,600xg for 10 minutes to 

remove residual cells and debris, 10,000xg for 60 minutes to remove microvesicles, and 

100,000xg for 2 hours to collect nano-scaled vesicles in pellets. The resulting pellet was 

resuspended, washed once in DPBS, and re-pelleted at 100,000xg for 2 hours. Once isolated, 
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nano-scaled vesicles were resuspended in DPBS and kept on ice. EVs were then imaged 

using SEM. The abundance of proteins contained in B16F0 EVs were compared against 

B16F0 whole cell lysate by Western blot analysis using methods described previously [20]. 

Specifically, membranes were probed with rabbit anti-CD9, CD63, CD81, and Hsp70 

antibodies (System Biosciences, Mountain View, CA), and mouse anti-β-actin and β-tubulin 

antibodies (Santa Cruz Biotechnology, Dallas, Texas). Proteins were transferred to Bio Trace 

PVDF membrane (PALL Life Sciences, Pensacola, FL) and detected using Pierce ECL 

Western Blotting Substrate (Life Technologies).

Cell stimulation with exosomes and RNA analysis

As described in [20], GFP was delivered to CTLL2 cells using fresh exosomes isolated 

aseptically from B16F0-XPgfp cells, which were created with a lentivirus encoding an N-

terminal XPack-GFP fusion protein by following the manufacturer’s instructions 

(XPAK530PA-1, System Biosciences, Inc., Mountain View, CA). CTLL2 cells were co-

cultured with B16F0-XPgfp exosomes for the indicated times at a concentration of 1.0 

mg/ml, and imaged using a Zeiss Axiovert 40 CFL fluorescent microscope using a standard 

GFP filter set. The efficiency of exosome payload delivery was increased using the EV-Entry 

System (System Biosciences, Inc., Mountain View, CA). After 24 hours, treated CTLL2 

cells were also washed three times with DPBS and imaged. Total RNA was isolated from 

B16F0 exosomes and cells by TRIzol reagent extraction (Thermo Fisher Scientific) or 

RNAeasy (Qiagen), quantified using Nanodrop, and analyzed by on-chip-electrophoresis 

using the Agilent Bioanalyzer 2100. Message RNA isolated from B16F0 exosomes and cells 

were characterized using Mouse GeneChip 1.0 ST Exon Arrays (Affymetrix), as described 

previously [20]. For miRNA analysis, four hundred nanograms of each miRNA sample was 

biotin labeled using the Genisphere Flash-Tag HSR Kit according to the manufacturer’s 

instructions. The labeling of RNA was confirmed by Enzyme Linked Oligosorbent Assay 

according Genisphere FlashTag HSR protocol. The 21.5 µl of biotin-labeled RNA with 

added hybridization controls was hybridized to the GeneChip miRNA 2.0 Arrays 

(Affymetrix) at 48C and 60 rpm for 16 hours in GeneChip Hybridization Oven 640 

(Affymetrix). GeneChip miRNA 2.0 Arrays were stained using FS 450 0003 protocol in 

Affymetrix GeneChip Fluidics Station 450. Briefly, biotin-labeled RNA was reacted using 

washes with a solution containing a streptavidin-phycoerythrin complex, with an 

intermediate treatment of biotin-labeled anti-streptadvidin antibody to amplify the signal. 

Phycoerythrin labeling was detected within the Affymetrix GeneChip Scanner 3000 7G plus 

using 532 nm light and detected by a photomultiplier tube. A miRNA QC Tool software 

(Affymetrix) was used to check quality controls of hybridized chips. All chips that passed 

quality controls were RMA normalized using miRNA QC Tool. Microarray data are 

accessible through GEO SuperSeries accession number GSE102951.

For RNA-seq analyses, CTLL2 cells were grown in complete media for 24 hrs, and then 

stimulated with fresh B16F0 exosomes resuspended in PBS, to a final exosome 

concentration of 0.2 mg/ml. Following RNA isolation by TRIzol extraction and Nanodrop 

quantification, RNA quality and integrity was determined using the Agilent Bioanalyzer 

2100. Only RNA with RIN values >8.0 were used for RNA-Seq library preparation. RNA-

Seq libraries were built with Illumina’s TruSeq RNA Kit V2 (RS-122–2001) as per 
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manufacturer’s protocol. All libraries were indexed in such a way as to ensure only one 

index/lane on the HiSeq. Finished libraries were quality checked with a High Sensitivity 

DNA chip on the Bioanalyzer to determine average size and quantified on a Qubit with high 

sensitivity DNA reagents. The libraries were then sent to the Marshall University Genomics 

Core Facility where they were pooled in equimolar ratios and run on three lanes of an 

Illumina HiSeq1500 in a 2 × 50 base paired end design yielding a minimum of 49.1 million 

reads per sample. Samples included three independent biological replicates for each 

condition and four independent biological replicates for the 0 hr time point. Demultiplexing 

of samples and conversion from Illumina’s bcl format to standard fastq format was 

performed using CASAVA 1.8.4 (Illumina). The average transcriptomic alignment 

percentage was 86.0 ± 1.0 %. RNA-seq data are also accessible through GEO SuperSeries 

accession number GSE 102951.

Quantitative reverse-transcription PCR (q-RT-PCR) was used to validate the mRNA and 

miRNA microarray results. The results for mRNA analysis are described previously [20], 

where proprietary primer mixtures were purchased from Qiagen for the corresponding 

genes: Kpnb1 (QT00153419), Rnf14 (QT00157241), Rnd2 (QT00314216), Ptp4a3 

(QT00138243), Eif2c2 (QT01757833), Hipk2 (QT00197890), Eif4ebp2 (QT00144606), 

Dnmt3a (QT00106519), Wsb2 (QT01747739). For miRNA validation, RNA samples were 

purified using an RNeasy mini kit (Qiagen) and reversely transcribed with TaqMan 

MicroRNA Reverse Transcription kit (Invitrogen 4366596). Quantitative PCR was carried 

out on an ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) using 

Taqman Universal Master Mix II with UNG (Invitrogen 4440038). TaqMan Primer mixtures 

were purchased from Invitrogen for the indicated miRNA targets. Data was analyzed using 

the delta/delta CT method and the Sequence Detector Software version 2.2 (Applied 

Biosystems).

Mitochondrial respiration and other functional assay

Oxygen consumption rate (OCR) was measured at 37°C using a Seahorse XFe96 Analyzer 

(Agilent, Santa Clara, CA) according to the manufacturer’s instructions. Briefly, CTLL2 

cells (100,000/well) were seeded into Seahorse Bioscience XFe96 cell culture plates 

previously coated with Cell-Tak (Corning, Inc., Corning, NY). Fresh B16F0 exosomes were 

added to a final concentration of 0.2 mg/mL. After overnight culture in the 37°C humidified 

incubator with 5% CO2, the media was changed to Mito-Stress Test Assay Media, which is 

DMEM containing 2 mM GlutaMax, 1 mM sodium pyruvate, and 25 mM glucose (media is 

un-buffered, pH 7.4), and incubated at 37oC without CO2 1 hr prior to the start of the 

extracellular flux assay. Oligomycin, carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP), rotenone and antimycin A (all from Sigma, St. Louis, MO) of 10x 

compound dilutions were prepared for the assay as chemical inhibitors, and loaded into the 

assigned ports. A sensor cartridge was calibrated 24 hr prior to the assay, and following 

calibration, the cell plate was placed in the Bioanalyzer and the Mito-Stress Test assay 

protocol was completed on the samples. By adding the chemical inhibitors sequentially, this 

protocol determines basal respiration, ATP production, maximal respiration, spare 

respiratory capacity, proton leak, and non-mitochondrial respiration. Statistical analysis was 

done with unpaired t-test using GraphPad Prism 5 (GraphPad Software, San Diego, CA).
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Cytokines produced by CTLL2 cells were measured in culture supernatants using a 

Cytometric Bead Array Mouse Inflammation kit and a BD LSRFortessa flow cytometer (BD 

Biosciences, Sparks, MD), according to the manufacturer’s instructions. Viable cell numbers 

were quantified using an ATPlite assay (PerkinElmer, Shelton, CT), performed according to 

the manufacturer’s instructions. For these assays, CTLL2 cells (20,000/well) were cultured 

for 48h in 100 µL of base CTLL2 media supplemented with 10 U/mL of recombinant 

murine IL-2 (eBioscience, ThermoFisher Scientific). Fresh B16F0-derived exosomes were 

added to a final concentration of 0.2 mg/mL. Conditioned media was then saved for 

cytometric bead analysis. For the ATPlite assay, the cells were treated with 50 µL/well of 

mammalian cell lysis solution, followed by 5 min. shaking. The substrate solution was added 

(50 µL/well), the plate was shaked another 5 min., and incubated 10 min. at room 

temperature protected from light. Finally, the luminescence was measured using a modulus 

microplate multimode reader (Turner BioSystems). CTLL2 cells cultured in base media 

supplemented with IL-2 but in the absence of B16F0 exosomes, as well as CTLL2 cells 

maintained in base media free of IL-2 and tumor exosomes, were included as controls. 

Statistically significant differences were detected with one way ANOVA and Tukey’s 

multiple comparison test using GraphPad Prism 5 (GraphPad Software).

Computational transcriptome analysis and statistics

Using the WVU Spruce Knob High-Performance Computing (HPC) cluster, fastq-formatted 

files were combined based on both lane designation and forward/reverse orientation. Quality 

control analysis was performed using the FastQC program to determine that trimming was 

not necessary prior to completing further downstream processing of the files. The Mus 

musculus FASTA file and a corresponding gene set annotation (GTF) file were downloaded 

(GRCm38.p2 from ensemble.org) to compile a genome index using STAR Aligner software 

(v2.4.2). Genome annotation files were comprehensive in that they included mappings for 

both exon and intron segments for the full selected genome. RNA sequence reads were then 

aligned to the index with STAR Aligner tools, converted to .bam files, sorted, and indexed. 

To determine the number of reads mapped to each genomic position or exon, the 

featureCounts program (v1.5.0) within the Subread package was used.

The remaining portion of the analysis was performed using R software platform (v3.3.2) 

along with Bioconductor packages. Using featureCounts files, the DESeq2 package [23] was 

used to determine the top differentially expressed genes by comparing the exosome-treated 

versus untreated samples at each time point and untreated samples at each time point relative 

to the 0 hour time point. A p-value adjusted for multiple hypothesis testing of less than 0.1 at 

the 0.5, 2, and 4 hour time points and of less than 0.04 at the 8 hour time point was 

considered significant. Transcript abundance was reported as variance stabilized normalized 

counts, whereby summary statistics were generated by averaging across all samples and 

standard deviation was used to represent uncertainty. Functional annotation of the RNAseq 

data was performed on the temporal clusters of differentially expressed genes associated 

with exosome-treated samples using the Enrichr algorithm [37, 38]. Additional microarray 

data containing both mRNA and miRNA samples was analyzed using R software. For 

microarray analyses, mRNA and miRNA abundance was estimated based on the average 

expression of all core probesets for a target measured by Affymetrix microarray. The 
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probability of a mRNA/miRNA being detected above background (DABG) by random 

chance was estimated using the negative control probesets and a Welch’s t-test, where the 

degrees of freedom were calculated using the Welch-Satterthwaite equation. An adjusted p-

value of less than 0.05 was considered as statistically significant. Functional annotation of 

exosomal miRNAs was determined using a multi-step approach in R. First, results from the 

Affymetrix GeneChip miRNA 2.0 microarrays were filtered based on the expression of Mus 

musculus miRNAs in exosomal samples detected above background. Next, the miR-NAtap 

package (v1.10.0) was used to relate specific miRNA with targeted mRNA transcripts based 

on aggregate predictions from at least 3 databases, which include DIANA, Miranda, PicTar, 

TargetScan, and miRDB [39]. Gene sets associated with canonical pathways was obtained 

from the Molecular Signatures Database v6.0 at the Broad Institute [40]. Finally, the 

miRNApath package (v1.36.0) was used to identify enriched pathways associated with the 

miRNA expression data, where the number of permutations was set to 1000 [41].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

APC antigen presenting cells

ATP adenosine triphosphate

DABG detected above background

DE differentially expressed

DPBS Dulbecco’s phosphate buffered saline

EV extracellular vesicle

FBS-HI fetal bovine serum-heat inactivated

FCCP carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone

GEO gene expression omnibus

GFP green fluorescent protein
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HEPES 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid

IL-2 Interleukin-2

IL-6 Interleukin-6

IL-10 Interleukin-10

IL-12 Interleukin-12

iNOS inducible nitric oxide synthase

lncRNA long non-coding RNA

MCP-1 monocyte chemotactic protein 1

MDSC myeloid-derived suppressor cells

NADPH nicotinamide adenine dinucleotide phosphate

OCR oxygen consumption rate

PVDF polyvinylidene fluoride

QC quality control

RIN RNA integrity number

RT-PCR reverse transcriptase polymerase chain reaction

SEM scanning electron microscopy

TAM tumor associated macrophages

TAN tumor associated neutrophils

TGF-β tumor growth factor beta

TNF tumor necrosis factor

Tregs regulatory T cells
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Figure 1: B16F0 release extracellular vesicles with uniform morphology that contain proteins 
commonly associated with exosomes and that can deliver a biological payload to CTLL2 cells.
(A) A SEM picture of extracellular vesicles isolated by ultracentrifugation of media 

conditioned for 24 hours by B16F0 cells (bar indicates 200 nm). (B) Western blot analysis of 

B16F0 whole cell lysates (WCL) and extracellular vesicles (EXO) for proteins commonly 

associated with exosomes, where 20 µg of protein was loaded in each lane. (C) B16F0 cells 

were transfected with a lentivirus-based XPack-GFP plasmid that targets GFP to exosomes. 

Untreated CTLL2 cells and CTLL2 co-cultured with exosomes isolated from B16F0-XPgfp 

cells for either 3 or 24 hours and imaged by fluorescence microscopy. After 24 hours, 

CTLL2 cells treated with B16F0-XPgfp exosomes were washed three times with DPBS and 

also imaged by fluorescence microscopy. Phase contrast and merged images are shown for 

comparison. The fluorescence intensity in GFP images has been colored using a black-

yellow-blue color scale. Scale bar indicates 50 µm.
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Figure 2: B16F0 exosomes contain miRNAs that are differentially packaged into exosomes 
relative to parental cells.
(A) The distribution of RNA isolated from parental B16F0 cells (top panel) and B16F0 

exosomes (bottom panel) was quantified using microfluidic electrophoresis. (B) The overall 

distribution in exosome versus cellular abundance of miRNAs (gray curve) was 

deconvoluted into three normally distributed populations: miR-NAs enriched in cells (blue 

curve - 40% of total), miRNAs equally distributed between cell and exosomes (black curve - 

30% of total), and miRNAs enriched in exosomes (red curve - 30% of total). (C) A Venn 

diagram summarizes the number of miRNAs that are present above background and are 

differentially expressed between cell and exosome samples. (D) Hierarchical clustering of 

miRNA detected above background (Welch t-test p-value < 0.05) from four B16F0 

exosomes and four B16F0 cell samples using Affymetrix miRNA microarrays.
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Figure 3: Relative abundance of mRNA and miRNA between B16F0 exosomes and cells were 
consistent between qRT-PCR and microarray analyses.
(A) As reported in [20], the abundance of ten transcripts (Kpnb1, Rnf14, Rnd2, Ptp4a3, 

Ptpn11, Eif2c2, Hipk2, Eif4ebp2, Dnmt3a, and Wsb2) in B16F0 exosomes versus B16F0 

cells were quantified by quantitative RT-PCR (mean ± SD, n = 3) and compared against the 

relative abundance of mRNAs assayed by cDNA microarray. The linear relationship was 

quantified by a correlation coefficient of 0.90. (B) The abundance of ten miRNAs 

(miR-181a-5p, miR-31–5p, miR-378a, miR-34b*, miR-720, miR-34c*, miR-1949, let-7d*, 

miR-709, and miR-467f) in B16F0 exosomes versus B16F0 cells were quantified by 

quantitative RT-PCR (mean ± SD, n = 3) and compared against the relative abundance of 

miRNAs assayed by miRNA microarray. The linear relationship was quantified by a 

correlation coefficient of 0.57.
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Figure 4: Exosomal miRNA overlap in targeting specific mRNA transcripts and collectively 
target multiple pathways.
(A) The targeting of specific mRNA transcripts (yellow nodes) by miRNAs present in B16 

exosomes (blue nodes) is summarized by a multi-dimensionally scaled network diagram. 

The size of the miRNA nodes were scaled by relative abundance in exosomes. Nodes with 

less than two edges were pruned from the network to improve clarity. (B) Possible pathways 

targeted by exosomal miRNAs was determined by enrichment of miRNA to gene to pathway 

relationships. Using the miRNApath package, significance of pathway enrichment relative to 

random chance was assessed by random permutation where an adjusted p-value of less than 

0.02 was considered significant.
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Figure 5: Exosome treatment initiated a different transcriptomic response in CTLL2 cells 
compared with the transcriptomic changes observed as a function of time.
Venn diagrams of the number of differentially expressed transcripts observed at different 

time points (A) in untreated CTLL2 cells compared to the 0 hour time point and (C) in 

exosome-treated versus untreated samples at each time point. Using p-values calculated 

using the DESeq2 package, a more stringent p-value cutoff was used at the 8 hour time point 

(p-value < 0.04 ) compared with the 0.5, 2, and 4 hour time points (p-value < 0.1). (B and D) 

Hierarchical clustering of collection of differentially expressed transcripts detected by RNA 

sequencing from 28 samples distributed across five time points (0, 0.5, 2, 4, and 8 hour), two 

experimental conditions (untreated versus exosome treated), and two RNA sequencing 

batches (B1 and B2). Heatmaps in panels B and D focus on the differentially expressed 

transcripts summarized in the Venn diagrams shown in panels A and C, respectively. Three 

clusters of dynamic transcript expression profiles are highlighted on the right margin of 

panel D. Cluster 1 corresponds to transcripts increased at all time points in exosome-treated 

samples. Cluster 2 corresponds to transcripts predominantly upregulated in untreated cells 

compared to exosome-treated cells at 8 hours. Cluster 3 corresponds to transcripts 

predominantly downregulated in untreated cells and upregulated in exosome-treated cells at 

8 hours.

Bland et al. Page 23

FEBS J. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: An increase in transcript abundance observed by RNAseq following exosome treatment 
correlates with mRNA payload contained within B16F0 exosomes as assayed by cDNA 
microarray.
(A) For transcripts detected above background using cDNA microarray, an increase in 

transcript abundance in exosome-treated cells over untreated cells after 0.5 hours (mean ± 

SD, n = 3) was plotted against the average fluorescence intensity for the corresponding 

transcript probeset assayed by cDNA microarray (mean ± SD, n = 4). A linear relationship 

was quantified by a correlation coefficient of 0.902. While highlighted in panel A, RNAseq 

results for four of the most abundance transcripts across experimental conditions (exosome 

treated: circles and black solid lines, untreated: squares and red dashed lines) are shown 

separately for Wsb2 (B), Fam168b (C), Cmtm4 (D) and Ptpn14 (E).
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Figure 7: Transcripts of genes associated with functional annotation of clusters 2 and 3 displayed 
different dynamic profiles.
Average transcript abundance for exosome-treated (solid black lines) and untreated (dotted 

red lines) for DE genes associated with the functional annotation of cluster 2 (panel A) and 

cluster 3 (panel B) are shown as a function of time. Transcript counts were normalized to the 

0 hour time points. (C) Normalized counts for E2F transcription factor 2 (E2f2) across 

experimental conditions (exosome treated: X and black solid lines, untreated: circles and red 

dashed lines) and time.
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Figure 8: Exosomes increased aspects of mitochondrial respiration and IFN-γ production in 
CTLL2 cells.
(A) Oxygen consumption rate (OCR) in CTLL2 cells treated with culture media (red circles) 

or media containing B16F0 exosomes (black circles) was measured after 16 hour culture 

while the indicated chemical inhibitors of the respiratory chain were sequentially added. As 

described in the methods, metrics associated with mitochondrial respiration were inferred 

from the trace of the OCR after 16 hours (B), 48 hours (C) and 72 hours (D). Significance 

associated with the difference in basal respiration, maximal respiration, ATP-coupled 

respiration, non-mitochondrial respiration, space capacity and proton leak in exosome 

treated (black bars) compared to untreated cells (red bars) were assessed. (E) IFN-γ and 

TNF-α were assayed in CTLL2 conditioned media by cytometric bead array following the 

indicated treatments. (F) RNA-seq results for IFN-γ mRNA are shown for comparison. 

Results representative of two independent experiments that each contained at least four 

biological replicates, where ***, **, and * correspond to p-values calculated using an 

unpaired t-test of < 0.001, < 0.01, and < 0.05, respectively.
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Table 1:

Twenty of the most highly abundant miRNAs and mRNAs in B16F0 exosomes.

miRNAs mRNAs

Mature ID Abundance (log2 (s.d.2)) DABG* (p-value) Gene Symbol Abundance (log2 (s.d.2)) DABG (p-value)

miR.709 13.951 (0.081) 1.61E-12 Mela 13.989 (0.057) 1.01E-11

miR.2137 12.565 (0.121) 3.36E-10 Wsb2 13.869 (0.053) 4.45E-12

miR.2861 12.413 (0.057) 7.82E-16 Eif4ebp2 13.706 (0.041) 5.50E-14

miR.1195 12.221 (0.020) 5.22E-101 Fam168b 13.419 (0.047) 1.09E-12

miR.762 12.079 (0.067) 8.07E-14 0610007L01Rik 13.359 (0.041) 7.93E-14

let.7c 12.077 (0.035) 2.59E-30 Fth1 13.151 (0.026) 6.54E-21

let.7b 12.011 (0.013) 2.53E-292 Tcf20 13.107 (0.062) 3.41E-11

miR.690 11.785 (0.091) 2.28E-11 Mlec 13.042 (0.032) 1.31E-16

miR.1224 11.780 (0.021) 2.87E-86 Eef2 13.014 (0.034) 1.27E-15

miR.23a 11.516 (0.132) 1.11E-09 Pabpc1 12.955 (0.028) 7.00E-19

let.7d 11.262 (0.190) 1.27E-08 Cbx5 12.954 (0.052) 5.89E-12

miR.1894.5p 11.250 (0.169) 6.63E-09 Scd2 12.859 (0.030) 1.16E-17

miR.24 11.150 (0.194) 1.50E-08 Ccnd2 12.825 (0.037) 1.23E-14

miR.17 11.124 (0.348) 2.57E-07 Cmtm4 12.750 (0.037) 8.93E-15

miR.1892 11.105 (0.207) 2.17E-08 Slc38a1 12.686 (0.024) 8.10E-23

miR.711 11.084 (0.111) 2.90E-10 Gnb1 12.652 (0.018) 6.29E-36

miR.466f.5p 11.036 (0.091) 3.17E-11 Rcc2 12.641 (0.041) 1.63E-13

miR.705 11.021 (0.101) 1.14E-10 Mt2 12.639 (0.063) 5.61E-11

let.7a 11.015 (0.397) 4.73E-07 Ptpn14 12.576 (0.058) 2.44E-11

miR.466f 11.004 (0.258) 6.93E-08 Gnb2l1 12.552 (0.054) 1.11E-11

*
Detected above background
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