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Background. Plasma membrane Ca**-ATPase (PMCA) is the most sensitive cellular calcium detector. It exists in four main
isoforms (PMCAI-4), among which PMCA2 and PMCA3 are considered as fast-acting neuron-specific forms. In the brain, PMCA
function declines progressively during aging; thereby impaired calcium homeostasis may contribute to some neurodegenerative
diseases. These destructive processes can be propagated by proinflammatory chemokines, including chemokine CCL5, which
causes phospholipase C-mediated liberation of Ca®* from endoplasmic reticulum by IP,-gated channels. Methods. To mimic the
changes in aged neurons we used stable transfected differentiated PC12 cells with downregulated PMCA2 or PMCA3 and analyzed
the effect of CCL5 on calcium transients with Fluo-4 reagent. Chemokine receptors were evaluated using Western blot, and IP,
receptors expression level was assessed using qRT-PCR and Western blot. Results. In PMCA-reduced cell lines, CCL5 released more
Ca®" by IP,-sensitive receptors, and the time required for Ca®* clearance was significantly longer. Also, in these lines we detected
altered expression level of CCR5 and IP, receptors. Conclusion. Although modification of PMCAs composition could provide
some protection against calcium overload, reduction of PMCA2 appeared to be more detrimental to the cells than deficiency of
PMCA3. Under pathological conditions, including inflammatory CCL5 action and long-lasting Ca®" dyshomeostasis, insufficient

cell protection may result in progressive degeneration and death of neurons.

1. Introduction

Growing body of evidence suggests that disrupted calcium
homeostasis plays a detrimental role in triggering neu-
rodegeneration. This process can also be propagated by
repeated inflammatory reactions, including local production
of chemokines. These events intensify particularly during
aging, when the proper response to extracellular signals is
decreased due to accumulation of multiple cellular damage
and pathologies [1-4]. Injured cells are exposed to a pro-
longed elevation of intracellular Ca®" that in turn initiates
a number of abnormal processes, which can finally lead to
cell death [5-7]. Disturbances in calcium homeostasis have
been attributed to imbalance between calcium “on” and “oft”
systems, which affects cell survival. In healthy cells, the first

step in decreasing cytosolic Ca’* relies on three modes:
uptake into endoplasmic reticulum by sarco/endoplasmic
Ca?*-ATPase (SERCA), extrusion by high-capacity but low-
affinity Na*/Ca®" exchanger (NCX), and removal by plasma
membrane Ca?*-ATPase (PMCA) [8, 9]. The latter is the most
sensitive element with low capacity, but very high affinity. The
enzyme is represented by 4 main isoforms with ~30 variants
that exhibit differential spatial and developmental expression
pattern [10, 11]. The two ubiquitous isoforms, PMCAI and
PMCAA4, are far less effective in controlling calcium home-
ostasis than the two neuron-specific PMCA2 and PMCA3
isoforms. The expression profile of PMCAs changes signifi-
cantly during development, reflecting the specific function of
each isoform. Changes in PMCA expression and activity have
also been reported during aging. It is believed that PMCA
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loss may significantly impair calcium extrusion in senescence
neurons making them more susceptible to neurotoxic insults
[12-17]. Ca*'-mediated neurotoxicity has been shown for
several neurodegenerative diseases including Alzheimer’s
disease (AD), Huntington disease (HD), spinocerebellar
ataxias (SCAs), Parkinson’s disease (PD), schizophrenia, or
bipolar disorder [6, 15, 18-22].

Additional factors contributing to neuronal death are
inflammatory mediators, including some chemokines [1, 23].
Among 50 discovered chemokines, chemokine C-C motif
ligand 5 (CCL5, RANTES) is of particular interest due to its
potential role as a modulator of cellular metabolism and brain
architecture [23-25]. CCL5 is constitutively expressed in the
adult central nervous system, with region-specific expression
pattern [26]. A remarkable increase of CCL5 in central ner-
vous system (CNS) can be detected during permeabilization
of the blood-brain barrier and after extensive production
of CCL5 from astrocytes and microglial cells, triggered by
proinflammatory factors [27-31]. One of the mechanisms
of action of CCL5 is a positive control of cytosolic Ca**
mobilization after binding to three receptors: CCR1, CCR3,
and CCR5 [23, 32]. They are cell surface-associated, immune-
regulatory G protein—coupled receptors (GPCRs). CCL5
binding activates a G protein, which subsequently activates
phospholipase C (PLC) involved in a second messenger
system. PLC-mediated hydrolysis of phosphatidylinositol
4,5-bisphosphate (PIP,) gives rise to two products: 1,2-
diacylglycerol and inositol 1,4,5-triphosphate (IP;). IP; stim-
ulates the release of Ca** from intracellular stores through IP,
receptors, which exist in three different isoforms [33-35].

The present study was undertaken to clarify the potential
role of CCL5-mediated signaling using the model of dif-
ferentiated PCI12 cells, which is one of the most frequently
used models for studying neuronal processes. We have
previously developed stable transfected lines of PCI2 cells
with downregulated expression of neuron-specific PMCA2
(.2line) or PMCA3 (_3 line), which have been validated in our
several other studies [36, 37]. The most critical finding was
permanently increased resting cytosolic Ca** concentration
in PMCA-reduced lines due to compromised Ca** extrusion
ability observed even despite compensatory stimulation of
PMCALI expression detected in both lines and of PMCA4
in _3 line [36]. We have also provided the evidence that
altered PMCA composition may play a role in regulation of
bioenergetic function of mitochondria [37, 38]. Moreover,
PMCA altered expression of genes encoding a number of
elements responsible for regulation of calcium homeostasis
[39, 40]. Taking into consideration that decreased amount
and activity of PMCA may underlie many neurodegenerative
diseases, here we analyzed whether the modified profile of
plasma membrane calcium pumps can influence cell response
to CCL5-induced signaling.

2. Materials and Methods

2.1. Cell Culture. Cell culture and differentiation PCI12 rat
pheochromocytoma cells (ATCC, USA) were routinely main-
tained in RPMI-1640 medium (Biowest, USA) containing
15% fetal bovine serum (Biowest, USA), 25 mM HEPES,
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pH 74 (21°C), 2mM L-glutamine, 25 U/ml penicillin, and
25 ug/ml streptomycin in a humidified incubator at 37°C with
5% CO,. Stable transfected cell lines with reduced PMCA2
(:2) or PMCA3 (.3) protein level were achieved using an
antisense RNA cloned into pcDNA3.1(+) vector transfected
to naive PCI2 cells, as described previously [36]. Following
selection with increasing G418 concentration (up to 1 mg/ml),
the stable transfectants with nearly 50% reduction in PMCA2
or PMCA3 protein level were obtained. PCI2 cells carrying an
empty vector were used as a control (C). PC12 cells derived
from a transplantable rat pheochromocytoma can differen-
tiate into sympathetic-like neuronal cells upon exposure to
neurotrophins, but similar effects can be triggered by db-
cAMP. In our model differentiation process was induced with
1 mM dibutyryl-cAMP (Santa Cruz Biotechnology) for 48 h.
Because PC12 cells exhibit some level of variability, routinely
no more than 12 passages were used.

2.2. Ca®* Measurement. Cells grown to 80% confluence in
25 cm? flasks were detached from the surface and centrifuged
at low speed (250 x g) for 5 min. 100 pl of cell suspension was
immediately transferred to 96-well plates. An equal volume
of 2x concentrated Fluo-4 Direct calcium reagent loading
solution (Life Technologies, USA) was added to each well
and plates were incubated at 37°C for 1h. Fluorescence was
measured by using a Victor X3 plate reader (Perkin-Elmer).
The measurements were performed for 250 s at one second
intervals at 37°C and the fluorescence signal was recorded
using 488 nm excitation filter and 535nm emission filter.
The signal was calibrated by addition of 0.1% Triton X-100
to obtain R, ,, and 10mM EGTA to chelate extracellular
Ca?* to obtain R in- Appropriate controls for estimation of
background fluorescence including phenol red free RPMI
medium, Fluo-4 solution alone, and cell-free recording
solution were included. Changes in fluorescence of Fluo-
4 dye were converted to free cytosolic Ca®" concentration
according to the equation [Ca®* ;.= Ky ([F-Fonl/[Foax-F1)s
where K4=345nM. All measurements were performed in
a calcium-free buffer containing 125mM NaCl, 5mM KCl,
1.2mM KH,PO,, 1.2mM MgSO,, 6 mM glucose, and 25 mM
HEPES. In all experiments, after measurement of basal
Ca** for 150 s, 50 ng/ml of CCL5 (PeproTech) was added.
For analysis of CCR/PLC/IP;R pathway, specific inhibitors
were added right before measurements—cocktail of CCRs
inhibitors: 1nM BX513 (Abcam) for CCRIL, 1 yuM SB328437
(Abcam) for CCR3 and 1nM DAPTA (Abcam) for CCR5 or 4
uM U73122 (Abcam) for PLC, or 100 #M 2-APB (Sigma) for
IP;Rs. To determine the role of ER calcium stores in CCL5
response, 1 uM thapsigargin (Santa Cruz Biotechnology)
was added 50 s after basal calcium measurement, and next
50 ng/ml of CCL5 at 150 s was applied. All measurements were
done in duplicate and the data presented in the figures are the
average of at least 5 independent cell cultures.

2.3. RNA Isolation and Real-Time PCR. Total cellular
RNA was isolated using Tri Reagent (MRC) according
to the manufacturer’s protocol. 1ug of purified RNA and
oligo(dT) primers were then used for cDNA synthesis using
High-Capacity ¢cDNA Reverse Transcription Kit (Applied
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Biosystems). The IP;R genes expression level was quantified
in a real-time PCR reaction using 5x HOT FIRE Pol Eva
Green qPCR Mix Plus (Solis Biodyne) in the following
conditions: 15 min at 95°C followed by 40 cycles at 95°C for
15 s, 60°C for 30 s, and 72°C for 30 s using ABI Prism 7000
sequence detection system (Applied Biosciences). Following
normalization to the expression of endogenous Gapdh,
the fold change of each target gene was calculated using
comparative 27**“" method as described previously [36].
Primers were synthesized in the Institute of Biochemistry
and Biophysics (Poland) and their specificity was confirmed
by running a melting curve after each reaction. Primers were
designed using GenScript Primer Design Tool (USA) and
their sequences were as follows:

Ip3r-1 forward: 5'-GTGGAGGTTTCATCTGCAAGC-3',
reverse: 5 -GCTTTCGTGGAATACTCGGTC-3',

Ip3r-2 forward: 5'-GCTCTTGTCCCTGACATTG-3',
reverse: 5 -CCCATGTCTCCATTCTCATAGC-3',

Ip3r-3 forward: 5'-AGCGAGAAGCAGAAGAAAG-3',

reverse: 5 -CATCCGTGGGAACCAGTC-3,
Gapdh forward: 5'-GCTTACCAG-GGCTGCCTTCT-3',

reverse: 5 -CTTCCCATTCTCAGCCTTGAC-3'.

2.4. Western Blotting. Approximately 40-80 pg of cell lysate
proteins were separated using either 8% or 10% SDS-PAGE
and electroblotted onto nitrocellulose membranes using
semidry method. The membranes were blocked with 3% BSA
in TBS buffer (10 mM Tris-HCI, pH=74, 150 mM NaCl) for
30 min at room temperature prior to exposure to primary
antibodies. Membranes were incubated overnight at 4°C with
the primary antibodies and for approximately 4 h with the
secondary antibodies at room temperature followed by 3 x
15 min wash with TBS-T between each antibody application.
The following primary antibodies were used: anti-CCRI
(rabbit, polyclonal, 1:1000, Santa Cruz Biotechnology; rab-
bit, polyclonal, 1:1000, BosterBio), anti-CCR3 (rabbit, poly-
clonal, 1:1000, Santa Cruz Biotechnology; rabbit, monoclonal,
1:1000, BosterBio), anti-CCR5 (mouse, monoclonal, 1:1000,
Santa Cruz Biotechnology), anti-IP;R-1 (rabbit, polyclonal,
1:2000, Alomone Labs), anti-IP;R-2 (rabbit, polyclonal, 1:200,
Alomone Labs), monoclonal anti-IP;R-3 (mouse, mono-
clonal, 1:2000, BD Biosciences), and anti-IP;R-1/2/3 (mouse,
monoclonal, 1:500, Santa Cruz Biotechnology). Monoclonal
anti-3-actin antibody (Santa Cruz Biotechnology) was used
at 1:1000 dilution as a protein loading control. Secondary
antibodies coupled with alkaline phosphatase (Sigma) at
1:5000 dilution were used for staining. Sigma Fast BCIP/NBT
was used for visualization according to the manufacturer’s
instruction. Blots were scanned and band intensities were
measured quantitatively using GelDoc™ EQ system with
Quantity One 1-D Analysis Software version 4.4.1 (Bio-Rad).

2.5. Confocal Imaging. Cells were seeded at a density of
2 x 10* cells/well on thin-glass bottomed 96-well plate
(SensoPlate™, Greiner Bio-One) and differentiated for 48 h.
Next, cell cultures were washed once with PBS and fixed for
10 min in room temperature with 2% formaldehyde freshly
prepared from paraformaldehyde and buffered to pH = 7.4
in PBS. Subsequently, cells were washed once and further
incubated for 1h with the blocking buffer (10% normal
goat serum, 0.1% Triton X-100, PBS pH = 74), following
1h incubation with primary antibody against CCR5 diluted
in the blocking buffer (1:100, Santa Cruz Biotechnology).
Next, cells were washed 3 x 5 min with the blocking buffer
and incubated for 1h with secondary goat anti-mouse IgGl
antibody conjugated with Alexa Fluor 488 (1:1000, Thermo
Fisher Scientific) to fluorescently label immunodetected
CCR5. Subsequently, after 3 x 5 min wash with the blocking
buffer, plasma membrane marker protein Na*/K" ATPase
was immunostained for 1h with primary antibody (Abcam)
fluorescently labeled with Zenon™ Alexa Fluor 568 Mouse
IgGl Labeling Kit (Thermo Fisher Scientific) and diluted
in the blocking buffer (1:50). Finally, cells were washed
3 x 5min with the blocking buffer, once with PBS, and
were fixed again for 10 min in room temperature with 2%
formaldehyde in PBS (pH = 7.4). Eventually, cell nuclei were
counterstained with 5 yM Hoechst 33342 in PBS, and triple-
stained cells were visualized by confocal microscopy. Images
were obtained using 780 LSM confocal microscope (Zeiss)
with Plan-Apochromat 63x/1.4 Oil DIC M27 objective. ZEISS
Microscope Software ZEN2012 was used to calculate mean
fluorescence intensities of respective CCR5-positive pix-
els colocalizing with plasma membrane marker (Na'/K*
ATPase-positive) pixels. Plasma membrane marker-positive
pixels were selected based on their fluorescence intensity
that ought to be between arbitrary upper (500 units) and
lower (40 units) thresholds, set either to eliminate nonspecific
background staining or to negate the influence of high-
intensity artificial staining (antibody precipitates and others).
Analysis of fluorescence intensity of CCR5 staining colo-
calizing with plasma membrane staining was performed for
each cell line for five different fields of view and results were
averaged.

2.6. Data Analysis. The data are shown as means + SD of n
separate experiments (n > 3) with the exact n value given
under each figure. The comparisons between cell lines were
done using Student’s ¢-test or ANOVA followed by Tukey or
Bonferroni’s multiple comparisons tests, wherever applicable.
P values were calculated using STATISTICA 12.0 (StatSoft)
or GraphPad Prism 7 (GraphPad, La Jolla, CA). P < 0.05 was
considered as statistically significant.

3. Results

3.1. CCRs Expression in PCI2 Cell Lines. First, we evaluated
the presence of CCRl, CCR3, and CCR5 in PCI2 lines
using two approaches. The immunoreactivity of examined
receptors was initially assayed in a cell lysate by Western
blot (Figure 1). In comparison to the control cells, CCRI was
present at higher level in _3 cells, CCR3 increased in 2 cells,



4 BioMed Research International

B-actin CCR1 CCR3 CCR5
i i i G TR e EET
'Mw. i gk 2o 3R 5 oS B b
e = 2 - SmEme=
C 2 3 C 2 3 c 2 3 c 2 3
(a)
200 =
* *
150 = %
*
=
2
S 100 o= PR coada -
N
o
xX
50
0
CCR1 CCR3 CCR5
a9 2 m 3

(®)

FIGURE 1: Western blot analysis of CCRs protein in PCI2 cell lines. (a) Approximately 40-60 ug of total protein was resolved on a 10% SDS-
PAGE gel and electroblotted onto nitrocellulose membranes. Membranes were probed with polyclonal anti-CCRI, polyclonal anti-CCR3, or
monoclonal anti-CCR5. Representative blots are shown and arrows indicate the main band of the receptors with apparent MW 41kDa for
CCRI, 40kDa for CCR3, and 46 kDa for CCR5. (b) The bands intensity was densitometrically analyzed and the results are expressed as % of
the control PC12 cells obtained after normalization to endogenous 3-actin level (+ SD). * P < 0.05 (n=7), C: control line, 2: PMCA2-reduced

line, _3: PMCA3-reduced line.

but in both PMCA downregulated PCI2 lines CCR5 amount
increased by nearly 50%.

Since functionally active chemokine receptors are located
at the plasma membranes, we next explored cellular distribu-
tion of CCRs by confocal microscopy. Staining of endogenous
CCRI and CCR3 showed low immunosignal intensity, which
was concentrated predominantly in the cytosolic area (data
not shown). To validate these results, we repeated the assay
using another set of antibodies against CCR1 and CCR3;
however, we obtained similar results. These data indicated
that although CCR1and CCR3 were present in PCI2 cell lines,
their participation in CCL5 signaling in our model seems to
be negligible. CCR5 was expressed much more abundantly
and was mostly distributed in the plasma membranes (Fig-
ure 2). Quantification of CCR5 immunofluorescence revealed
that cells with reduced PMCA2 or PMCA3 contained more
plasma membrane-located receptor than that of control line.

3.2. CCL5 Effect on Calcium Transients. To analyze CCL5-
induced cytosolic Ca®* increase in examined PCI2 cell lines,
chemokine action was assayed in a calcium-free medium
to avoid the secondary effect triggered by “calcium-induced
calcium release” process, as well as the concomitant participa-
tion of membrane calcium channels. Changes in fluorescence
were monitored for 250 s at one-second intervals, and
CCL5 was always applied after 150 s of measurement. The
CCL5 concentration was chosen because it was shown to
be effective under inflammatory state, which is supported
by literature data. It is also frequently used for in vitro
assays including PCI2 cells [41]. At resting state higher Ca®*

level in PMCA-reduced PCI2 cells was observed (Figure 3),
confirming our previous results [36].

Treatment with CCL5 at 50 ng/ml increased cytosolic
Ca®" in all examined lines, more intensively in PMCA-
modified cells, but the highest peak value was observed in
2 line. This was also confirmed by analysis of area under
the curves. Time course of chemokine effect presented in
Figure 4(a) (black lines) showed a fast transient increase in
[Ca®*]. during first seconds after CCL5 application, followed
by a slow, progressive decrease in [Ca**].. The estimated
time required for recovery of Ca** to the basal level was 14
+ 1 s for control PCI2 cells, 41 + 8" s for 2 line, and 23
+ 7** s for _3 line (n=5; *P < 0.05 vs. control; *P < 0.05
3 vs. 2). Slower recovery in _2 and _3 lines could result
from lowered Ca®* -clearing potency in PMCA-reduced lines,
since SERCA aflinity for calcium is at low micromolar range
[42]. In Ca*'-free conditions, the differences in cell response
to CCL5 might reflect a balance between intensity of Ca*"
release from ER and Ca®" extrusion, which varied between
cell lines.

To verify that in our experimental conditions the endo-
plasmic reticulum was a main source of calcium, the assay
was performed in the presence of 1uM thapsigargin added
after 50 s, and next CCL5 was applied at 150 s. As shown
in Figure 4(a) (red lines), Tg caused a successive calcium
depletion from ER due to inhibition of Ca®" reuptake by
SERCA, and subsequent addition of chemokine had no effect
on calcium transient. To confirm the participation of CCRs
in generation of Ca®* transient, the assay was also performed
in the presence of specific CCRs inhibitors. Although CCR5
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FIGURE 2: Localization of CCR5 in PC12 cell lines. PC12 cells differentiated for 48 h with db-cAMP were fixed and immunostained with
antibodies against CCR5 receptor (green) and Na™/K" ATPase (plasma membrane marker, red). Nuclei were stained with Hoechst 33342
(blue). Representative confocal images are presented. Values shown in merged images represent average fluorescence intensity + SEM (n =
5) of pixels positive in green channel (CCRS5) that colocalize with red channel positive pixels (Na*/K" ATPase). # P< 0.05, # P < 0.0 Scale
bars: 10 ym. C: control line, _2: PMCA2-reduced line, _3: PMCA3-reduced line.

appeared to be the main functionally active receptor in our
cell lines, chemokine action was assessed in the presence of
cocktail of CCR1, CCR3, and CCR5 inhibitors added just
before measurement (Figure 4(b), red lines). CCL5 applied
after 150 s did not affect Ca®* level indicating that examined
CCRs were indeed the crucial targets for the chemokine.

3.3. Analysis of PLC/IP;R Pathway. In the next step we
analyzed the downstream signaling triggered by CCL5/CCR
complex by inhibiting the crucial elements of this pathway,
PLC and IP; receptors. As shown in Figure 5(a) (red lines),
in the presence of selective PLC inhibitor, U73122, there
was no Ca?* response to CCL5 in examined cell lines,
which confirmed that PLC-induced signaling must be the
chemokine effector. Subsequent generation of a second mes-
senger, IP;, leads to the opening of IP;-dependent calcium

channels. Thus, we treated cells with 2-APB, an inhibitor of
IP; receptors (Figure 5(b), red lines). Baseline Ca** level was
not affected by the chemokine in these conditions, showing
that IP;Rs were indeed responsible for observed calcium
transients.

3.4. Characteristics of IP; Receptors in PCI2 Cell Lines. Since
IP, receptors appeared to be the final CCL5 effectors in ana-
lyzed pathway, we next characterized their expression in our
PCI2 cell lines. Real-time PCR analysis showed significant
IP;R-1 and IP;R-2 downregulation in both _2 and _3 lines,
whereas the expression of IP;R-3 increased in comparison to
the control cells (Figure 6).

To validate whether the mRNA changes correlated
with corresponding receptor protein, Western blot analysis
was performed using isoform-specific antibodies and the
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FIGURE 3: CCL5 effect on Ca®" release in PCI2 cell lines. The
maximal level of [Ca**]c liberated by 50 ng/ml CCL5 was reached
approximately during first seconds after addition of chemokine
and was determined as an average of peak values from 5 separate
experiments (+ SD). A[Ca**]c was calculated by subtracting the
resting level (black box) from maximal Ca?* concentration. * P <
0.05 vs. control line, * P < 0.05 _3 line vs. _2 line (n=>5). 2: PMCA2-
reduced line, _3: PMCA3-reduced line.

antibody that recognized all three IP; receptors (Figure 7(a)).
Single bands of the predicted sizes for IP;-1, 2, and 3 receptors
(~313kDa, 260 kDa, and 250 kDa, respectively) were detected
in all lines, but some lower molecular weight bands were also
present. They could represent proteolytic fragments of the
receptors, as similar observations were also shown in another
study [43].

Quantification of individual IP;R isoforms confirmed
that in 2 and _3 lines the protein level of IP;R-1 and 2
was lower than that of control cells, but IP;R-3 increased
by ~40% (Figure 7(b)). However, analysis of blots probed
with antibody recognizing all IP; receptors revealed a total
increase only in _3 line. This apparently indicates the differ-
ences in a ratio between IP; R isoforms and finally could result
in diversified affinity for IP, in both PMCA-reduced cell
lines.

4. Discussion

Our previous studies revealed that, in differentiated PCI12
cells, downregulation of neurospecific PMCA2 or PMCA3
increased cytosolic Ca** and subsequently affected the
expression level of several Ca?*-associated proteins, ie.,
SERCA, calmodulin, calcineurin, neuromodulin (GAP43),
and certain types of voltage-gated calcium channels [36,
39, 40]. We have also revealed a compensatory increase of
PMCALl isoform in both PMCA-reduced lines coexisting with
higher expression of SERCA2 and SERCA3, which correlated
with higher Ca** accumulation in the endoplasmic reticulum
[36]. On the one hand it could effectively decrease cytosolic
Ca®" concentration to its safe level, but on the other hand,
it may potentially increase Ca®* release after activation of
calcium channels in the ER, including activation of IP, recep-
tors and ryanodine receptors [42]. Since IP;R-mediated Ca**
release from the ER and mitochondrial Ca** homeostasis
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are physiologically coupled, their improper cooperation may
significantly affect cell viability [44].

Based on current study, we can add to the list of common
features detected after reduction of PMCA2 or PMCA3
increased level of CCR5 and IP;R-3 proteins, but lowered
IP;R-1 and IP;R-2. All these changes are primarily related to
elevated cytosolic Ca** as a consequence of changed compo-
sition of PMCAs. Interestingly, some of them could occur as
adaptive processes protecting cells against calcium overload.
Since age-related PMCA decrease has been documented [17,
45-47], our modified PCI2 cells may be a useful model to
clarify the biological changes in neurons associated with
aging and, potentially, to study the vulnerability of cells to
neurodegenerative insults.

The presence of CCR5 in PCI2 cells was shown in
several studies [25, 41], and it was also confirmed by our
data. Moreover, we detected CCR1 and CCR3 proteins,
but their cytosolic localization suggested that CCL5 signal
was mainly transmitted by CCR5, because the activity of
receptor requires its presence in the plasma membrane.
Upregulation of CCR5 has been revealed in a number of
neurological disorders and models of CNS injury, where it
is often localized in astrocytes and microglial cells [48-51].
Opveractivation of CCR5 with subsequent raise of cytosolic
Ca®* affected chemotaxis, secretion, and gene expression and
could lead to inflammatory and degenerative processes in
the CNS [27, 29]. Chemokine receptors could bind several
chemokines and could act as multimeric forms, homo- or
heterodimers [52-55]. The additional mechanism that may
modify CCL5 signaling depends on the function of another
type of calcium channels existing in ER, ryanodine receptors.
RyRs are activated by a mechanism known as Ca**-induced
Ca®" release (CICR) and involve cooperation with plasma
membrane calcium channels [56]. Crucial for RyRs function
is a high, micromolar Ca** concentration necessary to open
these channels [57]. In our study, to avoid the potential
influence of RyR-mediated secondary effects, we assayed
CCLS5 action without external calcium.

Using the selected inhibitors we confirmed that in our
cell models CCL5 downstream effects involved CCR5-PLC-
IP;R pathway. The crucial step appeared to be associated
with activation of IP; receptors. Although IP;R-1 represents
a predominant isoform in the central nervous system, other
isoforms also exist in some brain areas and may differ in
neuronal compartmentalization [58-60]. A particular role of
IP;Rs in hippocampus is related to learning and memory
abilities, and changes in IP;R isoforms composition during
aging may have an impact on increased deficits in these
processes. In most cultured cell types IP;R-3 is the principal
form, but IP;R-1 and IP;R-2 have also been detected [61]. All
isoforms exhibit specific characteristics: IP;R-1 possesses low
Ca®* affinity and medium affinity for IP;, IP;R-2 represents
the isoform with the highest affinity for both Ca** and
IP;, and IP;R-3 is the most sensitive for modulation by
Ca?*, but displays the lowest IP, affinity [60]. Interestingly,
IP,Rs are regulated in a biphasic way by cytosolic Ca** and
are stimulated at low Ca®" level, but inhibited by higher
than 300nM Ca** [33]. Up to now, over 100 proteins have
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FIGURE 4: Analysis of CCLS5 effect on calcium transients in PCI2 cell lines. Ca** transients were measured in parallel wells with (red lines)
or without (black lines) presence of specific inhibitors. (a) SERCA inhibitor, 1uM thapsigargin, was added after 50 s (red arrow), and next
50 ng/ml CCL5 was applied after 150 s (black arrow). (b) CCRs inhibitors, 1 nM BX513 for CCR1, 1 M SB328437 for CCR3, and 1nM DAPTA
for CCRS5, were included just before measurements. 50 ng/ml CCL5 was applied after 150 s (black arrow). All measurements were done in
duplicate and the presented traces are average from 5 independent cell cultures (n=10). C: control line, _2: PMCA2-reduced line, _3: PMCA3-

reduced line.

been identified to interact with and regulate the IP;Rs [62].
Thus, multiple regulatory processes for each IP;R isoform
may produce diversified cell signaling paths that can initiate
the adaptive response or can lead to neurodegeneration
(60, 61].

Our analysis showed that in PC12 cells, all three IP;R
isoforms were present, with IP;R-3 being the most prominent
subtype. An interesting observation made here was the
altered composition of IP;Rs in PMCA-reduced lines at
both mRNA and protein level. IP;R-1 and IP;R-2 decreased,
whereas IP;R-3 amount was higher than that of control cells.
Changes in relative mRNA level indicate that the regula-
tion occurs at the level of transcription, suggesting Ca*-
dependent negative feedback loop for IP;R-1 and IP;R-2.
Analysis of IP;R protein levels also confirmed the differences
in a ratio of IP;R isoforms between control 2 and _3
lines. One can assume that in both PMCA-reduced cells the
decreased expression of receptors with higher affinity for IP,
could lower the total apparent sensitivity to IP; and thereby
may provide some protection against calcium overload. The
graphical summary of these findings is presented in Figure 8.

In _2 line, we observed higher Ca** accumulation in the
ER; thus potentially more calcium could be released after acti-
vation of IP;Rs. Moreover, less efficient PMCA-dependent
extrusion system, due to PMCA2 suppression, may prolong
calcium signaling, modifying a number of existing pathways.
It can also lead to further Ca** overload. In fact, in this line we

reported decreased cell survival and increased percentage of
apoptotic cells [36]; thus the cells may exhibit higher vulner-
ability to calcium-induced cytotoxicity. Correlation between
PMCA?2 and disturbances in cell function resulting in aug-
mented cell death has been reported in neurons, indicating a
protective PMCA2 role [13, 63]. Taking into account the fact
that PMCA?2 represents nearly 40% of the total pump in the
brain [64], reduction of PMCA2 appears to be more harmful
for the cells than deficiency of PMCA3, and compensatory
mechanisms may not be sufficient for full protection of
cells.

The presence of an additional protective mechanism may
be suggested in the _3 line, where we previously observed
increased expression of PMCA4 isoform. One of the well-
established mechanisms of PMCA regulation is stimula-
tory action of PIP, [9, 65, 66]. Recently, a new look on
PMCA/PIP, interaction has been proposed [67]. Binding of
PIP, by PMCA4 has been demonstrated to protect plasma
membrane PIP, from hydrolysis by PLC. It could potentially
limit IP; production and, subsequently, restrict Ca®" release
from ER. Since for full activity, IP;Rs must bind four IP,
molecules [68], a sufficient available PIP, concentration as
a substrate for PLC is a necessary requirement. Accordingly,
in the _3 line greater protection could result not only from
the altered profile of IP;Rs and the presence of highly active
PMCA2, but also from higher PMCA4 amount. All these
adaptive changes may limit the amount of Ca®* released from



8 BioMed Research International

500 1 500 500 ¢
400 | 400 | 400 |
isoo- i 300 } isoo-
+ + +
‘S 200 5 200 f & 200 '\4\‘
100 100 } 100 f
O L 1 L L J 0 L L L L J 0 L L L L J
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
[s] [s] [s]
—cC — C+U73122 — 2 — 2+U73122 — 3 — 3+U73122
()
500 ¢ 500 ¢ 500
400 } 400 | 400 }
E 300 } i 300 | 5300 :
+ + +
& 200} § 200 | 'S 200 |
100 ! 100 } 100 |
0 L 0 1 1 L 1 J 0 L L L L J
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
[s] [s] (s]
—cC —— C+2APB — 2 —— _2+2APB — 3 —— _3+2APB

(b)

FIGURE 5: Analysis of PLC/IP;R signaling pathway in PCI2 cell lines. Analysis of PLC/IP;R pathway was performed in parallel wells with
(red lines) or without (black lines) presence of specific inhibitors included just before measurements. 50 ng/ml CCL5 was always applied after
150 s (black arrow). The calcium transients were assayed in the presence of (a) PLC inhibitor, 4uM U73122, and (b) IP;Rs inhibitor, 100 yuM
2-APB. All measurements were done in duplicate and the presented traces are average from 5 independent cell cultures (n=10). C: control
line, 2: PMCA2-reduced line, _3: PMCA3-reduced line.
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FIGURE 6: Real-time PCR analysis of IP; receptors in PCI2 cell lines. A relative fold change (+ SD) obtained following normalization to Gapdh
expression and calculated using comparative 27**“* method. The expression of a target gene in control PCI2 cells was taken as 100% and is
presented as a dotted line. Statistical differences from values in control are indicated by *P < 0.05 (n = 6). C: control line, 2: PMCA2-reduced

line, _3: PMCA3-reduced line.

the ER and shorten the time necessary to restore basal Ca*" signaling that may allow cells to survive but also may promote
level. cell death. The unique role played by “fast” isoforms of
plasma membrane calcium pump in neuronal cells suggests
that long-lasting calcium dyshomeostasis could markedly
increase cell vulnerability to pathological events, including
Downregulation of neuron-specific PMCA2 or PMCA3 initi- neurodegenerative disorders [13, 19, 63]. Aberration in the
ated a set of responses that significantly altered Ca®-induced ~ activity of PMCA2 has been implicated in some diseases,

5. Conclusions
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FIGURE 7: Western blot analysis of IP, receptors in PC12 cell lines. (a) Approximately 60-80 ug of total protein was resolved on an 8%
SDS-PAGE gel and electroblotted onto nitrocellulose membranes. Membranes were probed with anti-IP;Rl, anti-IP;R2, anti-IP;R3, and
recognizing all isoforms anti-IP,R-T antibodies. Representative blots are shown and arrows indicate the main band of the receptors. (b) Band
intensity was densitometrically analyzed and the results are expressed as % (+ SD) of control PCI2 cells obtained after normalization to
endogenous -actin level. *P< 0.05 (n=7). C: control line, -2: PMCA2-reduced line, _3: PMCA3-reduced line.
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FIGURE 8: Schematic presentation of CCL5 effect on PCI2 cells. Downregulation of neurospecific PMCA2 or PMCA3 isoforms in differentiated
PCI2 cells generated two types of cell response: similar for both lines or characteristic for only one line. The common changes were increased
cytosolic Ca®" and, as a compensatory mechanism, upregulation of PMCALI isoform, enlarged expression of SERCA2 and SERCA3, and
diminished calmodulin amount [36, 40]. The levels of CCR5 and IP;R-3 proteins also increased, but the expression of IP;R-1 and IP,R-
2 was lowered (present study). Interestingly, altered IP;R isoform composition did not change total IP;R protein in the _2 line, while it
increased in the _3 line. Also in _3 cells, the amount of PMCA4 increased [36]. These subtle differences could have profound consequences
after CCL5/CCRS activation, since potency to restore the basal Ca®* level in the _3 line appears to be higher than in the -2 line, which may
be essential for the survival of the cell. Under prolonged Ca®" signal in the -2 line due to reduction of the fastest isoform - PMCA2, the
subsequent Ca*"-mediated processes could increase vulnerability to cell death. Abbreviations used: CaM, calmodulin; CCL5, chemokine C-
C motif ligand 5; CCRS5, receptor for CCL5; inositol 1,4,5-triphosphate (IP;); IP;R, IP; receptor; PMCA, plasma membrane Ca**-ATPase;
SERCA, sarco/endoplasmic Ca*"-ATPase.
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i.e., Huntington’s disease and multiple sclerosis, but altered
expression of PMCA3 has been linked with cerebellar ataxia
[69]. Here we demonstrated that CCL5/CCR5 signaling could
be one of the critical mediators of the cell fate. Although
we analyzed only the initial step in CCL5-induced pathway,
this key phase could play a decisive role for the cell. In
the aging brain increased BBB permeability, augmented
leukocyte infiltration, and more severe CCL5 action under
less efficient neuronal Ca®* extrusion mechanism could
accumulate potentially harmful changes in neurons, which
increase the risk of developing neurodegenerative diseases.
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