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Abstract

Pain has a useful protective role; through avoidance learning, it helps to decrease the probability of 

engaging in tissue-damaging, or otherwise dangerous experiences. In our modern society, the 

experience of acute post-surgical pain and the development of chronic pain states represent an 

unnecessary negative outcome. This has become an important health issue as more than 30% of 

the US population reports experiencing “unnecessary” pain at any given time. Opioid therapies are 

often efficacious treatments for severe and acute pain; however, in addition to their powerful 

analgesic properties, opioids produce potent reinforcing properties and their inappropriate use has 

led to the current opioid overdose epidemic in North America. Dissecting the allostatic changes 

occurring in nociceptors and neuronal pathways in response to pain are the first and most 

important steps in understanding the physiologic changes underlying the opioid epidemic. Full 

characterization of these adaptations will provide novel targets for the development of safer 

pharmacotherapies. In this review, we highlight the current efforts toward safer opioid treatments 

and describe our current knowledge of the interaction between pain and opioid systems.

INTRODUCTION

Acute and chronic pain are experienced by 30 to 40% of the US population at any given time 

(1– 4). The high occurrence of these pain conditions highlights the need for efficacious 

therapeutic management, including opioid analgesics. In the late 1990s, the false belief that 

pain-experiencing patients were less likely to develop opioid addiction led to an increase in 

prescription opioid therapies (5, 6). Decades later, opioid analgesics represent the most 

prescribed class of therapeutics in the US (7). This high prescription prevalence, together 

with the limited number of therapeutic alternatives, is correlated with the apparition of 

opioid diversion, misuse, addiction and ultimately overdoses (CDC, 2018). Recent reports 

describe a 5-fold increase in opioid overdose in the United States in the last 15 years (8). In 
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2015, opioids contributed to more than 17,500 deaths were accounted to opioid pain 

relievers in addition to alarming nonfatal opioid overdoses that required medical care in a 

hospital or emergency department (8). Altogether, opioid use has reached a dire levels, with 

a daily 115 opioid-induced lethal overdoses reported (4). The occurrence of these dramatic 

events can be explained by several factors.

The development of tolerance after exposure to a few, or even a single dose of opioid 

analgesics (9, 10), represents a possible explanation for the increase in involuntary 

overdoses. Indeed, the analgesic and rewarding properties of opioid therapeutics are strongly 

decreased after a short term use (11–14). In self-medicating patients, dose escalation in 

opioid medication to overcome the presence of analgesic tolerance could explain, at least in 

part, the observed increase in opioid-induced respiratory depression and subsequent 

accidental harm (8). Furthermore, exposure to early life stress episodes or undertreated pain 
are believed to increase both the risk or development of chronic pain and opioid misuse 
through allostatic changes (15–18). Yet, dissecting the allostatic changes leading to opioid 

analgesic tolerance and analgesia (see (19)) may help to curtail substance abuse and avoid 

involuntary overdoses and the undertreatment of pain (20).

As the opioid epidemic continues to worsen and has reached unprecedented proportions, 

many state and federal level policies and strategies have been rolled out to address this 

national health issue (prescription drug monitoring programs, CDC prescription guidelines, 

novel compounds development). However these attempts are likely to remain ineffective at 

reducing overdose rates until our scientific and medical community better understand the 

neurobiology of the intersection between pain and opioid systems. This strategy may 

uncover new pharmacological targets to safely treat pain and OUD afflicted patients. This 

review will focus on our current knowledge on pain and opioid systems overlap in the 

reward circuitry leading to possible drug misuse liability.

The opioid system, a hub for pain and reward interaction

The endogenous opioid system has been studied for decades for its involvement in pain 
processes and currently represents the main target for analgesic treatment. However, the 
opioid system is also involved in numerous behavioral functions such as learning and 
memory, stress, mood, reward and addiction. On a cellular level, the opioid system is 

composed of four main subcategories: the Noceptin/orphanin-FQ (NOP), the delta-opioid 

receptor (DOR), the mu-opioid receptor (MOR) and the kappa-opioid receptor (KOR) 

systems. Those four systems can interact with one another and are all deeply involved in the 

modulation of pain and reward. The NOP system, expressed mainly in the brainstem, 

forebrain and spinal cord (21–23), has a dual role in which its central stimulation blocks 

opioid- and stress-induced analgesia while intrathecal administration leads the analgesic 

properties (23–25). Because the NOP system activation decreases the reinforcing properties 

and abuse liability of many drugs of abuse, it is currently considered as a possible molecular 

target for substance abuse treatment (26–28). The DOR system is highly expressed in 

forebrain regions (29, 30) and modulates analgesia predominantly under in chronic pain 

conditions (31, 32). As a comparison the MOR and KOR systems, distributed throughout the 

brainstem, midbrain, and forebrain structures, are thoroughly involved in the integration of 
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reinforcing and aversive stimuli, including severe and acute pain (20, 33–44). Pain, 

composed of both a nociceptive and an emotional component, is detected by peripheral 

sensory neurons and processed though an interaction in between descending pain 

modulatory system and cortical networks. The MOR is expressed throughout this pain axis, 

and stimulation of MORs in both peripheral nociceptors and supraspinal structures alleviates 

the nociceptive component of pain. After injury met-enkephalins, endogenous MOR 
agonists, can be locally released at injury site and provide rapid anti-nociception (45). This 

pain relief represents a reinforcing experience, as alleviating painful stimuli improves 

general hedonic state, a phenomenon known as negative reinforcement (29, 30, 35–37, 39). 

On the other hand, in non-painful conditions the activation of MOR in the mesolimbic 

reward pathway, from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), 

leads to reinforcing effects through the release of dopamine, known as positive 

reinforcement (29, 48, 49). While acute activation of the MOR system, the main target of 

current opioid pharmacotherapies such as morphine and fentanyl, is correlated with 

analgesic properties and reward (44, 49–51), activation of KOR system leads to dysphoric, 

anhedonic, and aversive behaviors (33, 34, 39–41, 43). Due to their reinforcing and aversive 

properties the MOR and KOR, respectively, are often referred as opponent systems. 

Interestingly, some studies have demonstrated that KOR stimulation, in pain conditions, 

disrupts the reinforcing properties of MOR agonists through a dopamine release inhibition in 

the NAc (52, 53) while peripherally restricted KOR stimulation induces analgesia (54). A 

thorough dissection of the impact of pain to trigger allostatic changes in all the four opioid 

systems represents a necessary step to understand the interaction in between pain and opioid 

misuse liability (Figure 1).

In animal models, the occurrence of pain has been shown to strongly affect the reinforcing 

properties of rewards (55–59). Numerous laboratories have shown a decrease in the 

reinforcing properties of morphine using a conditioned place paradigm in rodent models of 

neuropathic or chronic pain (52, 60–62). Interestingly, Wu and collaborators found that 

animals exposed to chronic pain developed morphine-induced place preference when the 

dose of morphine was increased (63). This suggests a rightward shift in the dose-response 

for reinforcing properties of opioid in animals experiencing pain. Similarly, using opioid 

self-administration, the gold-standard methodology in the study of addiction, animals in pain 

demonstrate a decrease in low-dose (62, 64–67) but an increase in high-dose opioid 

consumption when compared to control littermates (55). These alterations in opioid reward 

processing have been strongly correlated to impaired reinforcer-induced dopaminergic 

transmission and NAc function (68–71). This dopaminergic release impairment in the NAc 

contributes, at least in part, to the negative affective states that accompany drug withdrawal 

(72), suggesting a possible common mechanism for pain to drive negative affective states. In 

that sense, recent preclinical studies have characterized significant allostatic changes in 

rodents NAc medium spiny neurons when animals are exposed to an inflammatory or 

neuropathic pain condition (57, 58). The presence of negative affective states, a consequence 

of the emotional component of pain, have been highly correlated with these neuronal 

adaptations (57, 58). However, to fully decipher how pain promotes the appearance of 

negative affective states it is important to acknowledge the role of other brain regions 

(besides the VTA and the NAc) that are critical in the regulation of pain, stress, and reward 

Massaly and Morón Page 3

Curr Opin Behav Sci. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responses. The amygdala is very much involved in the processing of both positive and 

negative valence (see review (73)). Specifically, the BLA and the central nucleus of the 

amygdala, play major roles in the relationship in between pain and negative affective states 

(74, 75). The lateral hypothalamus (LH), a region critical to positive reinforcement through 

its direct connection to the mesolimbic pathway, is involved in pain responses, affect, and 

the rewarding properties of reinforcers (76, 77). This dual role in both pain and reward 

makes the lateral hypothalamus an ideal candidate to study interactions in between pain and 

the presence of negative affective states. Further studies dissecting the role of pain and 

opioid systems in these brain hubs, among others, will undoubtedly uncover the neuronal 

mechanisms responsible for the emotional component of pain.

Despite the promising outcomes of opioid analgesics with a low tolerance liability discussed 

earlier in the introduction, the rewarding properties of current opioid prescriptions remain a 

key factor in the North American opioid epidemic. Evidence from clinical studies depict a 

positive correlation between the increase in opioid prescription for pain treatment and the 

development of Opioid Use Disorders (OUD). According to recent reports, only 8% of pain 

patients go on to develop addiction (4, 78, 79). However, most interestingly, the rate of 

misuse and abuse behaviors occurs much more commonly, in 15 to 26% of patients (4, 78, 

79). Thus, numerous groups of scientists have focused their efforts on developing novel 

opioid therapeutics which maintain the ability to relieve pain in the absence of abuse 

liability. For example, Spahn and collaborators recently developed a fentanyl derivate which 

acts strictly in painful, inflamed areas (80). Because pH is diminished at the site of painful 

inflammation, these authors were able to develop a fentanyl derivate with low pKA 

properties (NFEPP). This strategy allowed a specific action of the NFEPP in low pH milieu 

to provide analgesia in the absence of the central side effects (motor coordination, sedation, 

rewarding properties, constipation and respiratory depression) associated with fentanyl use 

(80). Earlier this year, Ding and collaborators developed a bifunctional NOP/MOR agonist 
that acts as a potent analgesic while lacking the generally observed side-effects of MOR 
agonists treatment, such as respiratory depression, development of tolerance and abuse 
liability (81). Another promising strategy can be found in the design of biased agonists. 

MOR agonist binding to their receptor can trigger the activation of several downstream 

pathways. Many laboratories have described selective role on these pathways activation to 

drive rewarding, tolerance, or analgesic properties of MOR agonists compounds. Embracing 

these numerous studies, Manglik and collaborators have recently uncovered, through a 

rigorous pharmacological compound screening, a novel biased MOR opioid agonist, 

PZM21, displaying analgesic properties while lacking rewarding properties in non-pain 

conditions (82). The same year, Brust and colleagues described a thorough assessment of a 

newly developed KOR biased agonist, triazole 1.1, which presents high analgesic properties 

without inducing any apparent sedation or dysphoric effects (83). While these elegant 

studies have only explored preclinical models of pain, biased agonists through which action 

on opioid receptors lead to selective activation of a certain pathway represent promising 

therapeutic candidates (10, 51, 84). Despite these encouraging results, the latency for novel 

therapeutics to emerge on the market will be substantial, given that these compounds have 

not yet made their way out of preclinical studies.
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As for today, alternative therapies represent a possible way of decreasing opioid use and 

related morbidity and mortality. The rate of opioid related overdoses has been significantly 

decreased in the states where therapeutic cannabis has been legalized (85, 86). The analgesic 

and anxiolytic properties of cannabis may improve the treatment of both the nociceptive and 

emotional components of pain. However, further studies on the long-term effects of cannabis 

use would be prudent to ensure that this is a safe and sustainable means of ameliorating the 

opioid epidemic. In addition, acupuncture, meditation and other non-pharmacological 

approaches represents complementary and efficient ways to treat pain and its associated co-

morbidities such as increased anxiety- and depression-like states (87–91).

In conclusion we firmly believe that a combination of safer pharmacotherapies, better 

understanding of pain-induced allostatic changes in opioid systems and neurocircuitry and 

non-pharmacological approaches will undoubtedly help the medical community to improve 

patient suffering health care and quality of life.
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Figure 1: 
Schematic representation of pain-induced allostatic changes in all four opioid systems 

driving the development of negative affective states. Ultimately, the presence of these 

negative affect together with the persistent/chronic nociceptive component of pain and the 

development of opioid treatment tolerance can lead to opioid prescription misuse and 

increased abuse liability.
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