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Introduction: Non-thyroidal illness (NTI), which occurs with fasting and in response to illness, is characterized
by thyroid hormone inactivation with low triiodothyronine (T3) and high reverse T3 (rT3), followed by
suppressed thyrotropin (TSH). Withholding supplemental parenteral nutrition early in pediatric critical illness
(late-PN), thus accepting low/no macronutrient intake up to day 8 in the pediatric intensive care unit (PICU),
accelerated recovery compared to initiating supplemental parenteral nutrition early (early-PN). Whether NTI is
harmful or beneficial in pediatric critical illness and how it is affected by a macronutrient deficit remains
unclear. This study investigated the prognostic value of NTI, the impact of late-PN on NTI, and whether such
impact explains or counteracts the outcome benefit of late-PN in critically ill children.
Methods: This preplanned secondary analysis of the Early versus Late Parenteral Nutrition in the Pediatric
Intensive Care Unit randomized controlled trial quantified serum TSH, total thyroxine (T4), T3, and rT3
concentrations in 982 patients upon PICU admission versus 64 matched healthy children and in 772 propensity
score–matched early-PN and late-PN patients upon admission and at day 3 or last PICU day for shorter PICU
stay. Associations between thyroid hormone concentrations upon admission and outcome, as well as impact of
late-PN on NTI in relation with outcome, were assessed with univariable analyses and multivariable logistic
regression, linear regression, or Cox proportional hazard analysis, adjusted for baseline risk factors.
Results: Upon PICU admission, critically ill children revealed lower TSH, T4, T3, and T3/rT3 and higher rT3
than healthy children ( p < 0.0001). A more pronounced NTI upon admission, with low T4, T3, and T3/rT3 and
high rT3 was associated with higher mortality and morbidity. Late-PN further reduced T4, T3, and T3/rT3 and
increased rT3 ( p £ 0.001). Statistically, the further lowering of T4 by late-PN reduced the outcome benefit
( p < 0.0001), whereas the further lowering of T3/rT3 explained part of the outcome benefit of late-PN
( p £ 0.004). This effect was greater for infants than for older children.
Conclusion: In critically ill children, the peripheral inactivation of thyroid hormone, characterized by a de-
crease in T3/rT3, which is further accentuated by low/no macronutrient intake, appears beneficial. In contrast,
the central component of NTI attributable to suppressed TSH, evidenced by the decrease in T4, seems to be a
harmful response to critical illness. Whether treating the central component with TSH releasing hormone
infusion in the PICU is beneficial requires further investigation.
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Introduction

As in adults, critical illness in children evokes pro-
nounced changes in the thyroid axis (1–7). A low serum

concentration of triiodothyronine (T3) and a rise in reverse

T3 (rT3) are typically observed in the acute phase of critical
illness, possibly reflecting an attempt to reduce energy ex-
penditure. Such peripheral inactivation of thyroid hormone is
mainly explained by a decrease in type-1 deiodinase (D1)
activity in the liver and kidney and an increase in type-3
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deiodinase (D3) activity in the liver and muscle (8,9). In the
face of these peripheral changes, an acute short-lived rise in
thyrotropin (TSH)—and thyroxine (T4)—has been docu-
mented in response to the acute stress of surgery/illness (10).
However, when critical illness persists, pulsatile TSH se-
cretion becomes suppressed, which results in the lowering of
serum T4 (11–13). Together, these changes are referred to as
the low-T3 or non-thyroidal illness syndrome (NTI). Al-
though the severity of NTI has been associated with adverse
clinical outcomes in adults (14,15) and children (4–7,16–18),
it remains elusive as to what extent the various components of
NTI reflect beneficial adaptations to stress or represent in-
stead a maladaptive and harmful response to illness.

The NTI of critical illness closely mimics the response of
the thyroid axis to fasting in healthy individuals. Indeed,
fasting also leads to low T3 and high rT3 concentrations in
the presence of altered deiodinase activity (19). When fasting
is prolonged, this is followed by low T4 without a compen-
satory rise in TSH. During critical illness, nutrient intake is
often insufficient due to anorexia, a dysfunctional gastroin-
testinal tract, or interruptions of enteral nutrition (20,21).
Hence, a reduced nutrient intake may also play a role in NTI
of critical illness.

Recently, the effect of accepting low or even no macro-
nutrient intake in the early phase of critical illness with de-
laying the initiation of supplemental parenteral nutrition (PN)
until beyond the first week in adults and children admitted to
the intensive care unit (ICU) was studied. The withholding of
early supplemental PN reduced the risk of acquiring a new
infection and accelerated recovery compared to providing
early full nutrition by giving PN to supplement any degree of
insufficient enteral nutrition (22,23). The clinical benefit of
not using PN up to day 8 in the ICU was greater for critically
ill children than it was for adults. Interestingly, in adult pa-
tients, accepting low or no macronutrient intake was found to
aggravate NTI further (24). In the adult population, statistical
analyses suggested that the more pronounced peripheral in-
activation of thyroid hormone with accepting the low/no
macronutrient intake in the acute phase of illness reflects a
beneficial adaptation to enhance recovery (24). In contrast,
the aggravation of the central component of the NTI, with
further lowering of T4, could delay recovery (24). Most nu-
trition guidelines recommend more aggressive feeding for
critically ill children than for adult patients (25). It was hy-
pothesized that not using PN up to day 8 in the pediatric ICU
(PICU) aggravates NTI even further than in adult patients. It
was also hypothesized that more pronounced NTI may ex-
plain why the clinical benefits of not using PN up to day 8 in
the ICU were also larger for critically ill children than for
adults.

This study first investigated the prognostic value of NTI
upon PICU admission for 90-day mortality, for the time to
discharge from PICU, and for the risk of acquiring a new
infection in the PICU. Next, it documented the impact of
accepting low or no macronutrient intake up to day 8 of
critical illness in children on the change of the NTI from
admission to day 3 or last day for patients discharged ear-
lier. It also investigated to what extent any such impact
offers a statistical explanation for the higher likelihood of
an earlier discharge, and the lower risk of acquiring a new
infection brought about by not using PN up to day 8 in the
PICU.

Methods

Patients

This study was a preplanned secondary analysis of the
Early versus Late Parenteral Nutrition in the Pediatric In-
tensive Care Unit (PEPaNIC) randomized controlled trial
(RCT) (23). PEPaNIC investigated the clinical outcomes of
withholding supplemental PN up to day 8 in the PICU, further
referred to as ‘‘late-PN,’’ although for the majority of patients
this strategy meant no PN at all, compared to early supple-
mental PN whenever enteral nutrition alone was insufficient
to reach the caloric target, referred to as ‘‘early-PN,’’ in
children admitted to the PICU. All children aged 0–17 years
were eligible for inclusion if a stay of ‡24 hours in the PICU
was expected, if they had a moderate or severe risk of mal-
nutrition (score of ‡2 on the Screening Tool for Risk on
Nutritional Status and Growth [STRONGkids]), and if none
of the predefined exclusion criteria were met (23). In addi-
tion, healthy children who had never been critically ill and
from whom blood was drawn immediately after intravenous
catheterization prior to minor elective surgery were included
for comparison with the patients. Written informed consent
was obtained from parents or legal guardians. The institu-
tional ethical review board at each participating center ap-
proved the study protocol and consent forms (ML8052,
NL38772.000.12, and Pro00038098). The detailed study
protocol and primary results have been published elsewhere
(23,26).

The study was conducted in three centers that used early-
PN as the standard of care: Leuven (Belgium), Rotterdam
(the Netherlands), and Edmonton (Canada). Enteral nutrition
was started as soon as possible in both groups. In the early-PN
group, supplemental PN was initiated within 24 hours after
PICU admission, whereas any PN was withheld up to the
morning of day 8 in the PICU for patients in the late-PN
group. In the late-PN group, a mixture of intravenous dex-
trose (5%) and saline was administered to match the intra-
venous fluid load given to the early-PN patients. Patients in
both groups received intravenous trace elements, minerals
and vitamins, and blood glucose control with insulin ac-
cording to local targets. Blood was systematically sampled
upon admission and then daily at 6:00am until PICU dis-
charge or death. After clotting and centrifugation, serum was
stored at -80�C until analysis.

Serum analyses

Serum TSH concentrations were quantified with a com-
mercially available TSH immunoradiometric assay (TSH
IRMA kit; Beckman Coulter, Prague, Czech Republic).
Serum total T4, T3, and rT3 concentrations were quantified
with commercially available radioimmunoassays (RIA; total
T4 RIA kit and total T3 RIA kit; Beckman Coulter; RIAZEN
Reverse T3; ZenTech s.a., Liège, Belgium). Free thyroid
hormone concentrations were not measured, given that the
blood samples had been drawn via heparinized lines, which
induce artifacts in free hormone quantification (27).

Statistical analyses

Data for univariable analyses are presented as numbers and
percentages, means – standard errors, or medians and inter-
quartile ranges. Univariable differences were assessed with
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the chi-square test for proportions and Mann–Whitney U-test
for continuous data.

To assess the association between serum concentrations
of thyroid hormones upon PICU admission and patient
outcomes, death at 90 days, length of PICU stay, and risk of
acquiring a new infection in the PICU were studied. First,
univariable analyses were performed for the association
of TSH, T4, T3, rT3, and T3/rT3 upon PICU admission
and outcome. Subsequently, multivariable analyses were
performed to assess independent associations of thyroid
hormones that were significantly associated with out-
come in univariable analyses, where baseline risk factors
were adjusted for (treatment center, risk of malnutrition
[STRONGkids score], age, diagnosis upon admission, se-
verity of illness [PeLOD reflecting degree of organ failure],
and PIM2 score estimating risk of death) (28–30). Multi-
variable logistic regression was used to assess associations
with 90-day mortality and risk of acquiring a new infection,
and multivariable linear regression analysis was used to
assess length of PICU stay. Effect sizes are reported as odds
ratios (OR) and b estimates, respectively, and confidence
intervals (CI). Multicollinearity was excluded based on the
multicollinearity diagnostics tools in IBM SPSS Statistics
for Macintosh v24.0 (IBM Corp., Armonk, NY), with tol-
erance ‡0.3, variance inflation factor <3.5, and condition
index <30 for all variables entered in the models (31).

To evaluate the effect of late-PN versus early-PN on the
early central (TSH, T4) and peripheral (T3/rT3) components
of the thyroid axis, a subgroup of patients was selected by
propensity score matching (SPSS R-menu R3.1; Foundation
for Statistical Computing) in IBM SPSS Statistics v23.0
(IBM Corp.). Logistic regression was used to estimate pro-

pensity scores with the baseline risk factors sex, treatment
center, stratification group, severity of illness (PeLOD and
PIM2 score), risk of malnutrition (STRONGkids score),
height and weight as percentiles of population norms, in-
fection upon admission, need for mechanical ventilation, and
need for extracorporeal membrane oxygenation or other as-
sist devices as covariates. It was hypothesized that a further
reduction of the T3/rT3 ratio by –15% would occur in the
late-PN group compared to the early-PN group. This effect
size was based upon a similar impact of another metabolic
intervention in PICU patients, namely targeting strict age-
adjusted fasting blood glucose levels (18). To detect such a
difference, with 80% power and 95% certainty, 386 patients
per group were needed. The required number of patients was
obtained with use of a caliper of 0.35 for one-to-one nearest-
neighbor matching. In this propensity score–matched subset,
the changes in hormone concentrations from PICU admission
to PICU day 3 or to the last PICU day for patients discharged
earlier (denoted as DTSH, DT4, DT3, DrT3, and DT3/rT3)
were compared between early-PN and late-PN patients.
Differences in these changes from baseline between both
groups were analyzed with Mann–Whitney U-test and with
multivariable linear regression analysis adjusted for the
baseline risk factors described above.

To investigate whether any of the observed changes in the
central and peripheral components of the thyroid axis (DTSH,
DT4, and DT3/rT3) played a role in the beneficial effects of
late-PN on time to discharge from PICU (accounting for
death as competing risk by censoring non-surviving patients
beyond all survivors at 91 days) and risk of new infection,
which were the primary endpoints of the PEPaNIC study,
multivariable Cox proportional hazard and logistic regression

FIG. 1. Diagram of the study design. A PICU admission serum sample was available for 982/1440 patients included in the
PEPaNIC trial. Those 982 admission samples were used to compare thyroid hormones in critically ill children to those in
healthy control children, and to study the association of baseline thyroid hormone concentrations with clinical outcome. A
subgroup of early-PN and late-PN patients was selected with propensity score matching to investigate the effect of the
randomized intervention on the thyroid axis, as well as the impact of these changes on the outcome benefit of late-PN. *Data
were incomplete for one early-PN patient as not enough serum was available to perform the complete analysis. Results of
another early-PN patient were retrospectively excluded because of severely aberrant thyroid hormone concentrations after
radioactive iodine metaiodobenzoguanidine therapy. PN, parenteral nutrition.
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analyses were performed, as described above. In the first step,
the model included the baseline risk factors and the ran-
domized intervention. In the second explanatory step, the
model was further adjusted for the changes from baseline in
the thyroid hormone parameters that were affected by the

randomized intervention. A change from baseline of a thyroid
hormone would thus statistically explain (part of) the bene-
ficial impact of late-PN on outcome when adjusting for
this change would reduce the effect of late-PN on outcome.
Vice versa, when adjusting for a change from baseline of a

Table 1. Baseline Characteristics of Patients and Healthy Controls

Used to Study the Impact of Critical Illness on the Thyroid Axis

Baseline characteristics
Patients Controls

pN = 982 N = 64

Age (years), median (IQR) 1.92 (0.35–7.57) 2.00 (0.73–6.66) 0.28
Age <1 year, n (%) 402 (40.94) 25 (39.06) 0.76
Male sex, n (%) 567 (57.74) 37 (57.81) 0.99
Weight (kg), median (IQR) 11.75 (5.40–22.00)

Standard deviation score, median (IQR)a -0.51 (-1.40 to 0.46)

Height (cm), median (IQR) 86 (60–120)
Standard deviation score, median (IQR)a -0.30 (-1.38 to 0.77)

STRONGkids risk level, n (%)
Medium 895 (91.14)
High 87 (8.86)

PeLOD score, first 24 hours in PICU, median (IQR) 22 (12–32)
PIM2 score, median (IQR) -2.75 (-3.65 – -1.46)
PIM2-calculated risk of death (%), median (IQR) 0.06 (0.03–0.19)
Emergency admission, n (%) 424 (43.18)
Diagnostic group, n (%)

Type of illness
Surgical

Abdominal 35 (3.56)
Burns 6 (0.61)
Cardiac 480 (48.88)
Neurosurgery-traumatic brain injury 95 (9.67)
Thoracic 38 (3.87)
Transplantation 18 (1.83)
Orthopedic surgery-trauma 49 (4.99)
Other 21 (2.14)

Medical
Cardiac 32 (3.26)
Gastrointestinal-hepatic 2 (0.20)
Oncologic-hematologic 8 (0.81)
Neurologic 53 (5.40)
Renal 1 (0.10)
Respiratory 88 (8.96)
Other 56 (5.70)

Condition on admission, n (%)
Mechanical ventilation required 882 (89.82)
ECMO or other assist device required 33 (3.36)
Infection 328 (33.40)

Outcomes
90-day mortality, n (%) 65 (6.62)
Length of PICU stay (days), median (IQR) 3 (2–7)
New infection during PICU stay, n (%) 143 (14.56)
Thyroid hormones upon PICU admission, median (IQR)
TSH (mIU/L) 1.74 (0.91–3.26) 2.61 (1.93–3.52) <0.0001
T4 (nmol/L) 59.56 (44.67–78.30) 98.02 (85.94–110.33) <0.0001
T3 (nmol/L) 1.15 (0.84–1.55) 2.38 (2.04–2.66) <0.0001
rT3 (nmol/L) 0.42 (0.23–0.73) 0.24 (0.19–0.30) <0.0001
T3/rT3 2.93 (1.35–5.91) 9.39 (7.47–13.67) <0.0001

aAge- and sex-specific standard deviation scores were calculated with the use of reference data from the World Health Organization growth
charts: www.bcchildrens.ca/Services/SpecializedPediatrics/EndocrinologyDiabetesUnit/ForProfessionals/AnthropometricCalculators.htm

ECMO, extracorporeal membrane oxygenation; IQR, interquartile range; PeLOD, Pediatric Logistic Organ Dysfunction score; PICU,
pediatric intensive care unit; PIM2, Pediatric Risk of Mortality 2 score; STRONGkids, Screening Tool for Risk On Nutritional Status and
Growth (score of 0 indicating a low risk of malnutrition, a score of 1–3 indicating medium risk, and a score of 4–5 indicating high risk);
TSH, thyrotropin; T4, thyroxine; T3, triiodothyronine; rT3, reverse triiodothyronine.
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hormone would increase the significant impact of late-PN on
outcome, this change could be interpreted as a deleterious
side effect of late-PN. Finally, in order to determine whether
there were interactions between the effect of late-PN versus
early-PN and the age group (infants <1 year old vs. older
children) of the patients, we calculated interaction p-values in
all multivariable models.

Statistical analyses were performed with JMP Pro v13.0.0
(SAS Institute, Cary, NC). Statistical significance was set at a
p-value of £0.05.

Results

Thyroid hormone concentrations upon PICU admission
and predictive value for outcomes

PICU admission samples from 982 patients were available
for thyroid hormone measurements (Fig. 1). The baseline
characteristics of these patients are described in Table 1. In
addition, 64 healthy children were studied, matched with the
patients for age and sex (Table 1).

As a group, critically ill children presented upon PICU
admission with low serum concentrations of TSH, T4, and T3
and high rT3 compared to healthy children, resulting in a low
T3/rT3 ratio (Table 1). The critical illness–induced rise in
rT3 was more pronounced among infants and resulted in a
lower T3/rT3 ratio than among older children (Fig. 2).

In univariable analysis, a lower TSH upon admission was
only associated with a PICU stay longer than the median of
three days, but no correlation was found with PICU stay as a
continuous variable ( p = 0.79). A lower T4, T3, and T3/rT3
ratio and a higher rT3 upon admission were associated with
a higher mortality at 90 days, a longer PICU stay, and the
acquisition of a new infection (Fig. 3).

In multivariable analyses including all thyroid hormones
significantly associated with the outcomes in univariable
analysis, a lower T4 and higher rT3 were systematically asso-
ciated with unfavorable outcomes, whereas a lower T3/rT3 was
only associated with a longer PICU stay and a higher risk of
acquiring a new infection. The performance of the models ad-
justed for the thyroid hormones was low compared to that of the
models for the respective outcomes adjusted for the baseline
risk factors treatment center, risk of malnutrition, age, type and
severity of illness, as reflected by lower R2 of the former models
(Table 2). Model performance slightly improved when com-
bining the baseline risk factors with the thyroid hormones upon
PICU admission. Adjusted for baseline risk factors, a lower T4
upon admission was independently associated with a higher risk
of death at 90 days and a higher risk of acquiring a new in-
fection. A lower T3/rT3 ratio was independently associated
with a longer PICU stay and a higher risk of a new infection.

Effect of late-PN versus early-PN on thyroid
hormone concentrations

The propensity score–matched subgroups of 386 late-PN
and 386 early-PN patients, selected to evaluate the

FIG. 2. Impact of critical illness on thyroid hormone
concentrations upon PICU admission in infants and chil-
dren. Infants are younger than one year old. Bars represent
means, and whiskers represent the standard error (SE). The
black boxplots represent healthy children, and the light-gray
boxes represent critically ill patients.
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differences between late-PN and early-PN (Fig. 1), were
comparable for baseline characteristics (Table 3). According
to the study protocol, caloric intake was lower in the late-PN
group than in the early-PN group (Fig. 4).

The serum concentrations of TSH, T4, T3, and rT3 and the
T3/rT3 ratio determined at admission were comparable to
those in the total population and were not different for the
late-PN and early-PN groups (Table 3). In univariable anal-
ysis, late-PN further lowered serum TSH concentrations be-
tween admission and day 3 or last PICU day compared to the
early-PN group ( p = 0.04). However, in multivariable anal-
ysis adjusting for baseline risk factors, this effect was no
longer significant ( p = 0.18; Fig. 5). Late-PN also lowered
serum T4 compared to the early-PN group, both in univari-
able analysis ( p < 0.0001) and after adjustment for risk fac-

tors in the multivariable model ( p = 0.0001). Late-PN also
further lowered the T3/rT3 ratio (univariable p = 0.002;
multivariable p = 0.001) due to both a lowering of T3 (uni-
variable and multivariable p < 0.0001) and a rise in rT3
(univariable and multivariable p = 0.001). The impact of late-
PN versus early-PN on the changes from baseline in T4, T3,
and rT3 and in the T3/rT3 ratio was larger among children
than among infants (Supplementary Fig. S1).

Role of the changes in thyroid hormones in explaining
the outcome benefit of late-PN

In the propensity score–matched subset, similarly to what
has been reported previously for the total PEPaNIC cohort
(23), patients in the late-PN group had a higher likelihood of

FIG. 3. Univariable analyses for
the association between upon ad-
mission thyroid hormones and
outcome. Bars represent means,
and whiskers represent the SE.
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being discharged earlier from PICU than patients in the early-
PN group (hazard ratio [HR] = 1.173 [CI 1.013–1.357];
p = 0.03) and had a lower risk of acquiring a new infection
(OR = 0.571 [CI 0.347–0.925]; p = 0.02; Table 4).

To investigate whether the observed acute changes in
thyroid hormones by late-PN statistically explained (part of)
these benefits, the change from baseline in T4 (reflecting the
impact of late-PN on the central component of the thyroid
axis) and in the T3/rT3 ratio (reflecting the impact of late-PN
on the peripheral conversion) were added to the multivari-
able Cox proportional hazard and logistic regression models.
This somewhat increased the size of the effect of late-PN on
the likelihood of an earlier discharge from PICU to a HR of
1.209 ([CI 1.042–1.401]; p = 0.01; Table 4). In the adjusted
model, a rise in T4 from admission to day 3 or last PICU day
was independently associated with a higher likelihood of
being discharged from PICU (HR = 1.010 [CI 1.007–1.013])
per nmol/L increase; p < 0.0001), whereas a rise in the T3/
rT3 ratio was independently associated with a lower likeli-
hood (HR = 0.945 [CI 0.921–0.969] per unit increase;
p < 0.0001).

With regard to acquisition of a new infection, addition of
the observed changes in thyroid hormones by late-PN to the
multivariable model slightly increased the effect size of late-
PN on the risk of acquiring a new infection (OR = 0.539 [CI
0.323–0.887]; p = 0.01; Table 4). In the adjusted model, a rise
in T4 was independently associated with a lower risk of in-
fection (OR = 0.978 [CI 0.967–0.989] per nmol/L increase;
p < 0.0001), whereas a rise in the T3/rT3 ratio was indepen-
dently associated with a higher risk of new infection
(OR = 1.148 [CI 1.042–1.277] per unit increase; p = 0.004).

Finally, a significant interaction was found between the
change from baseline in the T3/rT3 ratio and the age groups
(infants and children) in relation to the outcomes affected by

late-PN. Indeed, the contribution of a lowered T3/rT3 ratio to
a higher likelihood of an earlier discharge from PICU (in-
teraction p = 0.04) and to a decreased risk of new infection
(interaction p = 0.01) was larger for infants than for older
children (HR per unit T3/rT3 ratio increase in infants of 0.873
[CI 0.827–0.925] and 0.968 [CI 0.940–0.997] in older chil-
dren for time to PICU discharge; OR per unit increase in T3/
rT3 ratio of 1.601 [CI 1.119–2.346] in infants and 1.057 [CI
0.954–1.183] in older children for acquiring a new infection).
No such interaction with age was observed for the change
from baseline in T4.

Discussion

In a large group of critically ill children admitted to the
PICU after various life-threatening insults, first the devel-
opment of NTI was confirmed, with its severity being pre-
dictive for adverse clinical outcomes. Second, it was
demonstrated that the severity of NTI is affected by the nu-
tritional management, since children for whom low or no
macronutrient intake was accepted during the first week of
critical illness showed a further drop in T4 and T3 concen-
trations and in the T3/rT3 ratio, while rT3 increased further
compared to children who received early full nutrition. The
accentuated decrease in T4, reflecting the central component
of NTI, appeared to counteract the outcome benefit of late-PN
in terms of early discharge from PICU and risk of new in-
fection. In contrast, the peripheral inactivation of thyroid
hormone, reflected in the further decline in the T3/rT3 ratio,
statistically explained part of the outcome benefit of late-PN.
Interestingly, whereas the reduction in the T3/rT3 ratio was
larger in older children than in infants, the contributory effect
on outcome of a decrease in the T3/rT3 ratio was more pro-
nounced for critically ill infants than it was for older children.

Table 2. Multivariable Analyses of Predictive Value for Outcome of Thyroid

Hormone Concentrations Upon PICU Admission

90-day mortality Length of PICU stay
Acquisition

of a new infection

Model 1: baseline risk
factors only R2 = 0.358 R2 = 0.081 R2 = 0.091

Model 2: upon
admission thyroid
hormones only

R2 = 0.085 R2 = 0.038 R2 = 0.065

OR [CI] p b estimate [CI] p OR [CI] p

Admission T3 1.002 [0.470–2.224] 0.95 9.228 [-2.385 to 5.143] 0.47 1.197 [0.693–2.066] 0.52
Admission T4 0.968 [0.953–0.983] <0.0001 -0.049 [-6.995 to 1.032] 0.008 0.983 [0.973–0.993] 0.0006
Admission rT3 2.383 [1.384–4.104] 0.001 2.347 [0.989–10.529] 0.01 1.725 [1.095–2.717] 0.01
Admission T3/rT3 1.051 [0.960–1.151] 0.29 -0.298 [-7.052 to 0.441] 0.02 0.898 [0.815–0.989] 0.01

Model 3: baseline risk
factors and thyroid
hormones

R2 = 0.398 R2 = 0.156 R2 = 0.154

OR [CI] p b estimate [CI] p OR [CI] p

Admission T3 1.847 [0.611–5.584] 0.28 0.865 [-2.428 to 5.768] 0.42 1.425 [0.736–2.759] 0.29
Admission T4 0.972 [0.953–0.992] 0.004 -0.030 [-5.563 to 0.679] 0.12 0.987 [0.976–0.998] 0.02
Admission rT3 1.528 [0.727–3.213] 0.29 -0.655 [-6.830 to 3.616] 0.54 1.359 [0.815–2.266] 0.24
Admission T3/rT3 0.885 [0.775–1.011] 0.06 -0.349 [-7.807 to 0.978] 0.01 0.850 [0.763–0.947] 0.0009

Baseline risk factors: treatment center, risk of malnutrition (STRONGkids score), age, diagnosis upon admission, severity of illness
(PeLOD and PIM2 score). Statistically significant values are shown in bold.

CI, confidence interval; OR, odds ratio.
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The presence of NTI with a decrease in T4, T3, and T3/rT3
and an increase in rT3 and its association with adverse short-
term outcomes in this large cohort of almost 1000 critically
ill children confirmed the findings of earlier smaller studies
(4–7,16–18). In multivariable analysis adjusted for baseline
risk factors, the association between T4 and/or T3/rT3 at
admission remained significant. By adding the thyroid hor-
mones at admission to the baseline risk factors, the perfor-

mance of the models slightly increased, which suggests a
contributing effect of T4 and/or T3/rT3 at admission to the
prediction of clinical outcomes, in addition to the other
baseline risk factors.

Fasting in healthy individuals decreases serum concen-
trations of thyroid hormones. A decrease in serum concen-
trations of leptin and downregulation of hypothalamic TRH
neurons are involved, contributing to persistently low serum

Table 3. Baseline Characteristics of the Propensity Score–Matched Patients Selected to Evaluate

the Effect of Late-PN Versus Early-PN on Thyroid Hormone Concentrations

Early-PN Late-PN p
Baseline characteristics N = 386 N = 386

Age (years), median (IQR) 2.05 (0.38–7.26) 2.08 (0.38–7.92) 0.63
Age <1 year, n (%) 159 (41.2) 159 (41.2) >0.99
Age <4 weeks, n (%) 29 (7.51) 31 (8.03) 0.78
Male sex, n (%) 217 (56.2) 230 (59.6) 0.34
Weight (kg), median (IQR) 11.60 (5.61–22.00) 12.00 (5.58–23.13) 0.60

Standard deviation score, median (IQR)a -0.56 (-1.45 to 0.42) -0.52 (-1.50 to 0.41) 0.62
Height (cm), median (IQR) 85.50 (61.00–118.00) 88.00 (60.75–122.00) 0.54

Standard deviation score, median (IQR)a -0.37 (-1.59 to 0.57) -0.34 (-1.28 to 0.67) 0.35
STRONGkids risk level, n (%) 0.55

Medium 364 (94.3) 360 (93.3)
High 22 (5.7) 26 (6.7)

PeLOD score, first 24 hours in PICU, median (IQR) 23 (21–32) 31 (21–32) 0.81
PIM2 score, median (IQR) -2.89 (-3.72 to -1.51) -2.84 (-3.68 to -1.64) 0.94
PIM2-calculated risk of death (%), median (IQR) 0.05 (0.02–0.18) 0.05 (0.02–0.16) 0.94
Emergency admission, n (%) 134 (34.72) 152 (39.38) 0.17
Diagnostic group, n (%) 0.60

Surgical
Abdominal 10 (2.6) 8 (2.1)
Burns 1 (0.3) 2 (0.5)
Cardiac 215 (55.7) 209 (54.2)
Neurosurgery-traumatic brain injury 39 (10.1) 32 (8.3)
Thoracic 14 (3.6) 16 (4.2)
Transplantation 5 (1.3) 10 (2.6)
Orthopedic surgery-trauma 24 (6.2) 20 (5.2)
Other 7 (1.8) 10 (2.6)

Medical
Cardiac 11 (2.9) 12 (3.1)
Gastrointestinal-hepatic 1 (0.3) 1 (0.3)
Oncologic-hematologic 0 (0.0) 5 (1.3)
Neurologic 16 (4.2) 17 (4.4)
Renal 0 (0) 0 (0)
Respiratory 24 (6.2) 25 (6.5)
Other 19 (4.9) 19 (4.9)

Condition on admission, n (%)
Mechanical ventilation required 351 (90.9) 346 (89.6) 0.54
ECMO or other assist device required 8 (2.1) 10 (2.6) 0.63
Infection 112 (29.0) 108 (28.0) 0.74

Outcomes
90-day mortality, n (%) 24 (6.22) 16 (4.15) 0.19
Length of PICU stay (days), median (IQR) 3 (2–7) 3 (1.75–6) 0.11
New infection during PICU stay, n (%) 56 (14.51) 37 (9.59) 0.03
Thyroid hormones upon PICU admission, median (IQR)
TSH (mIU/L) 1.98 (1.04–3.46) 1.79 (0.94–3.23) 0.21
T4 (nmol/L) 58.30 (44.32–75.73) 60.98 (45.91–79.55) 0.28
T3 (nmol/L) 1.18 (0.87–1.58) 1.18 (0.86–1.53) 0.95
rT3 (nmol/L) 0.39 (0.22–0.67) 0.41 (0.21–0.70) 0.57
T3/rT3 ratio 3.29 (1.53–6.05) 3.01 (1.49–6.19) 0.52

Statistically significant values are shown in bold.
aAge- and sex-specific standard deviation scores were calculated with the use of reference data from the World Health Organization growth

charts: www.bcchildrens.ca/Services/SpecializedPediatrics/EndocrinologyDiabetesUnit/ForProfessionals/AnthropometricCalculators.htm
PN, parenteral nutrition.
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TSH concentrations (32,33). Furthermore, reduced D1 ac-
tivity and increased D3 activity with fasting reduce the
conversion of T4 to active T3 while favoring formation and
hampering clearance of inactive rT3 (32,34). Accepting low
or no macronutrient intake during the first week in PICU, thus

mimicking (virtual) fasting superimposed on the illness, ag-
gravated NTI in critically ill children, reflected by a further
drop in T4, T3, and T3/rT3 and a further rise in rT3. This is in
agreement with findings in critically ill adult patients (24,35–
37). A small observational study of PICU patients, all fed
according to a similar enteral/parenteral feeding strategy,
could not find an association between the amount of nutrients
delivered and the degree of NTI (38). However, the impact of
early nutrition on thyroid hormone parameters in critically ill
children had not been previously investigated in the context
of a RCT. Interestingly, under early supplemental PN, further
accentuation of the peripheral inactivation of thyroid hor-
mone was also observed with tight glycemic control to age-
adjusted normal fasting glycemia in critically ill children,
which was found to reduce morbidity and mortality in a large
RCT of PICU patients (39). Indeed, this intervention further
decreased T3 and further increased rT3 during the first days
of critical illness, though without an effect on T4 (18). Hence,
this intervention partly mimicked the fasting response of the
thyroid axis, an effect that was interpreted as being caused by
the fasting levels of blood glucose achieved by tight glycemic
control. The low or absent macronutrient intake that was
accepted with the late-PN strategy in the present study,
combined with lower blood glucose concentrations under
glycemic control, had a greater impact, with an additional
aggravation of NTI at a central level (i.e., resulting in a fur-
ther lowering of T4).

Statistical analysis suggests that the more pronounced
suppression of the central component of NTI in the condition
of low/absent macronutrient intake, with further lowering of
T4 from baseline, might be deleterious. Indeed, this effect
statistically counteracted the outcome benefit of early mac-
ronutrient restriction with regard to likelihood of earlier
PICU discharge and risk of acquiring a new infection in the
PICU. This is in line with the rise in T4 achieved by TRH
infusion during a five-day period combined with a GH se-
cretagogue in prolonged critically ill adults. This intervention
evoked an anabolic/anti-catabolic response in muscle and

FIG. 5. Effect of early-PN versus late-PN on the thyroid axis. Bars (mean – SE) represent the changes (referred to as D)
from the admission values to day 3 in the PICU (or to the last day for patients with shorter PICU stay) in serum thyrotropin
(TSH), thyroxine (T4), triiodothyronine (T3), reverse T3 (rT3), and the T3/rT3 ratio. The open and filled bars represent the
patients randomized to the early-PN and late-PN groups, respectively. Infants are younger than one year old. *p-Values
obtained with univariable analysis; **p-values obtained with multivariable analysis after adjustment for baseline risk factors
(treatment center, risk of malnutrition [STRONGkids score], age, diagnosis upon admission, and severity of illness [PeLOD
and PIM2 score]). PeLOD, Pediatric Logistic Organ Dysfunction score; PIM2, Pediatric Risk of Mortality 2 score;
STRONGkids, Screening Tool for Risk On Nutritional Status and Growth (score of 0 indicating a low risk of malnutrition, a
score of 1–3 indicating medium risk, and a score of 4–5 indicating high risk).

FIG. 4. Total daily caloric intake of the patients in the
propensity score matched subgroup. Bars show the mean
daily amount of energy (kilocalories/kg/day) provided by the
combination of the enteral and parenteral route, with whiskers
representing the SE. The open and filled bars represent the
patients randomized to the early-PN and late-PN groups, re-
spectively.

488 JACOBS ET AL.



bone, in which the normalization of T4 played a key role (40).
However, in the sickest individuals in this previous study, the
combined secretagogue infusion increased not only T3 but
also rT3 concentrations, which suggests that the distinction
between the central and the peripheral component may not be
absolute. In contrast, the peripheral component with more
pronounced inactivation of T3 to rT3 might be a beneficial
adaptation, as it statistically contributed to the outcome
benefit of the intervention. This contribution was more pro-
nounced with regard to the lower risk of acquiring a new
infection compared to the higher likelihood of an earlier live
PICU discharge. In theory, lowered energy expenditure with
lower T3 availability brought about by the lack of macro-
nutrients may have contributed to faster recovery (41). In-
terestingly, the lower risk of infection associated with a
lowered T3/rT3 ratio could be explained by optimized bac-
terial killing capacity mediated by increased D3 activity and
elevated rT3 locally within granulocytes (42). However, re-
cent research also pointed to an anti-inflammatory effect of
low intracellular T3 action in macrophages (43). Hence, one
could speculate that the increased rT3 in particular, rather
than the decreased T3, may have contributed to the lowered
infection risk with not using early-PN in the PICU.

Interestingly, compared to older children, infants showed a
more pronounced peripheral inactivation of thyroid hormone
upon PICU admission, resulting in a much lower T3/rT3
ratio, whereas the further decrease in T3/rT3 toward day 3 or
last PICU day was less pronounced. However, the contrib-
uting effect of this peripheral thyroid hormone inactivation to
an earlier discharge from PICU and decreased risk of new
infection with late-PN was greater for infants than it was for
older children. These findings might indicate a more appro-
priate response to the acute stress of critical illness in infants
than in older children. Several explanations may be invoked,
though they remain speculative. Evolutionary, infants may
need a stronger fasting response as part of a survival strategy,
since they are entirely dependent on external help for nutrient
provision. This is in line with the faster increase in ketone
body concentrations and a faster decrease in glucose con-
centrations in response to fasting in healthy younger children
compared to older children (44). Furthermore, the pro-

nounced peripheral inactivation of T3 might be related to a
more efficient postnatal reactivation of D3 expression during
critical illness, considering that fetal and placental D3 levels
are physiologically high to protect against maternal thyroid
hormone (45). Finally, the targets for age-adjusted normal
blood glucose concentrations, particularly in the Leuven
center (23), which are lower for infants than for older children
(46), or a larger difference in total macronutrient intake be-
tween the early-PN and late-PN groups in infants versus older
children may theoretically play a role, since they might mi-
mic a more pronounced fasting response in infants compared
to older children. The different thyroidal axis responses to
critical illness in different age groups stress the importance of
this distinction for further research.

The present findings suggest important clinical implica-
tions, since the distinction of the changes in the thyroid axis
during critical illness as beneficial or harmful is embedded in
the controversy about whether to treat NTI (47,48). If NTI is
harmful, hormone substitution (central or peripherally) might
improve clinical outcomes. However, if NTI reflects a ben-
eficial adaptation of the critically ill body to reduce energy
expenditure and to prevent infections, treatment could be
deleterious. In several small RCTs, T3 treatment of critically
ill adult patients did not improve short-term outcomes or alter
mortality (49–51), nor did treatment with T4 (52). T3 infu-
sion in critically ill children undergoing surgery for con-
genital heart disease appeared to have a slight positive
inotropic effect on cardiac function but did not improve other
clinical outcomes either (53–56). The lack of efficacy of T3
treatment might be due to the iatrogenic suppression of TSH
secretion and hereby lowering of the T4 availability, which
could hamper fast normalization of thyroid function upon
recovery (52). Moreover, the administration of thyroid hor-
mone is potentially harmful, as excessive levels may lead to
coronary ischemia, myocardial infarction, hypertension, ar-
rhythmia, and death (54,55,57,58). Although hypothyroidism
in children specifically raises concerns about long-term
neurodevelopment and growth (59,60), prophylactic thyroid
hormone therapy given to preterm infants (58,61) and to
children after cardiopulmonary bypass (62) with NTI did not
improve neurodevelopmental outcomes. The lack of efficacy

Table 4. Role of Independent Associations of the Changes from Baseline in the Thyroid Hormones

with Clinical Outcome in Explaining the Outcome Benefit with Late-PN

HR or OR [CI] p

Time to discharge from PICU
1. Randomization to late-PN versus early-PN 1.173 [1.013–1.357] 0.03
2. Randomization to late-PN versus early-PN 1.209 [1.042–1.401] 0.01

DT4 (per nmol/L added) 1.010 [1.007–1.013] <0.0001
DT3/rT3 (per unit added) 0.945 [0.921–0.969] <0.0001

Risk of new infection
1. Randomization to late-PN versus early-PN 0.571 [0.350–0.930] 0.02
2. Randomization to late-PN versus early-PN 0.539 [0.325–0.892] 0.01

DT4 (per nmol/L added) 0.978 [0.968–0.989] <0.0001
DT3/rT3 (per unit added) 1.148 [1.037–1.270] 0.004

Model 1: Model adjusted for the baseline risk factors treatment center, risk of malnutrition (STRONGkids score), age, diagnosis upon
admission, and severity of illness (PeLOD and PIM2 score). Model 2: The changes from baseline of the thyroid hormones that were
significantly affected by late-PN in multivariable analyses were added to model 1 to study their independent association with outcome and
to assess any potential implication in explaining the clinical outcome benefit with late-PN. Statistically significant values are shown in bold.

HR, hazard ratio.
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of T3 treatment is in line with the present study’s finding that
the peripheral conversion of T3 to rT3 may be a beneficial
adaptation to critical illness in children. Since the present
study suggests that the central component of NTI may not be
beneficial, TRH infusion as treatment could be considered
rather than treatment with thyroid hormone. This treatment
could also be safer, as the negative feedback exerted by
thyroid hormones on the TSH-producing pituitary cells is
maintained, and thereby excessively elevated thyroid hor-
mone levels are avoided (12,63). However, RCTs evaluating
TRH treatment in critically ill adults and children with NTI
are needed to ascertain whether this translates to improved
clinically relevant outcomes.

This study has some limitations. First, because blood
samples were taken via heparinized lines, it was not possible
to quantify free hormone concentrations, since these would
be distorted by the heparin (27). Second, as accepting low/no
macronutrient intake early during critical illness accelerated
recovery, only the short-term impact of nutritional manage-
ment on changes in thyroid hormones in the first few days of
critical illness was studied. This was necessary, as otherwise
the findings could have been biased, since no samples were
collected from recovered patients after PICU discharge. Fi-
nally, although the statistical models point to a potentially
harmful central and potentially beneficial peripheral com-
ponent of NTI in critically ill children, the biological mech-
anisms for such effects remain to be further investigated.

In conclusion, accepting low or even absent macronutrient
intake early during critical illness in children further aggra-
vated NTI compared to early full feeding. The effect on the
peripheral but not the central component of NTI with ac-
centuated conversion of T3 into rT3 explains part of the
outcome benefit of accepting such virtual fasting during
critical illness, and thus appears to reflect a beneficial adap-
tation in this condition.
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