
TREE-BASED REINFORCEMENT LEARNING FOR ESTIMATING 
OPTIMAL DYNAMIC TREATMENT REGIMES

Yebin Tao,
DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN 48109 USA

Lu Wang, and
DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN 48109 USA

Daniel Almirall
INSTITUTE FOR SOCIAL RESEARCH UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN 48104 USA

Abstract

Dynamic treatment regimes (DTRs) are sequences of treatment decision rules, in which treatment 

may be adapted over time in response to the changing course of an individual. Motivated by the 

substance use disorder (SUD) study, we propose a tree-based reinforcement learning (T-RL) 

method to directly estimate optimal DTRs in a multi-stage multi-treatment setting. At each stage, 

T-RL builds an unsupervised decision tree that directly handles the problem of optimization with 

multiple treatment comparisons, through a purity measure constructed with augmented inverse 

probability weighted estimators. For the multiple stages, the algorithm is implemented recursively 

using backward induction. By combining semiparametric regression with flexible tree-based 

learning, T-RL is robust, efficient and easy to interpret for the identification of optimal DTRs, as 

shown in the simulation studies. With the proposed method, we identify dynamic SUD treatment 

regimes for adolescents.
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1. Introduction.

In many areas of clinical practice, it is often necessary to adapt treatment over time, due to 

significant heterogeneity in how individuals respond to treatment, as well as to account for 

the progressive (e.g., cyclical) nature of many chronic diseases and conditions. For example, 

substance use disorder (SUD) often involves a chronic course of repeated cycles of cessation 

(or significant reductions in use) followed by relapse [Hser et al. (1997), McLellan et al. 

(2000)]. However, individuals with SUD are vastly heterogeneous in the course of this 

disorder, as well as in how they respond to different interventions [Murphy et al. (2007)]. 

Dynamic treatment regimes (DTRs) [Robins (1986, 1997, 2004), Murphy (2003), 

Chakraborty and Murphy (2014)] are prespecified sequences of treatment decision rules, 

designed to help guide clinicians in whether or how, including based on which measures, to 

adapt (and re-adapt) treatment over time in response to the changing course of an individual. 

A DTR has multiple stages of treatment, and at each stage, information about a patient’s 

medical history and current disease status can be used to make a treatment recommendation 

for the next stage. The following is a simple example of a two-stage DTR for adolescents 

with SUD. First, at treatment program entry, offer adolescents nonresidential (outpatient) 

treatment for three months, and monitor them for substance use over the course of three 

months. Second, at the end of three months, if an adolescent has experienced reductions in 

the frequency of substance use, continue providing outpatient treatment for an additional 

three months. Otherwise, offer residential (inpatient) treatment for an additional three 

months. Identification of optimal DTRs offers an effective vehicle for personalized 

management of diseases, and helps physicians tailor the treatment strategies dynamically 

and individually based on clinical evidence, thus providing a key foundation for better health 

care [Wagner et al. (2001)].

Several methods have been developed or modified for the identification of optimal DTRs, 

which differ in terms of modeling assumptions as well as interpretability, that is, the ease 

with which it is possible to communicate the decision rules that make up the DTR [Zhang et 

al. (2015, 2016)]. The interpretability of an estimated optimal DTR is crucial for facilitating 

applications in medical practice. Commonly used statistical methods include marginal 

structural models with inverse probability weighting (IPW) [Murphy, van der Laan and 

Robins (2001), Wang et al. (2012), Hernán, Brumback and Robins (2001)], G-estimation of 

structural nested mean models [Robins (1994,1997,2004)], targeted maximum likelihood 

estimators [van der Laan and Rubin (2006)] and likelihood-based approaches [Thall et al. 

(2007)]. To apply these methods, one needs to specify a series of parametric or semipara-

metric conditional models under a prespecified class of DTRs indexed by unknown 

parameters, and then search for DTRs that optimize the expected outcome. They often result 

in estimated optimal DTRs that are highly interpretable. However, in some settings, these 

methods may be too restrictive; for example, when there is a moderate-to-large number of 

covariates to consider or when there is no specific class of DTRs of particular interest.

To reduce modeling assumptions, more flexible methods have been proposed. In particular, 

the problem of developing optimal multi-stage decisions has strong resemblance to 

reinforcement learning (RL) [Chakraborty and Moodie (2013)]. Unlike supervised learning 

(SL) (e.g., regression and classification), the desired output value (e.g., the true class or the 
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optimal decision), also known as the label, is not observed. The learning agent has to keep 

interacting with the environment to learn the best decision rule. Such methods include Q-

learning [Watkins and Dayan (1992), Sutton and Barto (1998)] and A-learning [Murphy 

(2003), Schulte et al. (2014)], both of which use backward induction [Bather (2000)] to 

account for the delayed (or long-term) effects of earlier-stage treatment decisions. Q- and A-

learning rely on maximizing or minimizing an objective function to indirectly infer the 

optimal DTRs and thus emphasize prediction accuracy of the clinical response model 

instead of directly optimizing the decision rule [Zhao et al. (2012)]. The modeling flexibility 

and interpretability of Q- and A-learning depend on the method for optimizing the objective 

function.

There has also been considerable interest in converting the RL problem to a SL problem so 

as to utilize existing classification methods. These methods are usually flexible with a 

nonparametric modeling framework but may introduce additional uncertainty due to the 

conversion. Their interpretability rests on the choice of the classification approach. For 

example, Zhao et al. (2015) propose outcome weighted learning (OWL) to transform the 

optimal DTR problem into an either sequential or simultaneous classification problem, and 

then apply support vector machines (SVM) [Cortes and Vapnik (1995)]. However, it is 

difficult to interpret the optimal DTRs estimated by SVM. Moreover, OWL is susceptible to 

trying to retain the actually observed treatments given a positive outcome, and its estimated 

individualized treatment rule is affected by a simple shift of the outcome [Zhou et al. 

(2017)]. For observational data, Tao and Wang (2017) propose a robust method for multi-

treatment DTRs, adaptive contrast weighted learning (ACWL), which combines doubly 

robust augmented IPW (AIPW) estimators with classification algorithms. It avoids the 

challenging multiple treatment comparisons by utilizing adaptive contrasts that indicate the 

minimum or maximum expected reduction in the outcome given any sub-optimal treatment. 

In other words, ACWL ignores information on treatments that lead to neither the minimum 

or maximum expected reduction in the outcome, likely at the cost of efficiency.

Recently, Laber and Zhao (2015) propose a novel tree-based approach, denoted as LZ 

hereafter, to directly estimating optimal treatment regimes. Typically, a decision tree is a SL 

method that uses tree-like graphs or models to map observations about an item to 

conclusions about the item’s target value, for example, the classification and regression tree 

(CART) algorithm by Breiman et al. (1984). LZ fits the RL task into a decision tree with a 

purity measure that is unsupervised, and meanwhile maintains the advantages of decision 

trees, such as simplicity for understanding and interpretation, and capability of handling 

multiple treatments and various types of outcomes (e.g., continuous or categorical) without 

distributional assumptions. However, LZ is limited to a single-stage decision problem, and is 

also susceptible to propensity model misspecification. More recently, Zhang et al. (2015, 

2016) and Lakkaraju and Rudin (2017) have applied decision lists to construct interpretable 

DTRs, which comprise a sequence of “if–then” clauses that map patient covariates to 

recommended treatments. A decision list can be viewed as a special case of tree-based rules, 

where the rules are ordered and learned one after another [Rivest (1987)]. These list-based 

methods are particularly useful when the goal is not only to gain the maximum health 

benefits but also to minimize the cost of measuring covariates. However, without cost 

information, a list-based method may be more restrictive than a tree-based method. On the 
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one hand, to ensure parsimony and interpretability, Zhang et al. (2015, 2016) restrict each 

rule to involve up to two covariates, which may be problematic for more complex treatment 

regimes. On the other hand, due to the ordered nature of lists, a later rule is built upon all the 

previous rules and thus errors can accumulate. In contrast, a decision tree does not require 

the exploration of a full rule at the very beginning of the algorithm, since the rules are 

learned at the terminal nodes. Instead of being fully dependent on each other, rules from a 

decision tree are more related only if they share more parent nodes, which allows more 

freedom for exploration.

In this paper, we develop a tree-based RL (T-RL) method to directly estimate optimal DTRs 

in a multi-stage multi-treatment setting, which builds upon the strengths of both ACWL and 

LZ. First of all, through the use of decision trees, our proposed method is interpretable, 

capable of handling multinomial or ordinal treatments and flexible for modeling various 

types of outcomes. Second, thanks to the unique purity measures for a series of unsupervised 

trees at multiple stages, our method directly incorporates multiple treatment comparisons 

while maintaining the nature of RL. Last but not least, the proposed method has improved 

estimation robustness by embedding doubly robust AIPW estimators in the decision tree 

algorithm.

The remainder of this paper is organized as follows. In Section 2, we formalize the problem 

of estimating the optimal DTR in a multi-stage multi-treatment setting using the 

counterfactual framework, derive purity measures for decision trees at multiple stages and 

describe the recursive tree growing process. The performance of our proposed method in 

various scenarios is evaluated by simulation studies in Section 3. We further illustrate our 

method in Section 4 using a case study to identify optimal dynamic substance abuse 

treatment regimes for adolescents. Finally, we conclude with some discussions and 

suggestions for future research in Section 5.

2. Tree-based reinforcement learning (T-RL).

2.1. Dynamic treatment regimes (DTRs).

Consider a multi-stage decision problem with T decision stages and Kj (Kj ≥ 2) treatment 

options at the jth (j = 1,…,T) stage. Data could come from either a randomized trial or an 

observational study. Let Aj denote the multi-categorical treatment indicator with observed 

value a j ∈ 𝒜 j = 1, …, K j . In the SUD data, treatment is multi-categorical with options 

being residential, non-residential or no treatment. Let Xj denote the vector of patient 

characteristics history just prior to treatment assignment Aj, and XT+1 denote the entire 

characteristics history up to the end of stage T. Let Rj be the reward (e.g., reduction in the 

frequency of substance use) following Aj, which could depend on the covariate history Xj 

and treatment history A1,…,Aj, and is also a part of the covariate history Xj+1. We consider 

the overall outcome of interest as Y = f(R1,…,RT), where f(·) is a prespecified function (e.g., 

sum), and we assume that Y is bounded; higher values of Y are preferable. The observed 

data are A1i, …, ATi, XT + 1, i
⊺

i = 1
n

, assumed to be independent and identically distributed 
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for n subjects from a population of interest. For brevity, we suppress the subject index i in 

the following text when no confusion exists.

A DTR is a sequence of individualized treatment rules, g = (g1,…,gT), where gj is a mapping 

from the domain of covariate and treatment history H j = A1, …, A j − 1, X j
⊺ ⊺

 to the domain of 

treatment assignment Aj, and we set A0 = Ø. To define and identify the optimal DTR, we 

consider the counterfactual framework for causal inference [Robins (1986)].

At stage T, let Y*(A1,…,AT–1, aT), or Y*(aT) for brevity, denote the counterfactual outcome 

for a patient treated with aT ∈ 𝒜T conditional on previous treatments (A1 ,…,AT–1), and 

define Y*(gT) as the counterfactual outcome under regime gT, that is,

Y∗(gT) = ∑
aT = 1

KT
Y∗(aT)I{gT(HT) = aT} .

The performance of gT is measured by the counterfactual mean outcome E{Y*(gT)}, and the 

optimal regime, gT
opt, satisfies E{Y∗(gT

opt)} ≥ E{Y∗(gT)} for all gT ∈ 𝒢T, where 𝒢T is the class 

of all potential regimes. To connect the counterfactual outcomes with the observed data, we 

make the following three standard assumptions [Murphy, van der Laan and Robins (2001), 

Robins and Hernán (2009), Orellana, Rotnitzky and Robins (2010)].

ASSUMPTION 1 (Consistency). The observed outcome is the same as the counterfactual 

outcome under the treatment a patient is actually given, that is, 

Y = ∑aT = 1
KT Y∗(aT)I(AT = aT), where I(·) is the indicator function that takes the value 1 if · is 

true and 0 otherwise. It also implies that there is no interference between subjects.

ASSUMPTION 2 (No unmeasured confounding). Treatment AT is randomly assigned with 

probability possibly dependent on HT, that is,

{Y∗(1), …, Y∗(KT)} ⫫ AT ∣ HT ,

where ⫫ denotes statistical independence.

ASSUMPTION 3 (Positivity). There exist constants 0 < c0 < c1 < 1 such that, with probability 1, 

the propensity score πaT
(HT) = Pr(AT = aT|HT) ∈ (c0, c1).

Following the derivation in Tao and Wang (2017) under the foregoing three assumptions, we 

have

E{YT
∗(gT)} = EHT

∑
aT = 1

KT
E(Y ∣ AT = aT , HT)I{gT(HT) = aT} ,
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where EHT(·) denotes expectation with respect to the marginal joint distribution of the 

observed data HT. If we denote the conditional mean E(Y|AT = aT, HT) as μT,a,T (HT), we 

have

gT
opt = arg max

gT ∈ 𝒢T
EHT

∑
aT = 1

KT
μT, aT(HT)I{gT(HT) = aT} . (2.1)

At stage j, T – 1 ≥ j ≥ 1, g j
opt can be expressed in terms of the observed data via backward 

induction [Bather (2000)]. Following Murphy (2005) and Moodie, Chakraborty and Kramer 

(2012), we define a stage-specific pseudo-outcome POj for estimating g j
opt, which is a 

predicted counterfactual outcome under optimal treatments at all future stages, also known 

as the value function. Specifically, we have

PO j = E{Y∗(A1, …, A j, g j + 1
opt , …, gT

opt)},

or in a recursive form,

PO j = E{PO j + 1 ∣ A j + 1 = g j + 1
opt (H j + 1), H j + 1}

and we set POT = Y.

For aj = 1,…,Kj, let μj,aj (Hj) denote the conditional mean E[POj|Aj = aj, Hj], and we have 

PO j = μ
j + 1, g j + 1

opt (H j + 1). Let PO j
∗(a j) denote the counterfactual pseudo-outcome for a 

patient with treatment aj at stage j. For the three assumptions, we have positivity as 

PO j = ∑a j = 1
K j PO j

∗(a j)I(A j = a j) , no unmeasured confounding as {PO j
∗(1), …, PO j

∗(K j)} ⫫ H j

and positivity as πaj (Hj) = Pr(Aj = aj∣Hj) bounded away from zero and one. Under these 

three assumptions, the optimization problem at stage j, among all potential regimes 𝒢 j, can 

be written as

g j
opt = arg max

g j ∈ 𝒢 j
EH j

∑
a j = 1

K j
μ j, a j(H j)I{g j(H j) = a j} . (2.2)

2.2. Purity measures for decision trees at multiple stages.

We propose to use a tree-based method to solve (2.1) and (2.2). Typically, a CART tree is a 

binary decision tree constructed by splitting a parent node into two child nodes repeatedly, 

starting with the root node which contains the entire learning samples. The basic idea of tree 

growing is to choose a split among all possible splits at each node so that the resulting child 
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nodes are the purest (e.g., having the lowest misclassification rate). Thus the purity or 

impurity measure is crucial to the tree growing. Traditional classification and regression 

trees are SL methods, with the goal of inferring a function that describes the relationship 

between the outcome and covariates. The desired output value, also known as the label, is 

observed and can be used directly to measure purity. Commonly used impurity measures 

include Gini index and information index for categorical outcomes, and least squares 

deviation for continuous outcomes [Breiman et al. (1984)].

However, the estimation target of a DTR problem, which is the optimal treatment for a 

patient with characteristics Hj at stage j, that is, g j
opt(H j), j = 1, …, T, is not directly observed. 

Information about g j
opt(H j) can only be inferred indirectly through the observed treatments 

and outcomes. Using the causal framework and the foregoing three assumptions, we can 

pool over all subject-level data to estimate the counterfactual mean outcomes given all 

possible treatments. With the overall goal of maximizing the counterfactual mean outcome 

in the entire population of interest, the selected split at each node should also improve the 

counterfactual mean outcome, which can serve as a measure of purity in DTR trees. Figure 1 

illustrates a decision tree for a single-stage (T = 1) optimal treatment rule with 𝒜 = {0, 1, 2}. 

Let Ωm, m = 1, 2,…, denote the nodes which are regions defined by the covariate space 

following all precedent binary splits, with the root node Ω1 = ℝp (p is the covariate 

dimension). We number the rectangular region Ωm, m ≥ 2, so that its parent node is Ω⌈m/2⌉, 

where ⌈·⌈ means taking the smallest integer not less than ·. Figure 1 shows the chosen 

covariate and best split at each node, as well as the counterfactual mean outcome after 

assigning a single optimal treatment to that node. The splits are selected to increase the 

counterfactual mean outcome. At the root node, if we select a single treatment for all 

subjects, treatment 1 is the most beneficial overall, yielding a counterfactual mean outcome 

of 0.7. Splitting via X1 and X2, the optimal regime gopt is to assign treatment 2 to region Ω3 

= {X1 > 0}, treatment 0 to region Ω4 = {X1 ≤ 0, X2 ≤ 0.5}, and treatment 1 to region Ω5 = 

{X1 ≤ 0, X2 > 0.5}. We can see that this tree is fundamentally different from a CART tree as 

it does not attempt to describe the relationship between the outcome and covariates or the 

rule for the assignment of the observed treatments, and instead it describes the rule by which 

treatments should be assigned to future subjects in order to maximize the purity, which is the 

counterfactual mean outcome.

Laber and Zhao (2015) propose a measure of node purity based on the IPW estimator of the 

counterfactual mean outcome [Zhang et al. (2012), Zhao et al. (2012)],

E{Y∗(g)} = EH
I(A = g(H))

πA(H) Y ,

for a single-stage (T = 1, omitted for brevity) decision problem. Given known propensity 

score πA(H), they propose a purity measure 𝒫LZ(Ω, ω) as
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max
a1, a2 ∈ 𝒜

ℙn[
{Y − m(H)}I{A = gω, a1, a2

(H)}

πA(H) I(H ∈ Ω)

ℙn[
I{A = gω, a1, a2

(H)}

πA(H) I(H ∈ Ω)

,

where ℙn is the empirical expectation operator, m(H) is maxa∈A maxa ∈ 𝒜μa(H) with μa(H) = 

E(Y∣A = a, H), Ω denotes the node to be split, ω and ωc is a partition of ω, and for a given 

partition ω and ωc, gω,a1,a2 denotes the decision rule that assigns treatment a1 to subjects in 

ω and treatment a2 to subjects in ωc. 𝒫LZ(Ω, ω) is the estimated counterfactual mean 

outcome for node ω by the best decision rule that assigns a single treatment to all subjects in 

ω and a second treatment to all subjects in ωc. However, in an observational study where 

πA(H) has to be estimated, 𝒫LZ(Ω, ω) is subject to misspecification of the propensity model. 

Moreover, as the node size decreases, the IPW-based purity measure will become less stable.

To improve robustness, we propose to use an AIPW estimator for the counterfactual mean 

outcome as in Tao and Wang (2017). By regarding the K treatment options as K arbitrary 

missing data patterns [Rotnitzky, Robins and Scharfstein (1998)], the AIPW estimator for 

E{Y*(a)} is ℙn{μa
AIPW(H)}, with

μa
AIPW(H) = I(A = a)

πa(H) Y + 1 − I(A = a)
πa(H) μa(H) . (2.3)

Under the foregoing three assumptions, ℙn{μa
AIPW(H)} is a consistent estimator of E{Y*(a)} 

if either the propensity model πa(H) or the conditional mean model μa(H) is correctly 

specified, and thus the method is doubly robust.

In our multi-stage setting, for stage T, given estimated conditional mean μT , aT
AIPW(HT) and 

estimated propensity score πT, AT(HT), the proposed estimator of E{YT
∗(gT)} is

ℙn ∑
aT = 1

KT
μT , aT

AIPW(HT)I{gT(HT) = aT}

= ℙn
I(AT = gT(HT))

πT , AT
(HT) Y + 1 −

I(AT = gT(HT))
πT , AT(HT) μT , gT

(HT) ,

which has the augmented term in addition to the IPW estimator used by Laber and Zhao 

(2015). Similarly, for stage j (T – 1 ≤ j ≤ 1), the proposed estimator of E{PO j
∗(g j)} is
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ℙn
I(A j = g j(H j))

π j, A j
(H j)

PO j + 1 −
I(A j = g j(H j))

π j, A j
(H j)

μ j, g j
(H j) ,

where π j, A j
(H j) is the estimated propensity score, μ j, a j

(H j) is the estimated conditional 

mean and PO j = μ
j + 1, g j + 1

opt (H j + 1) is the estimated pseudo-outcome.

Our proposed method maximizes the counterfactual mean outcome through each of the 

nodes. For a given partition ω and ωc of node Ω, let gj,ω,a1,a2 denote the decision rule that 

assigns treatment a1 to subjects in ω and treatment a2 to subjects in ωc at stage j (T ≤ j ≤ 1), 

and we define the purity measure 𝒫 j(Ω, ω) as

max
a1, a2 ∈ 𝒜 j

ℙn ∑
a j = 1

K j
μ j, a j

AIPW(H j)I{g j, ω, a1, a2
(H j) = a j}I(H j ∈ Ω) .

We can see that 𝒫 j(Ω, ω) is the estimated counterfactual mean outcome for node Ω and it 

works as the performance measure for the best decision rule which assigns a single 

treatment to each of the two arms under the partition ω. Comparing 𝒫 j(Ω, ω) and 𝒫LZ(Ω, ω)

the primary difference is in the underlying estimator for the counterfactual mean outcome. 

Another difference is that in 𝒫 j(Ω, ω) one is utilizing all subjects at node Ω with the 

counterfactual outcomes μ j, a j
AIPW(H j) calculated using all samples at the root node, while in 

𝒫LZ(Ω, ω), one is only using a subset of subjects, depending on compatibility to gω,a1,a2 

(Hj), which is why there is a denominator in 𝒫LZ(Ω, ω) but not in 𝒫 j(Ω, ω). These 

differences may lead to better stability for 𝒫 j(Ω, ω).

2.3. Recursive partitioning.

As we have mentioned, the purity measures for our T-RL are different from the ones in 

supervised decision trees. However, after defining 𝒫 j(Ω, ω), j = 1, …, T, the recursive 

partitioning to grow the tree is similar. Each split depends on the value of only one covariate. 

A nominal covariate with C categories has 2C–1 – 1 possible splits and an ordinal or 

continuous covariate with L different values has L – 1 unique splits. Therefore, at a given 

node Ω, a possible split ω indicates either a subset of categories for a nominal covariate or 

values no larger than a threshold for an ordinal or continuous covariate. The best split ωopt is 

chosen to maximize the improvement in the purity, 𝒫 j(Ω, ω) − 𝒫 j(Ω), where 𝒫 j(Ω) means to 

assign a single best treatment to all subjects in Ω without splitting. It is straightforward to 

see that 𝒫 j(Ω, ω) ≥ 𝒫 j(Ω). In order to control overfitting as well as to make meaningful 

splitting, a positive constant λ is given to represent a threshold for practical significance and 

another positive integer n0 is given as the minimal node size which is dictated by problem-
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specific considerations. Under these conditions, we first evaluate the following three 

Stopping Rules for node Ω.

RULE 1. If the node size is less than 2n0, the node will not be split.

RULE 2. If all possible splits of a node result in a child node with size smaller than n0, the 

node will not be split.

RULE 3. If the current tree depth reaches the user-specified maximum depth, the tree growing 

process will stop.

If none of the foregoing Stopping Rules are met, we compute the best split by

ωopt = arg max
ω

𝒫 j(Ω, ω):min{nℙnI(H j ∈ ω), nℙnI(H j ∈ ωc)} ≥ n0 .

Before deciding whether or not to split Ω into ω and ωc, we evaluate the following Stopping 
Rule 4.

RULE 4. If the maximum purity improvement 𝒫 j(Ω, ωopt) − 𝒫 j(Ω) is less than λ, the node 

will not be split.

We split Ω into ω and ωc if none of the four stopping rules apply.

When there is no clear scientific guidance on λ to indicate practical significance, one 

approach is to choose a relatively small positive value to build a complete tree and then 

prune the tree back in order to minimize a measure of cost for the tree. Following the CART 

algorithm, the cost is a measure of the total impurity of the tree with a penalty term on the 

number of terminal nodes, and the complexity parameter for the penalty term can be tuned 

by cross-validation (CV) [Breiman et al. (1984)]. Alternatively, we propose to select λ 
directly by CV, similar to the method by Laber and Zhao (2015). As a direct measure of 

purity is not available in RL, we again incorporate the idea of maximizing the counterfactual 

mean outcome and use a 10-fold CV estimator of the counterfactual mean outcome. 

Theoretically, CV can be conducted at each stage separately and one can use a potentially 

different λ for each stage. To reduce modeling uncertainty in the pseudo-outcomes and also 

simplify the process, we carry out CV only at stage T using the overall outcome Y directly. 

Specifically, we use nine subsamples as training data to estimate the function of μτ,aT (·) 

following (2.3) and gT
opt( ⋅ ) using T-RL for a given λ, and then plug in HT of the remaining 

subsample to get μT , aT
AIPW,CV(HT) and gT

opt, CV, λ(HT). We repeat the process 10 times with each 

subsample being the test data once. Then the CV-based counterfactual mean outcome under 

λ is

E{Y∗(gT
opt, CV, λ)} = ℙn ∑

aT = 1

KT
μT , aT

AIPW,CV(HT)I{gT
opt, CV, λ(HT) = aT} ,
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and the best value for λ is λ = arg maxλE{Y∗(gT
opt, CV, λ)}. As the scale of the outcome affects 

the scale of 𝒫 j(Ω, ω) − 𝒫 j(Ω), we search over a sequence of candidate λ’s as a sequence of 

percentages of 𝒫T(Ω1), that is, the estimated counterfactual mean outcome under a single 

best treatment for all subjects (Ω1 is the root node).

2.4. Implementation of T-RL.

The AIPW estimator μ j, a j
AIPW(H j), j = 1,…,T, aj = 1,…, Kj, consists of three parts to be 

estimated, the pesudo-outcome POj, the propensity score πj,aj (Hj) and the conditional mean 

model μj,aj (Hj).

We start the estimation with stage T and conduct backward induction. At stage T, we use the 

outcome Y directly, that is, POT = Y. For stage j, T – 1 ≥ j ≥ 1, given a cumulative outcome 

(e.g., the sum of longitudinally observed values or a single continuous final outcome), we 

use a modified version of pseudo-outcomes to reduce accumulated bias from the conditional 

mean models [Huang et al. (2015)]. Instead of using only the model-based values under 

optimal future treatments, that is, μ j + 1, g j + 1
opt (H j + 1), we use the actual observed outcomes 

plus the expected future loss due to sub-optimal treatments, which means

PO′ j = PO′ j + 1 + μ
j + 1, g j + 1

opt (H j + 1) − μ j + 1, A j + 1
(H j + 1),

where μ j + 1, g j + 1
opt (H j + 1) − μ j + 1, a j + 1

(H j + 1) is the expected loss due to sub-optimal 

treatments at stage j + 1 for a given patient, which is zero if g j + 1
opt (H j + 1) = A j + 1 and 

positive otherwise. Given PO′T = Y, it is easy to see that

PO′ j = Y + ∑
t = j + 1

T
{μ

t, gt
opt(Ht) − μt, At

(Ht)} .

This modification leads to more robustness against model misspecification and is less likely 

to accumulate bias from stage to stage during backward induction [Huang et al. (2015)]. In 

our simulations, we estimate PO′j by using random forests-based conditional mean 

estimates [Breiman (2001)].

The propensity score πj,aj(Hj) can be estimated via multinomial logistic regression [Menard 

(2002)]. A working model could include linear main effect terms for all variables in Hj. 

Summary variables or interaction terms may also be included based on scientific knowledge.

The conditional mean estimate μ j, a j
(H j) in the augmentation term of μ j, a j

AIPW(H j) can be 

obtained from a parametric regression model. For continuous outcomes, a simple and 

oftentimes reasonable example is the parametric linear model with coefficients dependent on 

treatment:

Tao et al. Page 11

Ann Appl Stat. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E(PO′ j ∣ A j, H j) = ∑
a j = 1

K j
(βa j

⊤ H j)I(A j = a j), (2.4)

where βa is a parameter vector for Hj under treatment aj. For binary and count outcomes, 

one may extend the method by using generalized linear models. For survival outcomes with 

noninformative censoring, it is possible to use an accelerated failure time model to predict 

survival time for all patients. Survival outcomes with more complex censoring issues are 

beyond the scope of the current study.

The T-RL algorithm starting with stage j = T is carried out as follows:

Step 1. Obtain AIPW estimates μ j, a j
AIPW(H j), aj = 1,…, Kj, using full data.

Step 2. At root node Ωj,m, m = 1, set values for λ and n0.

Step 3. At node Ωj,m, evaluate the four Stopping Rules. If any of the Stopping Rules is 

satisfied, assign a single best treatment

arg max
a j ∈ 𝒜 j

ℙn[μ j, a j
AIPW(H j)I(H j ∈ Ω j, m)]

to all subject in Ωj,m. Otherwise, split Ωj,m into child nodes Ωj,2m and Ωj,2m+1 by ωopt.

Step 4. Set m = m + 1 and repeat Step 3 until all nodes are terminal.

Step 5. If j > 1, set j = j – 1 and repeat steps 1 to 4. If j = 1, stop.

Similar to the CART algorithm, T-RL is greedy as it chooses splits only at the current node 

for purity improvement, which may not lead to a global maximum. One way to potentially 

enhance the performance is lookahead [Murthy and Salzberg (1995)]. We test this in our 

simulation by fixed-depth lookahead: evaluating the purity improvement after splitting the 

parent node as well as its two child nodes, comparing the total purity improvement after 

splitting up to four nodes to the purity improvement without splitting the parent node, and 

finally deciding whether or not to split the parent node. We denote this method as T-RL-LH.

3. Simulation studies.

We conduct simulation studies to investigate the performance of our proposed method. We 

set all regression models μ to be misspecified, which is the case for most real data 

applications, while allowing the specification of the propensity model π be either correct 

(e.g., randomized trials) or incorrect (e.g., most observational studies). We consider first a 

single-stage scenario so as to facilitate the comparison with existing methods, particularly 

Laber and Zhao (2015), and then a multi-stage scenario. For each scenario, we consider 

sample sizes of either 500 or 1000 for the training datasets and 1000 for the test datasets, 
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and repeat the simulation 500 times. We use the training datasets to estimate the optimal 

regime and then predict the optimal treatments in the test datasets, where the underlying 

truth is known. We denote the percentage of subjects correctly classified to their optimal 

treatments as opt%. We also use the true outcome model and the estimated optimal regime in 

the test datasets to estimate the counterfactual mean outcome, denoted as E{Y∗(gopt)}. For 

both scenarios, we generate five baseline covariates X1,…,X5 according to N(0, 1), and for 

Scenario 1, we further consider a setting with additional covariates X6,…,X20 simulated 

independently from N(0, 1).

3.1. Scenario 1:

T = 1 and K = 3. In Scenario 1, we consider a single stage with three treatment options and 

sample size of 500. The treatment A is set to take values in {0, 1,2}, and we generate it from 

Multinomial (π0, π1, π2), with π0 = 1/{1 + exp(0.5X1 + 0.5X4) + exp(−0.5X1 + 0.5X5)}, π1 

= exp(0.5X1 + 0.5X4)/{1 + exp(0.5X1 + 0.5X4) + exp(−0.5X1 + 0.5X5)} and π2 = 1 – π0 – 

π1. The underlying optimal regime is

gopt(H) =

0 X1 ≤ 0, X2 ≤ 0.5,

2 X1 > 0, X3 ≤ 0.5,

1 otherwise.

For the outcomes, we first consider equal penalties for sub-optimal treatments through 

outcome generating model (a), which is

Y = 1 + X4 + X5 + ∑
a = 0

2
[I(A = a){2I(gopt = a) − 1} + ε .

Then we consider varying penalties for sub-optimal treatments through outcome generating 

model (b), which is

Y = 0.79 + X4 + X5 + 2I(A = 0){2I(gopt = 0) − 1}

+1.5I(A = 2){2I(gopt = 2) − 1} + ε .

In both outcome models, we have ε ~ N(0, 1) and E{Y*(gopt)} = 2.

In the application of the proposed T-RL algorithm, we consider both a correctly specified 

model log(πd/π0) = β0d + β1dX1 + β2dX4 + β3dX5, d = 1, 2, and an incorrectly specified one 

log (πd/π0) = β0d + β1dX2 + β2dX3. We also apply T-RL-LH to Scenario 1 as mentioned in 

Section 2.4. For comparison, we use both the linear regression-based and random forests-

based conditional mean models to infer the optimal regimes, which we denote as RG and 

RF, respectively. We also apply the tree-based method LZ by Laber and Zhao (2015). 

Furthermore, we apply the OWL method by Zhao et al. (2012), and the ACWL algorithm by 

Tao and Wang (2017), denoted as ACWL-C1 and ACWL-C2, where C1 and C2 indicate 

respectively the minimum and maximum expected loss in the outcome given any sub-

optimal treatment for each patient. Given outcome model (a), all sub-optimal treatments 
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have the same expected loss in the outcome and we expect ACWL to perform similarly well 

as T-RL. However, given outcome model (b) when the sub-optimal treatments have different 

expected losses in the outcome, we expect T-RL to perform better as it incorporates multiple 

treatment comparison. Both OWL and ACWL are implemented using the R package rpart 
for classification.

Table 1 summarizes the performances of all methods considered in Scenario 1 with five 

baseline covariates. We present the percentage of subjects correctly classified to their 

optimal treatments in the testing datasets, denoted as opt%, and the expected counterfactual 

outcome obtained using the true outcome model and the estimated optimal regime, denoted 

as E{Y∗(gopt)}. opt% shows on average how accurately the estimated optimal regime assigns 

future patients to their true optimal treatments and E{Y∗(gopt)} shows how much the entire 

population of interest will benefit from following gopt. T-RL-LH has the best performance 

among all the methods considered, classifying over 93% of subjects to their optimal 

treatments. However, lookahead has led to significant increase in computational time 

compared to T-RL, while the improvement is only moderate with ≤ 1% more subjects being 

correctly classified. T-RL also has an estimated counterfactual mean outcome very close to 

the true value 2. As expected, ACWL-C1 and ACWL-C2 have performances comparable to 

T-RL under outcome model (a) with equal penalties for treatment misclassification, and the 

performance discrepancy gets larger under outcome model (b) with varying penalties, due to 

the approximation by adaptive contrasts C1 and C2. Similar results can be found in the 

Supplementary Table S1. LZ, using an IPW-based decision tree, works well only when the 

propensity score model is correctly specified and is less efficient than T-RL with larger 

empirical standard deviations (SDs). In contrast, T-RL-LH, T-RL, ACWL-C1 and ACWL-C2 

are all highly robust to model misclassification, thanks to the combination of doubly robust 

AIPW estimators and flexible machine learning methods. OWL performs far worse than all 

other competing methods likely due to the low percentage of truly optimal treatments in the 

observed treatments, the shift in the outcome, which was intended to ensure positive 

weights, and its moderate efficiency.

After the inclusion of more noise covariates in Table 2, all methods have worse 

performances compared to Table 1, with RF suffering the most. T-RL and T-RL-LH have the 

slightest decreases in opt% and E{Y∗(gopt)}, showing satisfactory stability against noise 

interference. Thanks to the built-in variable selection feature of decision trees, LZ and 

ACWL with CART are also relatively stable. Figure 2 shows the density plots for 

E{Y∗(gopt)} under outcome model (b), with each panel showing correctly or incorrectly 

specified propensity model and five or 20 baseline covariates. LZ is the least efficient 

method with the density plots more spread out. T-RL has the least density in lower values of 

E{Y∗(gopt)} and the highest density in higher values.

3.2. Scenario 2:

T = 2 and K1 = K2 = 3. In Scenario 2, we generate data under a two-stage DTR with three 

treatment options at each stage and consider sample sizes of 500 and 1000. The outcome of 
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interest is the sum of the rewards from each stage, that is, Y = R1 + R2. Furthermore, we 

consider both a tree-type underlying optimal DTR and a non-tree-type one.

Treatment variables are set to take values in {0, 1, 2} at each stage. For stage 1, we generate 

A1 from the same model as A in Scenario 1, and generate stage 1 reward as

R1 = exp[1.5 + 0.3X4 − ∣ 1.5X1 − 2 ∣ {A1 − g1
opt(H1)}2 + ε1,

with tree-type g1
opt(H1) = I(X1 > − 1){I(X2 > − 0.5) + I(X2 > 0.5)} or non-tree-type 

g1
opt(H1) = I(X1 > − 0.5){1 + I(X1 + X2 > 0)}, and £1 ~ N(0, 1).

For stage 2, we have treatment A2 ~ Multinomial(π20, π21, π22), with π20 = 1/{1 + 

exp(0.2R1 – 0.5) + exp(0.5X2)}, π21 = exp(0.2R1 – 0.5)/{1 + exp(0.2R1 – 0.5) + 

exp(0.5X2)} and π22 = 1 – π20 – π21. We generate stage 2 reward as

R2 = exp[1.18 + 0.2X2 − ∣ 1.5X3 + 2 ∣ {A2 − g2
opt(H2)}2 + ε2,

with tree-type g2
opt(H2) = I(X3 > − 1){I(R1 > 0) + I(R1 > 2)} or non-tree-type 

g2
opt(H2) = I(X3 > − 0.5){1 + I(X3 + R1 > 2)}, and £2 ~ N(0, 1).

We apply the proposed T-RL algorithm with the modified pseudo-outcomes. For 

comparison, we apply Q-learning which uses the conditional mean models directly to infer 

the optimal regimes. We apply both the linear regression-based and random forests-based 

conditional mean models, denoted as Q-RG and Q-RF, respectively. We also apply the 

backward OWL (BOWL) method by Zhao et al. (2015) and the ACWL algorithm, both of 

which are implemented using the R package rpart for classification. In this scenario, we 

attempt to see how sample size and tree- or non-tree-type underlying DTRs affect the 

performances of various methods.

Results for Scenario 2 are shown in Table 3. ACWL and T-RL both work much better than 

Q-RG and BOWL in all settings. Q-RF is a competitive method only when the true optimal 

DTR is of a tree type, but it is consistently inferior to T-RL, likely due to its weakness in 

emphasizing prediction accuracy of the clinical response model instead of directly 

optimizing the decision rule. Given a tree-type underlying DTR, T-RL has the best 

performance among all methods considered, regardless of the specification of the propensity 

score model. It has average opt% over 90% and E{Y∗(gopt)} closest to the truth 8. The results 

are a bit more complex when the underlying DTR is non-tree-type. The tree-based methods 

of ACWL with CART and T-RL both have misspecified DTR structures and thus show less 

satisfactory performances. However, ACWL seems more robust to the DTR misspecification 

with ACWL-C2 showing larger opt% and E{Y∗(gopt)} in all settings except when sample size 

is 500 and π is misspecified, in which case T-RL’s stronger robustness to propensity score 

misspecification dominates. With non-rectangular boundaries in a non-tree-type DTR, a split 
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may not improve the counterfactual mean estimates at the current node but may achieve such 

a goal in the future nodes. T-RL, with a purity measure based on E{Y*(g)}, will terminate 

the splitting as soon as the best split of the current node fails to improve the counterfactual 

mean outcome. In contrast, the misclassification error-based impurity measure in CART may 

continue the recursive partitioning as the best split may still reduce misclassification error 

without improving the counterfactual mean outcome at the current node. In other words, T-

RL may be more myopic when it comes to non-tree-type DTRs.

Additional simulation results can be found in the Supplementary Material A [Tao, Wang and 

Almirall (2018a)], which leads to similar conclusions for these methods in comparison. In 

addition, the comparison of T-RL and the list-based method by Zhang et al. (2015) shows 

slightly better performance for T-RL given no cost information for measuring covariates. To 

implement the proposed method and the competing methods, the R codes and sample data 

can be found in the Supplementary Material B [Tao, Wang and Almirall (2018b)].

4. Application to substance abuse disorder data.

We apply T-RL to the data of an observational study, where 2870 adolescents entered 

community-based substance abuse treatment programs, which are pooled from several 

adolescent treatment studies funded by the Center for Substance Abuse Treatment (CSAT) 

of the Substance Abuse and Mental Health Services Administration (SAMHSA). The 

measurements on individual characteristics and functioning are collected at baseline and at 

the end of three and six months. We use subscript values t = 0, 1, 2 to denote baseline, 

month three, and month six respectively.

Substance abuse treatments were given twice, first during months zero ~ three, denoted as 

A1 and second during months three ~ six, denoted as A2. At each stage, subjects were 

provided with one of the three options: no treatment, non-residential treatment (outpatient 

only) and residential treatment (i.e., inpatient rehab) [Marlatt and Donovan (2005)], which 

we denote as 0, 1 and 2, respectively. At stage 1, 93% of the subjects received treatment, 

either residential (56%), or nonresidential (27%), while at stage 2, only 28% and 13% were 

treated residentially or non-residentially. We denote the baseline covariate vector for 

predicting the assignment of A1 as X1 and the covariate history just before assigning A2 as 

X1 (X1 includes X0). The detailed list of variables used can be found in Almirall et al. 

(2012). The outcome of interest is the Substance Frequency Scale (SFS) collected during six 

~ nine months (mean and SD: 0.09 and 0.13), with higher values indicating increased 

frequency of substance use in terms of days used, days staying high most of the day, and 

days causing problems. We take Y = −1 × SFS so that higher values are more desired, 

making it consistent with our foregoing notation and method derivation. Missing data is 

imputed using IVEware [Raghunathan, Solenberger and Van Hoewyk (2002)].

We apply the T-RL algorithm to the data described above. Specifically, the covariate and 

treatment history just prior to stage 2 treatment is H2 = (X1
⊤, A1)⊤ and the number of 

treatment options at stage 2 is K2 = 3. We fit a linear regression model for μ2,A2 (H2) similar 

to (2.4) using Y as the outcome; all variables in H2 are included as interaction terms with 

A2. For the propensity score π2,A2 (H2), we fit a multinomial logistic regression model 
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including main effects of all variables in H2. We set the minimal node size to be 50 and 

maximum tree depth to be 5, and use a 10-fold CV to select λ, the minimum purity 

improvement for splitting. We repeat a similar procedure for stage 1 except that we have H1 

= X0, K1 = 3 and PO1′ = Y + μ
2, g2

opt(H2) − μ2, A2
(H2).

At stage 2, the variables in the estimated optimal regime are yearly substance dependence 

scale measured at the end of month three [sdsy3, median (range): 3 (0 – 7)], age [median 

(range): 16 (12 – 25) years], and yearly substance problem scale measured at baseline 

[spsy0, median (range): 8 (0 – 16)]. At stage 1, the variables in the estimated optimal regime 

are emotional problem scale measured at baseline [eps7p0, median (range): 0.22 (0 – 1)], 

drug crime scale measured at baseline [dcs0, median (range): 0 (0 – 5)], and environmental 

risk scale measured at baseline [ers0, median (range): 35 (0 – 77)]. All these scale variables 

have higher values indicating more risk or problems. Specifically, the estimated optimal 

DTR is gopt = (g1
opt, g2

opt), with

g1
opt(H1) =

no treatment if eps7p0 ≤ 0.286 & ers0 ≤ 46,
non‐residential if eps7p0 ≥ 0.286 & dcs0 ≤ 2,
residential otherwise,

and

g2
opt(H2) =

residential
if sdsy3 > 0, or sdsy3 = 0 & age ≤ 16 & spsy0 > 5,

non‐residential
otherwise.

According to the estimated optimal DTR, at stage 1, subjects with fewer emotional problems 

and lower environmental risk do not need to be treated, while those with more emotional 

problems but lower drug crime scale should be offered outpatient treatment only. At stage 2, 

all subjects should be treated. Those with higher yearly substance dependence as well as 

those with no yearly substance dependence but younger age and more yearly substance 

problems should receive residential treatment, that is, receiving treatment in rehab facilities. 

In contrast, subjects with older age or fewer yearly substance problems should be provided 

with outpatient treatment. The majority of subjects at both stages would benefit most from 

residential treatment. In our data, about 70% of the subjects at stage 1 have the estimated 

optimal treatment to be residential treatment and the number goes up to 85% at stage 2. 

Residential treatment is generally more intensive and subjects are in a safe and structured 

environment, which may explain why subjects with more substance, emotional or 

environmental problems would benefit more from this type of treatment. Existing studies 

have found a moderate level of evidence for the effectiveness of residential treatment for 

substance use disorders [Reif et al. (2014)]. Generally, outpatient programs allow subjects to 

return to their own environments during treatment. Subjects are encouraged to develop a 

strong support network of non-using peers and sponsors, and are expected to apply the 

lessons learned from outpatient treatment programs to their daily experiences [Gifford 

(2015)]. Nonetheless, subjects may respond sub-optimally to outpatient treatment (relative to 
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residential treatment) if they have a larger network of peers that are using or at risk of using 

substances. Therefore, it may not be surprising that subjects with a lower environmental risk 

scale would benefit more from outpatient treatment.

5. Discussion.

We have developed T-RL to identify optimal DTRs in a multistage multi-treatment setting, 

through a sequence of unsupervised decision trees with backward induction. T-RL enjoys the 

advantages of typical tree-based methods as being straightforward to understand and 

interpret, and capable of handling various types of data without distributional assumptions. 

T-RL can also handle multinomial or ordinal treatments by incorporating multiple treatment 

comparisons directly in the purity measure for node splitting, and thus works better than 

ACWL when the underlying optimal DTR is tree-type. Moreover, T-RL maintains the robust 

and efficient property of ACWL by virtue of the combination of robust semiparametric 

regression estimators with flexible machine learning methods, which is superior to IPW-

based methods such as LZ. However, when the true optimal DTR is non-tree-type, ACWL 

has slightly more robust performances.

Several improvements and extensions can be explored in future studies. As shown by the 

simulation, the fixed-depth lookahead is costly and only brings moderate improvement. 

Alternatively, one can use embedded models to select splitting variables which also enjoys 

the lookahead feature [Zhu, Zeng and Kosorok (2015)], or consider other variants of 

lookahead methods [Elomaa and Malinen (2003), Esmeir and Markovitch (2004)]. The 

method by Zhu, Zeng and Kosorok (2015) enables progressively muting noise variables as 

one goes further down a tree, which facilitates the modeling in high-dimensional sparse 

settings, and it also incorporates linear combination splitting rules, which may improve the 

identification of non-tree-type optimal DTRs. Furthermore, it is of great importance to 

explore how to handle continuous treatment options in the proposed T-RL framework. One 

way is to follow LZ to use a kernel smoother in the purity measure, which may suffer from 

the difficulty in selecting the optimal bandwidth. A simpler approach is to discretize the 

continuous treatments by certain quantiles and consider it as ordinal treatments, which may 

improve estimation stability and is also of practical interest as medical practitioners tend to 

prescribe treatments by several fixed levels instead of a continuous fashion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) A decision tree for optimal treatment rules and the expected counterfactual outcome by 
assigning a single best treatment to each node that represents a subset covariate space. (B) 

Regions divided by the terminal nodes in the decision tree indicating different optimal 
treatments.
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Fig. 2. 
Density plots for the estimated counterfactual mean outcome in Scenario 1 with varying 
penalties for misclassification in the generative outcome model (500 replications, n = 500). 

The four panels are under correctly or incorrectly specified propensity model (π) and five or 

twenty baseline covariates (p).
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Table 1

Simulation results for Scenario 1 with a single stage, three treatment options and five baseline covariates (500 

replications, n = 500). π is the propensity score model. (a) and (b) indicate equal and varying penalties for 
treatment misclassification in the generative outcome model. opt% shows the empirical mean and standard 

deviation (SD) of the percentage of subjects correctly classified to their optimal treatments. E{Y∗(gopt)} shows 
the empirical mean and SD of the expected counterfactual outcome obtained using the true outcome model 
and the estimated optimal regime.

E{Y*gopt)} = 2

π Method (a) (b)

opt% E{Y∗(gopt)} opt% E{Y∗(gopt)}
– RG 74.2 (2.3) 1.49 (0.07) 68.8 (4.0) 1.42 (0.09)

RF 75.3 (4.5) 1.51 (0.11) 81.1 (4.5) 1.69 (0.10)

Correct OWL 44.3 (7.6) 0.89 (0.16) 47.1 (8.1) 0.89 (0.21)

LZ 91.5 (7.5) 1.83 (0.16) 89.4 (9.5) 1.81 (0.18)

ACWL-C1 93.7 (4.1) 1.87 (0.10) 89.1 (5.3) 1.80 (0.11)

ACWL-C2 94.7 (3.3) 1.89 (0.09) 87.8 (5.5) 1.79 (0.11)

T-RL 97.2 (3.3) 1.95 (0.08) 95.1 (5.6) 1.92 (0.11)

T-RL-LH 97.5 (3.1) 1.96 (0.08) 96.1 (4.0) 1.94 (0.08)

Incorrect OWL 33.5 (6.0) 0.67 (0.13) 36.7 (5.7) 0.64 (0.19)

LZ 87.8 (12.0) 1.75 (0.25) 81.8 (14.7) 1.68 (0.27)

ACWL-C1 92.1 (4.7) 1.84 (0.10) 87.9 (5.6) 1.79 (0.11)

ACWL-C2 94.7 (3.4) 1.89 (0.09) 86.5 (6.1) 1.78 (0.12)

T-RL 97.8 (1.8) 1.94 (0.06) 92.9 (7.2) 1.89 (0.13)

T-RL-LH 98.2(1.6) 1.95 (0.06) 93.7 (6.2) 1.91 (0.10)

RG, linear regression; RF, random forests; OWL, outcome weighted learning; LZ, method by Laber and Zhao (2015); ACWL-C1 and ACWL-C2, 

method by Tao and Wang (2017); T-RL, tree-based reinforcement learning; T-RL-LH, T-RL with one step lookahead.

Ann Appl Stat. Author manuscript; available in PMC 2019 April 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tao et al. Page 25

Table 2

Simulation results for Scenario 1 with a single stage, three treatment options and twenty baseline covariates 
(500 replications, n = 500). π is the propensity score model. (a) and (b) indicate equal and varying penalties 
for treatment misclassification in the generative outcome model. opt% shows the empirical mean and standard 

deviation (SD) of the percentage of subjects correctly classified to their optimal treatments. E{Y∗(gopt)} shows 
the empirical mean and SD of the expected counterfactual outcome obtained using the true outcome model 
and the estimated optimal regime.

E{Y*gopt)} = 2

π Method (a) (b)

opt% E{Y∗(gopt)} opt% E{Y∗(gopt)}
– RG 66.7 (2.8) 1.34 (0.08) 63.5 (3.4) 1.30 (0.09)

RF 51.6 (5.7) 1.03 (0.13) 62.7 (5.8) 1.37 (0.12)

Correct OWL 36.3 (4.2) 0.73 (0.10) 38.4 (5.4) 0.63 (0.17)

LZ 88.6 (9.4) 1.77 (0.20) 85.5 (0.11) 1.74 (0.21)

ACWL-C1 89.6 (5.0) 1.79 (0.11) 83.7 (6.0) 1.70 (0.13)

ACWL-C2 90.7 (4.6) 1.82 (0.11) 82.5 (6.2) 1.70 (0.13)

T-RL 96.3 (4.1) 1.93 (0.10) 91.9 (6.7) 1.86 (0.13)

T-RL-LH 96.8 (3.9) 1.94 (0.09) 92.8 (5.4) 1.89 (0.10)

Incorrect OWL 32.6 (4.0) 0.65 (0.10) 34.5 (4.3) 0.56 (0.15)

LZ 85.9 (12.6) 1.72 (0.26) 78.4(15.4) 1.62 (0.30)

ACWL-C1 87.8 (5.5) 1.76 (0.12) 82.6 (6.3) 1.70 (0.13)

ACWL-C2 90.8 (4.3) 1.82 (0.10) 81.7 (6.3) 1.70 (0.13)

T-RL 97.4 (2.4) 1.95 (0.07) 90.7 (7.7) 1.85 (0.14)

T-RL-LH 97.9 (2.0) 1.96 (0.07) 92.0 (6.5) 1.87 (0.11)

RG, linear regression; RF, random forests; OWL, outcome weighted learning; LZ, method b Laber and Zhao (2015); ACWL-C1 and ACWL-C2, 

method by Tao and Wang (2017); T-RL, tree-based reinforcement learning; T-RL-LH, T-RL with one step lookahead.
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