Skip to main content
. 2019 Apr 10;5(4):eaau8038. doi: 10.1126/sciadv.aau8038

Fig. 1. Schematic of the setup and experimental principle.

Fig. 1

(A) Schematic view of the experimental setup. The cell embedded in resin is attached to a tuning fork and scans above the diamond nanopillar that contains a shallow NV center. A copper wire is used to deliver the microwave pulse to the NV center. A green laser (532 nm) from the CFM is used to address, initialize, and read out the NV center. (B) Left: Crystal lattice and energy level of the NV center. The NV center is a point defect that consists of a substitutional nitrogen atom and an adjacent vacancy in diamond. Right: Schematic view of a ferritin. The black arrows indicate the electron spins of Fe3+. (C) Experimental demonstration of the spin noise detection with and without ferritin in the form of polarization decay for the same NV center. The inset is the pulse sequence for detection and imaging of the ferritin. A 5-μs green laser is used to initialize the spin state to ms = 0, followed by a free evolution time τ to accumulate the magnetic noise, and finally the spin state is read out by detecting the fluorescence intensity. The pulse sequence is repeated about 105 times to acquire a good signal-to-noise ratio (SNR). The relaxation time is fitted to be 0.1 and 3.3 ms by exponential decay for the case with and without ferritin, respectively, indicating a spin noise of 0.01 mT2.