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Abstract

The widespread distribution of unconventional oil and gas (UO&G) wells and other facilities in 

the United States potentially exposes millions of people to air and water pollutants, including 

known or suspected carcinogens. Childhood leukemia is a particular concern because of the 

disease severity, vulnerable population, and short disease latency. A comprehensive review of 

carcinogens and leukemogens associated with UO&G development is not available and could 

inform future exposure monitoring studies and human health assessments. The objective of this 

analysis was to assess the evidence of carcinogenicity of water contaminants and air pollutants 

related to UO&G development. We obtained a list of 1,177 chemicals in hydraulic fracturing fluids 

and wastewater from the U.S. Environmental Protection Agency and constructed a list of 143 

UO&G-related air pollutants through a review of scientific papers published through 2015 using 

PubMed and ProQuest databases. We assessed carcinogenicity and evidence of increased risk for 

leukemia/lymphoma of these chemicals using International Agency for Research on Cancer 

(IARC) monographs. The majority of compounds (>80%) were not evaluated by IARC and 

therefore could not be reviewed. Of the 111 potential water contaminants and 29 potential air 

pollutants evaluated by IARC (119 unique compounds), 49 water and 20 air pollutants were 

known, probable, or possible human carcinogens (55 unique compounds). A total of 17 water and 

11 air pollutants (20 unique compounds) had evidence of increased risk for leukemia/lymphoma, 

including benzene, 1,3-butadiene, cadmium, diesel exhaust, and several polycyclic aromatic 

hydrocarbons. Though information on the carcinogenicity of compounds associated with UO&G 

development was limited, our assessment identified 20 known or suspected carcinogens that could 

be measured in future studies to advance exposure and risk assessments of cancer-causing agents. 

Our findings support the need for investigation into the relationship between UO&G development 

and risk of cancer in general and childhood leukemia in particular.
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1. INTRODUCTION

Unconventional oil and gas (UO&G) development is a complex, multi-phase process of 

extracting oil and natural gas from low-permeable rock formations that were inaccessible 

prior to recent technological advances in hydraulic fracturing and directional drilling. It has 

expanded rapidly in the past decade and now occurs in as many as 30 states within the 

United States, with millions of people living within 1 mile of a hydraulically fractured well 

(US EPA, 2015). Concerns have been raised about the potential exposures to water and air 

pollutants and related health impacts (Adgate et al., 2014). Chemicals involved in or 

produced by UO&G development may include reproductive/developmental toxicants (Elliott 

et al., 2016; Kahrilas et al., 2015; Wattenberg et al., 2015), endocrine disruptors (Kassotis et 

al., 2014), or known or suspected carcinogenic agents (McKenzie et al., 2012). The limited 

epidemiologic studies of UO&G development have observed an increase in adverse perinatal 

outcomes (Casey et al., 2016; McKenzie et al., 2014; Stacy et al., 2015), asthma 

exacerbations (Rasmussen et al., 2016), dermal irritation (Rabinowitz et al., 2015), 

hospitalization rates (Jemielita et al., 2015), and nasal, headache, and fatigue symptoms 

(Tustin et al., 2016).

Childhood leukemia in particular is a public health concern related to UO&G development, 

and it may be an early indicator of exposure to environmental carcinogens due to the 

relatively short disease latency and vulnerability of the exposed population (Rothwell et al., 

1991; Shy et al., 1994). The age-adjusted incidence rate of leukemia in the United States for 

children under the age of 15 was 5.3 per 100,000 persons in 2011, the highest among all 

types of childhood cancer, and the peak age of incidence is 2–5 years (CDC, 2015). The 

U.S. incidence rates for acute lymphocytic leukemia, the most common subtype of 

childhood leukemia, increased annually by 1.4% from 2000–2010 (Gittleman et al., 2015). 

Environmental exposures, such as ionizing radiation, benzene, traffic exhaust, tobacco 

smoke, and pesticides, have been linked to childhood acute lymphoblastic leukemia, though 

evidence is generally limited or inconsistent (Bailey et al., 2015a; Bailey et al., 2015b; Tong 

et al., 2012; Ward et al., 2014; Wiemels, 2012; Zachek et al., 2015). A comprehensive 

review of the carcinogens and leukemogens associated with UO&G development is not 

available and could inform future environmental and biological monitoring and human 

health studies. In this analysis, we aimed to systematically assess the evidence for a possible 

carcinogenic/leukemogenic role of (1) water contaminants and (2) air pollutants associated 

with UO&G development.

1.1 Unconventional oil and gas development: description of the process

In oil and gas extraction, a well pad must first be constructed. This involves the use of 

construction vehicles, heavy equipment, and diesel generators in continuous operation to 

create roads, clear and set up a well site, and transport materials to the site (Moore et al., 

2014). After well pad construction is complete, drilling rigs drill vertically past the deepest 

freshwater aquifer down to the level of the source formation, such as shale rock, turn and 

drill horizontally for distances up to 3,000 meters (Laurenzi and Jersey, 2013). After drilling, 

the well is hydraulically fractured. In this step, large volumes of fracturing fluids consisting 

of water, chemicals, and proppants (sand or ceramic beads) are forced into wells under high 
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pressure, creating fissures or fractures in the rock along the horizontal section of the 

wellbore to release oil or gas. Typically, about 15–100 million liters of fluid are used for 

each well, of which approximately 1–2% are chemical additives, representing a substantial 

volume of chemicals used per well (estimated as upwards of 114,000 liters) (US DOE, 2013; 

US EPA, 2012). Chemical additives in fracturing fluids include biocides, surfactants, and 

anti-corrosive agents (US EPA, 2015). After fracturing, wastewater flows up the wells. 

Within 1–4 weeks about 30% of injected fracturing fluids rapidly return to the surface 

through the well as “flowback” water; subsequently, “produced” water returns up the well 

more slowly. The produced water includes the injected fluids along with mobilized, 

naturally-occurring compounds (e.g., heavy metals, bromides, radionuclides) (Ferrar et al., 

2013; Vidic et al., 2013). Flowback and produced wastewater are stored in large open pits or 

storage tanks until they can be treated, reused, or disposed of offsite, such as in injection 

wells. Oil, gas, and produced water flow up the well for years or decades during the 

production phase of the well (Barbot et al., 2013; Nicot et al., 2014). During production, 

diesel-power trucks may be used to maintain the wells or transport oil or gas off the well 

pad. This stage also includes the processing and distribution of the produced oil and gas at 

other facilities (NYS DEC, 2011).

1.2 Possible pathways of environmental exposure to carcinogenic agents

Possible pathways of water contamination during fracturing and production include faulty or 

deteriorating well casings, equipment failure, surface spills of fracturing fluids or wastewater 

on-site or from tanker trucks transporting these liquids, migration of chemicals from 

fractures to shallow aquifers, leakage from wastewater pits, and unauthorized discharge and 

release of inadequately treated wastewater into the environment (Adgate et al., 2014; 

Brantley et al., 2014; Ferrar et al., 2013; Gross et al., 2013; Jackson et al., 2013b; Osborn et 

al., 2011; Rozell and Reaven, 2012; Shonkoff et al., 2014; US EPA, 2015; Vengosh et al., 

2014; Vengosh et al., 2013; Warner et al., 2012). Surface activities may pose the greater 

potential threat in the near-term (Drollette et al., 2015), with sub-surface activities 

potentially presenting a hazard over a longer period of time. Several water quality studies 

have measured total dissolved solids, isotopes, and other chemicals to characterize a 

geochemical fingerprint of UO&G development (Jackson et al., 2013a; Vengosh et al., 2013; 

Warner et al., 2013; Warner et al., 2012); these studies are not necessarily focused on 

compounds with evidence of toxicity to humans. Studies measuring concentrations of 

health-relevant chemicals in drinking water sources are emerging (Harkness et al., 2015; 

Hildenbrand et al., 2015; Llewellyn et al., 2015), but data are limited.

UO&G development activities that could generate air pollution include operation of diesel-

powered equipment, use of vehicles to transport materials and waste to and from the site, 

addition of sand (silica) to the fracturing fluid mixture, volatilization of compounds from 

wastewater, and processing and distribution of the oil and gas (Moore et al., 2014). Air 

pollutants, such as diesel exhaust, fine and coarse air particulates, crystalline silica, and 

polycyclic aromatic hydrocarbons (PAHs), are a few examples commonly cited as being 

generated as part of the various phases of UO&G development (Burnham et al., 2012; 

McCawley, 2015; Moore et al., 2014). To our knowledge, no comprehensive list of air 
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pollutants potentially related to UO&G development is available in the published literature 

or government reports.

1.3 Epidemiologic studies of unconventional oil and gas development

Knowledge of the health risks of UO&G development is sparse, though epidemiologic 

studies on this topic are emerging. Studies using proximity-based metrics observed 

associations between UO&G development and congenital heart defects in children 

(McKenzie et al., 2014), self-reported dermal irritation (Rabinowitz et al., 2015), decreased 

birth weight and increased incidence of small for gestational age (Stacy et al., 2015), 

increased preterm birth (Casey et al., 2016), increased in mild, moderate, and severe asthma 

exacerbations (Rasmussen et al., 2016), and increasesd chronic rhinosinusitis, migraine 

headache, and fatigue symptoms (Tustin et al., 2016). The number of wells per ZIP code was 

associated with increased hospitalization rates, particularly in the areas of dermatology, 

neurology, oncology, and urology (Jemielita et al., 2015).

The only epidemiologic analysis of the association between UO&G development and risk of 

cancer published in the scientific literature reported similar county-level standardized 

incidence ratios for childhood leukemia before and after drilling of any oil and gas wells in 

any Pennsylvania counties during 1990–2009 (Fryzek et al., 2013). Also in this analysis, 

standardized incidence ratios were similar before and after drilling started in counties with 

unconventional wells, specifically. However, several important shortcomings of this study 

have been noted. For example, this ecologic study did not account for a latency period 

between exposure and cancer incidence. In addition, though the study objective was to 

examine risk associated with hydraulic fracturing, 98% of the wells included in the study 

were “non-horizontal” wells that likely did not involve the practice of hydraulic fracturing 

(Goldstein and Malone, 2013). Case-control studies of proximity to other petroleum-based 

sources provide some evidence of an association with childhood leukemia risk. Two case-

control studies in France reported increased odds of childhood leukemia among those living 

in proximity to the petroleum-based sources of petrol stations and automotive repair garages 

(Brosselin et al., 2009; Steffen et al., 2004). Another case-control study reported elevated 

odds of childhood leukemia with proximity to petrol stations, but the relationship was not 

statistically significant, possibly due to small sample size (Harrison et al., 1999). Another 

study observed an association with proximity to petrochemical plants and increased odds of 

leukemia in young adults (20–29 years), but not children ages 0–15 (Yu et al., 2006). 

Additionally, a human health risk assessment found an increased risk of cancer for residents 

living ≤0.5 versus >0.5 mile from a well, attributable primarily to benzene, a known human 

carcinogen associated with leukemia risk (McKenzie et al., 2012). Taken together, these 

findings support the plausibility of an increased risk of childhood leukemia related to oil and 

gas development. The current analysis investigates whether there is additional evidence for 

the plausibility of a carcinogenic risk from air or water contaminants and provides 

information to improve the specificity of exposure assessments and human health research 

of the potential adverse effects of UO&G development.
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2. METHODS

2.1 Identification of potential water contaminants

We compiled a list of all chemicals used in hydraulic fracturing fluids, detected in hydraulic 

fracturing wastewater, or both from the U.S. Environmental Protection Agency (US EPA) 

Appendices A of the progress report “Study of the Potential Impacts of Hydraulic Fracturing 

on Drinking Water Resources” and draft report “Assessment of the Potential Impacts of 

Hydraulic Fracturing for Oil and Gas on Drinking Water Resources” (US EPA, 2012; US 

EPA, 2015). We eliminated duplicate entries and combined the entries for xylene isomers. 

This yielded a total of 1,177 distinct compounds or groups of compounds (1,043 in 

fracturing fluids only, 98 in wastewater only, 36 in both). The U.S. EPA developed these 

chemical lists from federal and state databases of well permits and construction records, 

industry disclosures and monitoring reports, trade journals, the scientific literature, and 

governmental and non-governmental reports. The fracturing fluid list contains a greater 

number of substances because it reflects reported usage and includes disclosed substances 

used across varying companies, locations, and geological formations. The list of wastewater 

constituents is shorter because it is based on the limited wastewater measurement data 

available from industry, government reports, or the published literature.

2.2 Classification of carcinogenicity of potential water contaminants

We searched the International Agency for Research on Cancer (IARC) monographs for 

evidence of carcinogenicity of the potential water contaminants. IARC is an internationally 

recognized authority on carcinogenicity of chemicals and other agents (Pearce et al., 2015). 

The monographs are written by working groups of international experts convened by IARC, 

and they provide detailed evaluations of the quality and strength of evidence of 

carcinogenicity of agents. The agents are selected for evaluation based on exposure 

prevalence and suggestive evidence of likelihood to pose a cancer hazard to humans 

(Tomatis, 1976). Other organizations evaluate environmental agents for carcinogenicity, such 

as the U.S. EPA through their Integrated Risk Information System (IRIS) or the National 

Institutes of Health through their National Toxicology Program (NTP). Their lists of agents 

evaluated for their carcinogenicity contain much overlap with IARC and are less 

comprehensive; IARC, IRIS, and NTP have evaluated 1,050, 264, and 243 compounds, 

respectively (IARC, 2016; IRIS, 2016; NTP, 2014).

Chemicals were designated as “no information available” if they were not evaluated in an 

IARC monograph. For chemicals that were evaluated, we indicated their IARC 

carcinogenicity classification: carcinogenic to humans (Group 1), probably carcinogenic to 

humans (Group 2A), possibly carcinogenic to humans (Group 2B), not classifiable as to 

their carcinogenicity to humans (Group 3), and probably not carcinogenic to humans (Group 

4). We calculated frequencies and percentages of the potential water contaminants in each 

carcinogenicity classification. For chemicals in Groups 1, 2A, or 2B, we assessed whether 

these chemicals had evidence linked to leukemia and/or lymphoma specifically, based on the 

available information on human and animal study data provided in the monograph summary 

or synthesis.
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2.3 Identification of potential air pollutants

We constructed a list of potential air pollutants associated with UO&G development by 

conducting a comprehensive review of the scientific literature. First, we systematically 

searched the biomedical and health-oriented PubMed database for papers published through 

December 31, 2015 using the terms “fracking air”, “hydraulic fracturing air”, 

“unconventional gas air”, “shale gas air,” “unconventional oil air,” and “shale oil air,” which 

yielded 136 unique publications. Next, we searched the ProQuest Environmental Science 

Collection database for papers published in environmental science-oriented journals through 

December 31, 2015 using the terms “fracking”, “hydraulic fracturing”, “unconventional 

gas”, “shale gas”, “unconventional oil”, and “shale oil” with the term “air pollution.” This 

search yielded 42 publications (31 additional, unique publications and 11 previously 

identified through PubMed). We included three types of studies in this analysis: 1) studies 

that collected primary air pollutant measurements or presented air pollutant measurements 

from secondary data sources, such as a state or county dataset (“measurement” studies), 2) 

studies that modeled air pollutant concentrations using inputs from primary or secondary 

measurements, emission rates from equipment or UO&G activities, and/or meteorological 

data (“modeling” studies), and 3) studies with qualitative assessments of potential or 

expected air pollutants based on review of the scientific literature, government or non-

governmental reports, and/or expert judgement about the types of pollutants likely to be 

generated from UO&G activities (“descriptive” studies). We excluded papers not directly 

related to environmental air pollution associated with UO&G development (n=86), papers 

describing generic chemical classes (e.g., volatile organic compounds (VOCs)) but not 

specific chemical names (e.g., benzene) (n=25), publications that were not peer-reviewed 

original research or review papers or were corrected and updated after 2015 (n=4), and 

papers written in foreign languages (n=3). From the 49 publications meeting our criteria, we 

abstracted chemical names of air pollutants from tables, text, and figures, if explicitly 

reported as present or predicted to be present at UO&G sites. For example, we abstracted 

names of target analytes from tables and figures presenting measured or estimated 

concentrations of pollutants near UO&G sites. This approach is consistent with the U.S. 

EPA water list construction, which included any compounds reportedly used in hydraulic 

fracturing fluids or detected in wastewater. We combined individual chemicals into one 

category if these agents were evaluated as a group by IARC (e.g. xylenes, particulate 

matter).

2.4 Classification of carcinogenicity of potential air contaminants

We searched the IARC monographs for evidence of carcinogenicity using chemical names 

of the potential air pollutants. Following the same procedure as for potential water 

contaminants (Section 2.2), chemicals were designated as “no information available” if they 

were not present in the IARC monographs; or else were reported as Groups 1, 2A, 2B, 3, or 

4. For the compounds in Groups 1, 2A, and 2B, we determined whether the monograph 

summary or synthesis indicated that there was sufficient evidence of increased risk of 

leukemia and/or lymphoma specifically, based on human or animal data.
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3. RESULTS

3.1 Carcinogenicity of potential water contaminants

Of the 1,177 potential water contaminants assessed, 1,066 compounds (91%) had not been 

evaluated for carcinogenicity by IARC. The 111 potential water contaminants evaluated 

included 14 (13%) known human carcinogens (Group 1), 6 (5%) probable human 

carcinogens (Group 2A), and 29 (26%) possible human carcinogens (Group 2B), and 62 

(56%) compounds were not classifiable with respect to their carcinogenicity (Group 3) 

(Figure 1). None were designated as probably not carcinogenic to humans, though only one 

compound has ever been assigned this classification. The distribution of compounds among 

the carcinogenicity classifications was similar between the fracturing fluid compounds and 

wastewater compounds (Figure 1). Of the 49 potential water contaminants classified as 

known, probable, or possible human carcinogens (Groups 1, 2A, 2B), 17 had evidence of an 

increased risk of leukemia and/or lymphoma (Table 1). This included 7 known human 

carcinogens (1,3-butadiene, benzene, cadmium, ethanol, ethylene oxide, formaldehyde, and 

quartz), 3 probable carcinogens (dibenz[a,h]anthracene, dichloromethane, 

tetrachloroethylene), and 7 possible carcinogens (1,2-propylene oxide, 

benzo[b]fluoranthene, benzo[k]fluoranthene, heptachlor, hydrazine, indeno[1,2,3-cd]pyrene, 

styrene). This list reflects petroleum-related volatile organic compounds (e.g., benzene), 

metals (e.g., cadmium), solvents (e.g., dichloromethane, tetrachloroethylene), and PAHs 

(benzo[b]fluoranthene, dibenz[a,h]anthracene, benzo[k]fluoranthene).

3.2 Identification of potential air pollutants

Our literature review yielded 143 distinct potential air pollutants or groups of pollutants 

related to UO&G development from 49 studies (Supplemental Table S1, Table 2). Of the 143 

compounds, 97 had also been identified in water and 46 were unique to air. A total of 27 

studies included measurements, 19 used modeling, and 15 were descriptive in nature; some 

studies incorporated a combination of these approaches (Table 2). There were 31 studies of 

gas development, 1 of oil development, and 17 of both. Studies reporting primary 

measurements or modeled estimates of air pollutants were conducted mainly in Colorado, 

Pennsylvania, Texas, and Wyoming. Frequently reported air pollutants (reported in ≥5 

studies) included benzene, ethylbenzene, hydrogen sulfide, methane, nitrogen oxides, ozone, 

particulate matter, toluene, and styrene (Supplemental Table S1). Sampling locations 

included perimeters of UO&G well sites, mobile monitoring stations, and fixed community 

sites. Sampling durations varied, such as one-time grab samples of 2 to 3 minutes (Macey et 

al. 2014) and weekly 24-hour integrated samples collected over a period of two years 

(McKenzie et al. 2012).

3.3 Carcinogenicity of potential air pollutants

Of the 143 potential air pollutants, 114 compounds (80%) had not been evaluated for 

carcinogenicity by IARC. Of the 29 potential air pollutants evaluated, 7 (24%) were 

considered carcinogenic to humans (Group 1), 2 (7%) were considered probably 

carcinogenic to humans (Group 2A), and 11 (38%) were considered possibly carcinogenic to 

humans (Group 2B) (Figure 1). A total of 9 (31%) compounds were not classifiable with 
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respect to their carcinogenicity (Group 3) (Figure 1). None were designated as probably not 

carcinogenic to humans (Group 4).

Of the 20 known, probable, or possible carcinogens (Groups 1, 2A, 2B), 11 had evidence of 

an increased risk of leukemia and/or lymphoma (Table 3). This included 5 known human 

carcinogens (1,3-butadiene, benzene, ethanol, formaldehyde, diesel engine exhaust), 2 

probable human carcinogens (dibenz[a,h]anthracene, tetrachloroethylene), and 4 possible 

human carcinogens (carbon tetrachloroethylene, chrysene, indeno[1,2,3-cd]pyrene, styrene). 

This list includes constituents of oil and gas resources (e.g., benzene) and diesel exhaust 

(e.g., formaldehyde, PAHs, 1,3-butadiene).

4. DISCUSSION

We evaluated the evidence that potential exposures from UO&G development are risk 

factors for cancer in general and leukemia in particular. Our analysis of 1,177 chemicals in 

hydraulic fracturing fluids or wastewater and 143 potential air pollutants identified 55 

possible, probable, and known carcinogens related to UO&G development activities. 

However, the vast majority of chemicals (91% of potential water contaminants, 80% of 

potential air pollutants) were not evaluated for their carcinogenicity by IARC. Of the 55 

known, probable, or possible human carcinogens, 20 had some evidence for increased risk of 

leukemia and/or lymphoma: 1,2-propylene oxide, 1,3-butadiene, benzene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, cadmium, carbon tetrachloroethylene, 

chrysene, dibenz(a,h)anthracene, dichloromethane, engine exhaust (diesel), ethanol, ethylene 

oxide, formaldehyde, heptachlor, hydrazine, indeno(1,2,3-cd)pyrene, quartz, styrene, and 

tetrachloroethylene. These findings support the hypothesis that exposure to UO&G 

development could increase the risk of leukemia.

Our findings demonstrate the presence of known and suspected carcinogens surrounding 

UO&G facilities, but drawing conclusions about cancer or leukemia risk is challenging, due 

to the varied and limited water and air measurement data. With respect to water, for 

example, Fontenot et al. (2013) measured metals in private drinking water wells in a 

community proximate to UO&G activity and observed concentrations of the known 

carcinogen arsenic in exceedance of U.S. EPA Maximum Contaminant Levels, although 

possible sources included mobilization of natural constituents and hydrogeochemical 

changes in addition to UO&G activities. Drollette et al. (2015) detected trace levels of 

organic compounds, such as the known leukomogen benzene and possible carcinogen 

ethylbenzene, in private drinking water wells in areas with UO&G development in 

Pennsylvania, with highest observed concentrations within 1 kilometer of active UO&G 

operations. Although the observed concentrations were below U.S. EPA Maximum 

Contaminant Levels, cancer risk is generally assumed not to have a threshold below which 

there is a safe level of exposure.

With respect to air, our literature review identified six studies measuring hazardous air 

pollutants associated with childhood leukemia (e.g., benzene, polycyclic aromatic 

hydrocarbons) near UO&G facilities (Bunch et al., 2014; Macey et al., 2014; McKenzie et 

al., 2012; Pekney et al., 2014; Rich et al., 2014; Rutter et al., 2015). Differences in location, 
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sampling duration, target agents, and sampling methodology in the air pollution literature 

hindered our ability to synthesize the air data and place it into context of human health risk. 

However, some individual studies used the air monitoring data to estimate cancer or health 

risk. Macey et al. (2014) identified concentrations of benzene, 1,3-butadiene, and 

formaldehyde in exceedance of EPA IRIS cancer risk levels; however, these were based on 

grab samples that represented high-exposure scenarios (e.g. ≤20 meters of UO&G separator, 

compressor station, discharge canal, and well pad). McKenzie et al. (2012) estimated risk to 

communities based on Colorado measurement data collected over nearly three years from a 

fixed monitoring station in a rural community. They observed an excess risk of cancer for 

residents living <0.5 mile from the nearest well, mainly attributable to benzene and 1,3-

butadiene. Bunch et al. (2014) used VOC measurements collected over ten years by the 

Texas Commission on Environmental Quality from seven fixed-site monitors in the Dallas/

Fort Worth area to conduct deterministic and probabilistic risk assessments and found that 

all but one of the cancer risk estimates were within the acceptable cancer risk range. Pekney 

et al. (2014) collected mobile measurements of ambient concentrations of pollutants in 

Pennsylvania and found no exceedances of National Ambient Air Quality Standards for 

criteria pollutants. These studies indicate that water and air pollution related to UO&G 

activities may pose a public health and potential cancer risk. More environmental 

measurements of health-relevant chemicals associated with UO&G development, 

particularly at residences in close proximity to these facilities, are needed to better 

characterize human exposures and determine whether confirmed or suspected carcinogens 

and toxicants are present and at what levels. In particular, studies with longer sampling 

durations or integrated over longer periods of time would be more relevant to chronic 

outcomes like cancer.

To our knowledge, our analysis represents the most expansive review of carcinogenicity of 

hydraulic fracturing-related chemicals in the published literature. Previous studies have 

examined the carcinogenicity of more selective lists of chemicals. For example, Kahrilas et 

al. (2015) reviewed the toxicological properties of biocide constituents of fracturing fluids 

and their degradation and reaction products and found that few had been evaluated by IARC. 

Compounds identified by Kahrilas et al. included formaldehyde (a known carcinogen 

associated with an increased risk of leukemia and lymphoma, identified in our analysis), 

dibromoacetonitrile (a possible carcinogen, identified in our analysis), nitrosamines 

(includes probable carcinogens, not identified in our analysis), and trihalomethanes (includes 

possible and probable carcinogens, four identified in our analysis: bromodichloromethane, 

chloroform, chlorodibromomethane, and bromoform). Stringfellow et al. (2014) assessed 81 

common hydraulic fracturing fluid additives and identified five confirmed or suspected 

carcinogens using the U.S. NTP carcinogenicity evaluations (Stringfellow et al., 2014). Our 

analysis also identified four of these five chemicals: ethanol (known carcinogen associated 

with an increased risk of leukemia and lymphoma), acetaldehyde (possible carcinogen), 

diethanolamine (possible carcinogen), and naphthalene (possible carcinogen). The fifth 

compound, thiourea, was included in our analysis, but was considered not classifiable with 

respect to human carcinogenicity by IARC. Colborn et al. (2011) abstracted a list of 

chemical additives of hydraulic fracturing fluids using information on Material Safety Data 

Sheets provided by government and natural gas industry sources (Colborn et al., 2011). They 
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found that 25% of the 353 chemicals evaluated could cause cancer and mutations. However, 

the inclusion criteria for this carcinogenicity evaluation were not provided to make a direct 

comparison with our findings.

An experimental study on the carcinogenicity of hydraulic fracturing wastewater observed 

that immortalized human bronchial epithelial cells exposed to flowback water collected from 

unconventional natural gas drilling of the Marcellus Shale underwent malignant 

transformation and exhibited altered morphology compared to parental cells (Yao et al., 

2015). The flowback water sample contained relatively high concentrations of barium and 

strontium. However, these metals were not evaluated for carcinogenicity to humans by IARC 

and therefore were not included in our evaluation. Strontium was not evaluated by the NTP 

or U.S. EPA IRIS programs; barium was not evaluated by NTP, and it was deemed not 

classifiable with respect to carcinogenicity by the U.S. EPA.

Looking broadly at UO&G development and cancer risk, other risk factors should also be 

considered. For example, UO&G development could pose a risk for childhood leukemia 

through a phenomenon known as population mixing (Belson et al., 2007; Kinlen, 2012). 

This refers to the migration of new populations into previously contained rural areas, 

introducing new infectious agents. This could give rise to increasing underlying infections, 

for which childhood leukemia is a possible complication (Kinlen, 1988; Kinlen, 2012). An 

alternative hypothesis is that a delayed exposure to infectious agents among individuals who 

experienced an absence of exposure in very early life could increase the risk of an 

inappropriate immune response and lead to leukemia (Greaves, 2006; Greaves, 1997). 

UO&G development is a rapidly expanding industry that creates an influx of specialized, 

external workers into less populated areas to fill industry jobs (Brasier et al., 2011; Filteau, 

2015b; Jacquet, 2014). Additionally, previous examples of resource extraction or energy 

development have reported population increases up to 80% and worker influx-related 

impacts on public health and local communities (Ennis and Finlayson, 2015; Filteau, 2015a; 

Keough, 2015). More research would be needed to demonstrate risk to newly introduced 

infectious agents. Another possible risk factor for childhood leukemia is parental 

occupational exposures to agents such as benzene or PAHs from work in the oil and gas 

industry during the pregnancy period, a critical window of vulnerability for childhood 

leukemia (Fusion et al., 2001). In addition, parents employed by oil and gas companies 

could introduce contaminants into the home environment through clothing, shoes, and skin 

(Newman et al., 2015; Sahmel et al., 2014). Also, the introduction of bromide constituents 

from hydraulic fracturing wastewater into drinking water sources could increase the 

subsequent, downstream formation of carcinogenic disinfection byproducts and increase the 

risk of cancer, such as bladder cancer (Regli et al., 2015). Further, agents released from other 

components of oil and gas infrastructure, such as petroleum storage tanks (Zusman et al., 

2012), petrochemical plants (Yu et al., 2006), and petrol stations (Brosselin et al., 2009; 

Harrison et al., 1999; Steffen et al., 2004) could pose a leukemia risk.

This analysis has several limitations. The list of potential water contaminants from fracturing 

fluids is limited to non-proprietary chemicals that were reported to the U.S. EPA by oil and 

gas companies and included in the U.S. EPA reports on hydraulic fracturing (US EPA, 2012; 

US EPA, 2015). Our identification of potential air pollutants was based on information 
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available in the PubMed and ProQuest Environmental Science databases and may not 

include all potential air pollutants associated with UO&G development. The published 

literature may be more likely to report air pollutants for which health data are available, 

which could explain why a greater percentage of chemicals in air were evaluated by IARC 

compared to chemicals that were potential water pollutants. Additionally, IARC only 

evaluates chemicals with suspected carcinogenicity. Therefore, the proportion of known, 

probable, and possible carcinogens among those compounds evaluated may not be 

representative of the proportion of carcinogens among those not evaluated. Although the 

IARC monographs are the most comprehensive, systematic carcinogenicity evaluations, a 

comprehensive literature review of all 1,177 water contaminants and 143 air pollutants could 

identify additional compounds that pose an increased risk of cancer.

Conducting a well-designed sampling campaign for UO&G development is challenging, 

given the wide variety of potential target pollutants and the limited information available to 

identify which pollutants have the highest probability of exposure or health impact. Our list 

of 143 air pollutants associated with UO&G development (Supplemental Table S1) may 

serve as a useful resource for researchers designing future studies. Furthermore, our list of 

known, probable, and possible carcinogens linked to UO&G development can be used as a 

target analyte list for environmental or biological measurements in future exposure and 

health studies. Measurements of these compounds in air or water in residences proximate to 

this activity would provide insights into whether exposures are occurring and at what levels. 

Additionally, air pollution measurements corresponding to the different phases of UO&G 

development would provide critical information about the relative contribution of exposures 

from various aspects of the development activities and priorities for exposure mitigation. 

Furthermore, geographical and seasonal variations could influence release, concentration, 

and dispersion of potential air pollutants. Therefore, additional water and air measurement 

studies are urgently needed to investigate the potential for spatial and temporal variations in 

exposures.

This analysis could also inform design of exposure metrics for epidemiologic studies. 

Epidemiologic studies have generally used individual-level, geographic information 

systems-based inverse-distance weighted metrics to estimate exposure to UO&G 

development, which characterize UO&G development as a collective process. More specific 

metrics or measurements could offer improvements to the exposure assessment and potential 

insights into etiologic agents. Future studies could incorporate environmental and/or 

biological monitoring of health-relevant chemicals, such as the 55 known, probable, and 

possible carcinogens in water or air, and examine the relationship between chemical 

concentrations and proximity and density-based metrics, to determine the extent to which 

proximity is associated with exposure. Though more measurement data is needed to better 

understand whether exposures are occurring and at what concentrations, release of any 

carcinogens from UO&G development should be minimized.

5. CONCLUSIONS

There is a need to better understand the potential risks of UO&G development with carefully 

designed exposure and epidemiologic studies. We identified 55 known, probable, or possible 
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carcinogens (20 compounds associated with leukemia and/or lymphoma specifically) that 

are potential water contaminants and/or air pollutants related to UO&G development. Our 

study provides some support for the hypothesis that exposure to UO&G development could 

increase the risk of leukemia. Because children are a vulnerable population, research efforts 

should first be directed towards investigating whether exposure to UO&G development is 

associated with an increased risk in childhood leukemia. Environmental and biological 

measurements of the compounds identified in this analysis in communities proximate to 

UO&G development would be critical for future research on the potential public health 

impact.
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Figure 1. 
International Agency for Research on Cancer carcinogenicity classification of chemicals in 

water (n=111), hydraulic fracturing fluids (n=76), hydraulic fracturing wastewater (n=52), 

and in air (n=29) related to unconventional oil and gas development.1,2
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