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Abstract

Animal models support a role for the gut microbiota in the development of hypertension. There 

has been a lack of epidemiologic cohort studies to confirm these findings in human populations. 

We examined cross-sectional associations between measures of gut microbial diversity and 

taxonomic composition and blood pressure in 529 participants of the biracial (African- and 

European-American) Coronary Artery Risk Development in Young Adults (CARDIA) study. We 

sequenced V3-V4 regions of the 16S ribosomal RNA marker gene using DNA extracted from 

stool samples collected at CARDIA’s Year 30 follow-up examination (2015-16; aged 48-60 

years). We quantified associations between blood pressure [hypertension (defined as systolic blood 

pressure (SBP) ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg and/or antihypertension 

medication use) and SBP] and with- and between-person diversity measures. We conducted 

genera-specific multivariable-adjusted regression analysis, accounting for multiple comparisons 

using the false discovery rate. Hypertension and SBP were inversely associated with measures of 

alpha-diversity, including richness and the Shannon Diversity Index, and were distinguished with 

respect to principal coordinates based on a similarity matrix of genera abundance. Several specific 

genera were significantly associated with hypertension and SBP, though results were attenuated 

with adjustment for body mass index. Our findings support associations between within-person 
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and between-person gut microbial community diversity and taxonomic composition and blood 

pressure in a diverse population-based cohort of middle-aged adults. Future work is needed to 

define functional pathways that underlie observed associations and identify specific microbial 

targets for intervention.

Keywords

Blood pressure; hypertension; gastrointestinal microbiome; epidemiology; population

Introduction

There is growing evidence that the gut microbiota may influence cardiovascular disease 

(CVD)1–5. Proposed mechanisms include gut microbial effects on systemic inflammation6, 7 

and the production of CVD-related metabolites, such as trimethylamine N-oxide (TMAO)1, 2 

and short-chain fatty acids. Findings from animal and human studies are consistent with a 

role for the gut microbiota in obesity3, 8, type 2 diabetes9–12, dyslipidemia3, metabolic 

syndrome5, 13, and lifetime CVD risk4. Animal models have demonstrated gut microbial 

effects on blood pressure14–17}. Decreased microbial diversity has been observed in both 

animal models of hypertension and human samples16. Population-based human studies have 

revealed significant associations between microbial metabolites and blood pressure18, 19}. 

However, there has been a lack of data on the gut microbiome and blood pressure in 

population-based and sociodemographically-diverse samples.

In the current study, we examined cross-sectional associations between gut microbial 

diversity and taxonomic composition and blood pressure in 529 middle-aged adults recruited 

from 4 U.S. urban field centers in the Coronary Artery Risk Development in Young Adults 

(CARDIA) study. CARDIA is a population-based and sociodemographically-diverse sample 

of African- and European-American participants, with clinic-based measurement of blood 

pressure and extensive data on relevant covariates, including diet, antihypertensive 

medication use, and body mass index (BMI). At CARDIA’s Year 30 follow-up examination 

in 2015–16, we collected stool samples and sequenced the 16S ribosomal RNA (rRNA) 

prokaryotic marker gene. We hypothesized that: 1) the gut microbial community differs 

significantly according to blood pressure, 2) within-person diversity of the gut microbiota is 

inversely associated with hypertension and systolic blood pressure (SBP), and 3) 

hypertension and SBP are associated with specific taxa, such as those involved in the 

production of the short-chain fatty acid butyrate.

Methods

Data and code availability

All data used in the present analysis are available from the CARDIA Study Data 

Coordinating Center at the University of Alabama at Birmingham. The process for obtaining 

data through CARDIA is outlined at: https://www.cardia.dopm.uab.edu/publications-2/

publications-documents. Computer code/scripts used in the generation of data and statistical 

analysis are available from the authors upon request.
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Study participants

The CARDIA study is a prospective multicenter cohort study designed to study the 

evolution of CVD over adulthood. CARDIA began in 1985–86 and enrolled 5,115 

participants aged 18–30 years from 4 U.S. urban centers (Birmingham, AL; Chicago, IL; 

Minneapolis, MN; Oakland, CA)20. Since baseline, there have been 8 follow-up examination 

(years 2, 5, 7, 10, 15, 20, 25, and 30) with retention among survivors of 91%, 86%, 81%, 

79%, 74%, 72%, 72%, and 71%, respectively.

A microbiome sub-study was initiated at the Year 30 follow-up examination (2015–2016). 

Participants were recruited sequentially until the target sample size of 600 was reached 

(n=300 from the Chicago, IL, field center and n=100 from each of the other 3 field centers). 

Exclusions were based on a screening questionnaire administered at the time of CARDIA 

contact, including if participants: were pregnant at the time of the clinic exam; used 

antibiotics in the past month; had ever been diagnosed with inflammatory bowel disease; 

reported having had a gastrointestinal illness, vomiting, diarrhea, or atypical constipation in 

the past week. The present analysis includes data from CARDIA participants with complete 

sequencing data (n=538). Participants were excluded from analysis if they were missing data 

on blood pressure medication (n=2), diet (n=2), or physical activity (n=5), for an analytic 

sample of n=529 participants. CARDIA was approved by institutional review boards of each 

field center; each study participant provided informed written consent for both the CARDIA 

core examination and the microbiome sub-study.

Measurement of sociodemographic, behavioral, and clinical characteristics

Standard questionnaires were used to obtain demographic and health behavioral data at the 

CARDIA field centers during the core examination. The interviewer-administered CARDIA 

Physical Activity Questionnaire queried past-year engagement in activities, from which a 

total activity score was calculated21. Participants reported their use of medication for 

hypertension, lipid-lowering, and diabetes; and their current and historic use of tobacco 

products. A brief 23-item qualitative diet assessment was completed by participants in the 

microbiome sub-study22. A summary measure of diet quality (a priori diet quality score) was 

derived as previously in CARDIA23 and other studies24. Based on hypothesized impact on 

health, foods were classified into beneficial, adverse or neutral quality and quartiles were 

created: beneficial foods were scored positively (0 to 3 for the 1st to 4th quartile, 

respectively), adverse foods were scored inversely (3 to 0 for the 1st to 4th quartile, 

respectively), and neutral foods were not scored. Scores were summed over all foods; higher 

scores reflect higher diet quality.

Standardized protocols were used by trained staff for all clinic measures. Resting SBP and 

diastolic blood pressure (DBP) measures were taken in the seated position with elbow and 

forearm resting on the chair armrest. Blood pressure values were calculated as the mean of 

the second and third of three measurements taken with oscillometer (OmROn HEM907XL 

automated/oscillometric blood pressure monitor) calibrated to a random-zero 

sphygmomanometer. Arm cuff bladder size was based on arm circumference as follows (9 

cm cuff for 17.0–22.5 cm arm; 12.0 cm for 22.6–32.5 cm arm; 15.0 cm for 32.6–42.5 cm 

arm; and 17.5 cm cuff for 42.6–50.0 cm arm). For individuals with an arm circumference 
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>50 cm, a thigh cuff was used with an OmROn 108ML aneroid/manual blood pressure 

monitor. Hypertension was defined as current use of anti-hypertensive medication, a SBP ≥ 

140 mmHg, and/or a DBP ≥ 90 mmHg. Height and weight were measured to the nearest 0.5 

cm and 0.2 kg, respectively for body mass index (BMI, kg/m2). Fasting serum glucose was 

measured using hexokinase coupled to glucose-6-phosphate dehydrogenase. Diabetes was 

defined as having fasting glucose ≥126 mg/dL (7 mmol/L), 2-hour OGTT ≥200 mg/dL (11.1 

mmol/L), HbA1c ≥6.5% (48 mmol/mol), or the use of hypoglycemic medications.

Microbiome data collection, sequencing, and data processing

We followed standard protocols for stool collection and processing25, 26. Briefly, stool 

samples were collected by participants in their home, shipped overnight to the study lab at 

UNC-Chapel Hill, where they were stored at −80 °C until processing. Collection tubes were 

pre-filled with RNAlater to stabilize microbial DNA during transport to the lab. At the time 

of their stool collection, participants completed a short survey, including the time and date of 

their collection, past year antibiotic use, use of fiber supplements or probiotics, and their 

average weekly stool frequency.

DNA was extracted from 0.20 grams of stool using the MoBio PowerSoil kit. The V3-V4 

hypervariable regions were amplified (primers: 341F/785R) and sequenced using the 

Illumina MiSeq platform (2×300). Processing of sequence data was completed with 

BioLockJ, a Java-based pipeline for metagenomics analysis27. Paired-end sequences were 

merged with Paired-End reAd mergeR (PEAR, v 0.9.8)28 using default arguments; 

sequences for which primers did not match or for which 10 base pairs did not overlap were 

excluded. Taxonomic assignment was with the Ribosomal Database Project (RDP) Classifier 

v2.12 (confidence threshold=80%)29.

The R package ‘vegan’ was used to generate measures of microbial diversity30. Within-

person diversity (alpha diversity) measures included the Shannon Diversity Index and 

richness, both derived at the genus level31. Richness was calculated as the number of distinct 

genera per participant, with total per-participant abundance rarified through random 

sampling to the minimum genera count across all participants. We used Principal 

Coordinates Analysis (PCoA) to assess between-participant diversity (beta-diversity) in 

microbial community composition. PCoA was used to generate orthogonal summary 

measures of microbial composition based on a distance matrix of microbial abundance 

(Bray-Curtis)32. We report on PCoA axes that explain at least 5% of the variability in the 

taxonomic similarity measure. To assess sensitivity of findings to distance matrix, we 

additionally generated factors with principal components analysis (PCA) based on a 

Euclidean distance matrix.

Statistical analysis

We compared the analytic sample (n=529) to CARDIA participants who attended the Year 

30 follow-up examination, but did not participate in the Microbiome Study (n=2,752). We 

assessed differences in categorical variables with chi-square and continuous variables with 

non-parametric test for comparing means or medians if the variable was not normally 

distributed.
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Primary outcomes were hypertension and SBP. We controlled for antihypertensive 

medication use in analysis of SBP, as medications may alter the gut microbiota33, 34. We 

conducted multivariable-adjusted regression models for alpha- and beta-diversity measures 

of microbial community composition, as well as for analysis of individual taxa. We tested 

for differences in beta-diversity, represented using PCoA, with permutational multivariate 

analysis of variance using distance matrices (PERMANOVA), through which pseudo-F 

ratios are generated and p-values obtained through permutations35(here, 1000 permutations 

were used). In an effort to evaluate the connection between specific taxa and PCoA 

ordination, we overlaid biplots with vectors for the 10 most abundant genera that 

significantly differentiate the PCoA axes. Vectors point in the direction of taxa-specific 

associations with respect to the PCoA axes, with vector length proportional to the correlation 

between the specific taxa and PCoA axes.

We conducted separate regression models for each taxonomic group with respect to: 1) 

hypertension and 2) systolic blood pressure. We focused our primary analysis on genera, the 

lowest level of classification from our 16S rRNA sequences. In addition, we conducted 

secondary analysis at the family level, which allows us to test associations between blood 

pressure and families that have been shown to carry genes for butyrate production 

pathways36. To account for spurious findings due to rare taxa, we restricted analysis to taxa 

that were present in at least 25% of participants; after this restriction, 149 genera and 42 

families remained from among 379 genera and 100 families originally identified in the 

data37. Raw taxonomic counts were transformed for analysis as log10[(RC/n)(x/N)+1], 

where RC is the total raw taxon count for a participant and n is the total count across all taxa 

for a participant, x is the total across all OTUs and participants and N is the total number of 

participants38. We controlled taxonomic analysis for multiple comparisons using the 

Benjamini-Hochberg method for false discovery rate (FDR)39.

We conducted several multivariable-adjusted regression models. A minimal model (Model 

1) adjusted for sequencing run. Model 2 included additional covariate adjustment for field 

center (4 categories), sex (male/female), race (African-/European-American), age 

(continuous), and educational attainment (continuous). In a more fully adjusted model 

(Model 3), we adjusted for physical activity (continuous), smoking status (current, former, 

never), and diet quality score (continuous). We additionally adjusted for antihypertensive 

medication use in Model 3 analysis of SBP. Finally, in Model 4, we adjusted for BMI 

(continuous), a potential intermediate of microbiome effects on blood pressure. Data 

analysis was conducted in R 3.4.2 (http://www.r-project.org) and SAS version 9.4 (SAS 

Institute Inc., Cary, NC).

Results

Study participants differed slightly from the full CARDIA cohort examined at the Year 30 

follow-up examination. Microbiome Study participants were generally similar to non-

participants (except for study center, by design of the Microbiome Study), though 

participants had statistically significantly lower mean BMI and waist circumference, and a 

smaller proportion had hypertension (Table 1). The relative abundance (percentage) of the 
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149 genera included in analysis (after removing rare taxa) ranged from a mean of 0.00044% 

for Parascardovia to 31.38% for Bacteroides (S1).

Several measures of gut microbial composition varied significantly with respect to 

sociodemographic and anthropometric variables in univariate analysis (S2-S7). There were 

significant differences (PERMANOVA p-value=0.001) in between-person diversity (beta-

diversity) for all variables: age, gender, race, BMI, and waist circumference. In Within-

person diversity (alpha-diversity) was inversely associated with BMI and waist 

circumference, but was not associated with age, gender, or race (S2). Specific genera were 

significantly associated with sociodemographic and anthropometric variables in FDR-

adjusted univariate analysis of 149 genera. At an FDR-adjusted p-value threshold of 0.05, 5 

genera were associated with age, 44 were associated with gender, 89 were associated with 

race, 63 were associated with BMI, and 58 were associated with waist circumference (S3-

S7, respectively).

Regression results were consistent with an inverse association between blood pressure 

measures and microbial diversity, in particular microbial richness (Table 2). In multivariable-

adjusted regression models, hypertension was statistically significantly inversely associated 

with genera richness (Model 3; OR=0.75 (95% CI: 0.60, 0.94 for a standard deviation (SD)-

unit increase in richness), but was not significantly associated with the Shannon diversity 

index. An SD-unit increase in richness was associated with −1.52 (−2.92, −0.12) mmHg 

lower SBP, and an SD-unit increase in Shannon diversity index was associated with −1.44 

(−2.72, −0.16) mmHg lower SBP. Inverse relations were attenuated after further adjustment 

for BMI, a potential intermediate (Model 4).

Beta-diversity was significantly associated with both hypertension and systolic blood 

pressure in all multivariable-adjusted models (all PERMANOVA p-values = 0.001). Figures 

1 and 2 presents biplots for each pairwise comparison of the first 3 PCoA axes with respect 

to hypertension and systolic blood pressure, respectively. Each of the first 3 PCoA axes 

explained at least 5% of the variability in the microbial similarity measure (11.2%, 8.6%, 

and 5.4% for the first, second, and third PCoA axes, respectively). Vectors indicate the 10 

most abundant genera that were significantly differentiated between PCoA axes. We note 

that significant vectors do not necessarily indicate that specific taxa are significantly 

associated with blood pressure. Still, the vectors are generally consistent with what we 

observed in taxa-specific analysis. Vectors Akkermansia, Ruminococcus, Anaerovorax, 

Sporobacter, and Asaccharobacter tended to align in direction with individuals who were 

normotensive (Figure 1) or had lower systolic blood pressure (Figure 2), while Veillonella 
aligned with individuals who were hypertensive (Figure 1) or had higher systolic blood 

pressure (Figure 2). Furthermore, spearman correlation coefficients for genera and PCoA 

axes were consistent with the displays of generat vectors and PCoA axes (S1). For example, 

Akkermansia was negatively correlated with PCoA axes 1 and 3, which were positively 

associated with hypertension and SBP; while Akkermansia was positively associated with 

PCoA 2, which was negatively associated with blood pressure.

We conducted multivariable-adjusted regression analysis of individual genera with respect to 

blood pressure (Figures 3 and 4; S8 and S9). In unadjusted analysis, a large number of 
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genera were associated with hypertension (65 genera with FDR-adjusted p-value <0.05 and 

74 with FDR-adjusted p-value <0.10) and SBP (34 genera with FDR-adjusted p-value <0.05, 

and 51 with FDR-adjusted p-value <0.10) (Figure 3 and S8). Findings attenuated with 

multivariable adjustment. Upon adjustment for sociodemographic variables age, race, sex, 

field center, and educational attainment (Model 2), hypertension remained significantly 

associated with 21 genera at FDR-adjusted p-value <0.05 and with 5 genera at FDR-adjusted 

p-value <0.10 (Figure 2). Several genera were significantly associated with hypertension in 

directions consistent with PCoA findings (S1), such as positive associations between 

hypertension and genera Anaerovorax, Clostridium IV, Oscillibacter, and Sporobacter. With 

further adjustment for health behaviors (diet, physical activity, and smoking), 18 genera 

remained associated with hypertension with FDR-adjusted p-values <0.10, including 

positive associations with Anaerovorax, Clostridium IV, Oscillibacter, and Sporobacter. 
Following control for BMI, a potential mediator, no genus was associated with hypertension 

with an FDR-adjusted p-value <0.25. Results were not meaningfully different with 

adjustment for waist circumference instead of BMI (S8).

Findings between specific genera and SBP were appreciably weaker (Figure 4 and S9). SBP 

was positively associated with Catabacter and Robinsoneilla at FDR-adjusted p-value <0.05 

and with Parasporobacterium at FDR-adjusted p-value <0.10 in Models 2 and 3; SBP 

remained positively associated with Catabacter (FDR-adjusted p-value <0.10) and 

Robinsoneilla (FDR-adjusted p-value <0.05) with additional adjustment for BMI (Model 4). 

Similarly, both Catabacter and Robinsoleilla remained significant at FDR-adjusted p-

value<0.05 when the model adjusted for waist circumference instead of BMI (S9). 

Catabacter and Robinsoleilla were positively associated with hypertension in Model 2 

(FDR-adjusted p-value <0.05), but these findings were attenuated with additional adjustment 

(FDR-adjusted p-values 0.11 and 0.40 in Models 3 and 4, respectively, for Catabacter, and 

FDR-adjusted p-values 0.11 and 0.40 in Models 3 and 4, respectively, for Robinsoleilla).. 
We noted the possibility that results of hypertension may reflect use of antihypertensive 

medication, and considered stratified analysis to distinguish hypertension and medication 

use. However, there was insufficient sample size to examine subgroups robustly. Among the 

183 participants with hypertension in the analysis, 153 reported taking antihypertensive 

medication, of whom 128 were controlled (SBP <140 mmHg and DBP <90 mmHg). 

Therefore, analysis of medication use in participants with normal hypertension would have 

been limited to 128 individuals, and analysis of hypertension in participants not taking 

antihypertensive medication would have been limited to the 30 individuals we were able to 

examine

Given observed differences in the microbial community by race and sex (S4 and S5)40, we 

assessed the possibility of effect modification by race and sex by including a cross-product 

term for race or sex in regression models. These tests were not statistically significant, and 

we therefore present results adjusted for race and sex.

Secondary analysis of family level data did not in general support a hypothesis of inverse 

associations between blood pressure and families that we considered relevant for butyrate 

production, based on published literature36. We focused on six families that include 

numerous species shown to carry genes for enzymes in the acetyl-CoA butyrate-production 
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pathway: Lachnospiraceae, Peptostreptococcaceae, Clostridiales incertae sedix XI, 

Clostridiaceae, Ruminococcaceae, and Veillonellaceae.36. Two families were significantly 

associated with hypertension in univariate and semi-adjusted models: Ruminococcaceae was 

inversely associated through Model 2 (sociodemographics-adjusted); Veillonellacaeae was 

positively through Model 3 (sociodemographics and health behaviors) (S10). No family was 

significantly associated with systolic blood pressure in univariate or multivariable-adjusted 

models (S11).

Discussion

In the CARDIA Microbiome Study, several measures of the gut microbiota were 

significantly associated with blood pressure in cross-sectional analysis. Measures of within-

person microbial diversity were inversely associated with hypertension and SBP, and there 

was significant separation of blood pressure according to microbial dissimilarity in PCoA. 

These differences remained significant after adjustment for a range of demographic and 

health behavior covariates. Several specific taxonomic groups appeared associated with 

hypertension and SBP, though these findings were sensitive to covariate adjustment, in 

particular BMI, and generally were not statistically significant after adjustment for multiple 

comparisons.

A growing body of literature supports a role of the gut microbiota in CVD risk, but there 

have been relatively few population-based studies of gut microbiota and CVD risk factors 

and we know of no study that has focused on blood pressure. In a case-control analysis of 

112 participants from the Bogalusa Heart Study, Kelly et al. found that microbial richness 

and several distinct taxonomic groups were associated with a measure of lifetime CVD risk 

score comprising fasting glucose, LDL-C, and SBP4. Similar to Kelly, et al.4, and other 

studies of CVD risk factors10, our findings for microbial community richness were more 

robust than findings for diversity measures that incorporate both richness and evenness such 

as the Shannon Diversity Index.

There has been a lack of analysis on blood pressure in population-based adult cohorts. 

Hypertension has been induced in normotensive rats through transplantation of cecal 

contents from hypertensive rats15, 41. Data support microbiota-dependent production of 

short-chain fatty acids (SCFAs), such as butyrate, acetate, and propionate, as one mechanism 

through which gut microbiota may influence blood pressure 42–45. In a study of 205 

overweight and obese pregnant women, blood pressure was associated with gut microbiota 

composition and, specifically, inversely associated with butyrate-producing bacteria in the 

gut microbiota45. Microbiota-generated SCFAs have been shown to influence blood pressure 

through olfactory receptors expressed in the vasculature and kidneys42, 43. Additional 

microbial metabolites of dietary components may also play a role. In a population-based 

metabolomics analysis, urinary hippurate was inversely associated with blood pressure in the 

INTERMAP study18; serum hydroxy-hippurate was positively associated with incident 

hypertension in ARIC19.

Results were more robust for microbial diversity (alpha- and beta-diversity) measures, as 

compared to analysis of specific taxa. These findings are consistent with previous support 
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for community-level measures3–5. Analyses of microbial diversity will be more powerful 

than multiple-comparisons-adjusted analyses of individual taxa. In addition, these results 

may reflect aspects of the gut microbial community not captured in analysis of specific 

genera. Diversity measures remained significant after adjustment for potential confounders, 

but many individual genera lost statistical significance after adjustment for demographic, 

health behavior, and clinical covariates. In particular, BMI, a potential intermediate, 

appeared to account for much observed attenuation, especially in analysis of hypertension. 

At this stage of microbiome research, the relevance of various covariates has not been firmly 

established, and studies have varied with respect to adjustments included in analysis. For 

example, adjustment for diet had a modest impact in our analysis, but was an important 

covariate in Bogalusa4; diet was not included as a covariate in analyses of Lifelines-DEEP or 

METSIM3, 5. Future work and a growing number of studies with microbiome data will 

contribute to our understanding46, 47.

The larger number of significant associations of genera with hypertension, as compared to 

SBP, may reflect the greater severity of the phenotype. We also considered the possibility 

that the use of antihypertensive treatment may influence the gut microbiome, but were 

unable to disentangle associations between hypertension and medication use in our analysis, 

given the very small number of individuals who were discordant on hypertension status and 

antihypertensive medication use. Data from animal models are supportive of a causal effect 

of the gut microbiome on blood pressure15, 41–43, but longitudinal data and larger samples 

are needed to confirm the relevance of the gut microbiome in human populations and 

robustly identify specific bacteria that may serve as targets for intervention.

Our analysis provides two approaches to assessing specific taxa with respect to blood 

pressure. Several of the most abundant genera that differentiated PCoA axes have been 

previously associated with pathways that may influence blood pressure. Notably, 

Akkermansia—aligned with axes associated with normotension in analysis—may signal 

improved gut epithelial integrity, and has been associated with obesity, diabetes, and 

inflammation48–50. Sporobacter and Ruminococcus—both aligned with axes associated with 

normotension—are members of the Ruminococcaceae family within the phylum Firmicutes. 

Several genera were associated with blood pressure in both PCoA and taxa-specific analysis; 

for example, Sporobacter and Anaerovorax were inversely associated with hypertension in 

both analyses. Taxa-specific analyses revealed additional genera-blood pressure associations, 

with Robinsoniella and Catabacter positively associated with both hypertension and SBP.

Based on our 16S rRNA sequence data, results did not support our hypothesis that taxa, at 

the family level, related to the production of short-chain fatty acids, particularly butyrate, are 

inversely associated with blood pressure. For this analysis, we focused on taxa at the family 

level, given the availability of published data for genes in butyrate-producing pathways at 

family and species, but not genus, levels36. One challenge with this approach is that our data 

may not be sufficiently precise, as we would expect appreciable variability in function 

within taxonomic levels available from 16S rRNA data. Analysis at the gene level, using 

whole-metagenomic sequencing, would allow improved pathway assignment based on the 

presence of relevant genes. Furthermore, short-chain fatty acids are a diverse class of 

molecules, with reported inverse associations between blood pressure and acetate51, 

Sun et al. Page 9

Hypertension. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



propionate44, and formate18. Vital, et al. provide a catalog of families and species relevant 

for butyrate production36, but there is a paucity of literature defining the full set of pathways 

for comprehensive analysis of short-chain fatty acids.

Our paper addresses a lack of population-based studies of the gut microbiota with respect to 

blood pressure. The CARDIA cohort allowed analysis of a socio-demographically diverse 

group of adults at a critical life period for increasing CVD risk. Blood pressure was 

measured by trained field center clinic staff using a standardized protocol. We used validated 

protocols for the collection and processing of samples and 16S rRNA sequencing. CARDIA 

collects extensive covariate information using standardized and validated instruments and 

we were able to control for major potential confounders, including health behaviors, anti-

hypertensive medication use, and clinic-based assessment of anthropometry.

Our study also has limitations. This was the first collection of microbiome data in CARDIA, 

which prevents the establishment of temporality in these cross-sectional analyses. In 

particular, we cannot distinguish the role of the gut microbiota in the development or 

progression of hypertension from the possibility that blood pressure itself, or associated 

covariates, may alter the microbiota. The gut microbiome has been associated with several 

CVD risk factors that correlate with blood pressure3–5; aside from BMI and health 

behaviors, we did not include other risk factors in regression modeling and it is possible that 

some of the microbial variability associated with blood pressure reflects other clinical 

measures. Our sample size was along the lines of other epidemiologic studies of gut 

microbiota, but it is possible that we lacked power in our multiple comparisons analysis of 

individual genera. In addition, there are few population-based studies with microbiome data, 

particularly with representation similar to CARDIA, and we lacked data for replication of 

results. Future analysis of blood pressure and microbiome in independent samples is needed 

to confirm our findings. Our analysis was limited to 16S rRNA sequence data, which yields 

compositional measures and taxonomic analysis to the genus level.

Perspectives

Our findings support an association between the gut microbiota and blood pressure in a 

biracial middle-aged population-based cohort. Microbial diversity was inversely associated 

with hypertension and SBP. Several specific genera were significantly associated with blood 

pressure after adjustment for potential confounders and for multiple comparisons, but 

findings were attenuated upon adjustment for BMI. Further studies are needed to quantify 

prospective associations in larger samples and with functional measures and refined 

compositional information to assess sub-genus taxonomies and functional differences that 

underlie observed associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and Significance: 1) What is new, 2) What is relevant?

What Is New?

• To our knowledge, this is the first population-based cohort study focused on 

investigating associations between gut microbial community composition and 

blood pressure.

What Is Relevant?

• Animal models have demonstrated mechanistic pathways through which the 

gut microbiota may influence blood pressure.

• Our results demonstrate significant associations between gut microbial 

composition and blood pressure.

Summary

In this population-based cohort of middle-aged U.S. Caucasians and African-Americans, 

there were significant differences in the composition of the gut microbiota with respect to 

blood pressure. Gut microbial diversity was inversely associated with both hypertension 

and systolic blood pressure. These results support additional research to understand the 

role of the gut microbiome in blood pressure.
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Figure 1. 
Microbial similarity biplots (joint PCoA axes) for study participants with hypertension 

(orange) or normal blood pressure (blue). Biplots shown for PCoA axes that explain at least 

5% of variability in microbial similarity. Centroids illustrate the 95% confidence interval for 

the mean location of each population group. The ten most abundant genera are shown with 

respect to their directional association along PCoA axes, with vector length indicating the 

strength of association. PERMANOVA p-values were 0.001 for hypertension in each of the 

five multivariable-adjusted models. Model 1 adjusted for sequencing run; Model 2 

additionally adjusted for age, race, gender, study center, and educational attainment; Model 

3 additionally adjusted for smoking, physical activity, and diet quality score; Model 4 

additionally adjusted for BMI; Model 5: adjusted for Model 3 covariates, with the addition 

of waist circumference.
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Figure 2. 
Microbial similarity biplots (joint PCoA axes) for study participants with respect to quartiles 

(Q1-Q4) of systolic blood pressure (Q1: red; Q2: brown; Q3: green; Q4: blue). Biplots 

shown for PCoA axes that explain at least 5% of variability in microbial similarity. 

Centroids illustrate the 95% confidence interval for the mean location of each population 

group. The ten most abundant genera are shown with respect to their directional association 

along PCoA axes, with vector length indicating the strength of association. PERMANOVA 

p-values were 0.001 for systolic blood pressure in each of the five multivariable-adjusted 

models. Model 1 adjusted for sequencing run; Model 2 additionally adjusted for age, race, 

gender, study center, and educational attainment; Model 3 additionally adjusted for smoking, 

physical activity, diet quality score, and antihypertensive medication; Model 4 additionally 

adjusted for BMI; Model 5: adjusted for Model 3 covariates, with the addition of waist 

circumference.
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Figure 3. 
Heatmap of associations between genera and hypertension from multivariable-adjusted 

models. Direction of association is indicated by color (blue: negative, red: positive) and 

FDR-adjusted p-values (q-values) are indicated by shading (bold: q-value<0.05, light: 

0.05≤q-value<1.0). Multivariable-adjusted regression models adjusted for: Model 2: 

sequencing run, age, race, gender, study center, educational attainment; Model 3: 

additionally adjusted for smoking, physical activity, and diet quality score; Model 4: 

additionally adjusted for BMI. Results are not shown for Model 5, which adjusted for Model 

3 covariates plus waist circumference, as Model 5 results were not meaningfully different 

from Model 4 results.
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Figure 4. 
Heatmap of associations between genera and systolic blood pressure from multivariable-

adjusted models. Direction of association is indicated by color (blue: negative, red: positive) 

and FDR-adjusted p-values (q-values) are indicated by shading (bold: q-value<0.05, light: 

0.05≤q-value<1.0). Multivariable-adjusted regression models adjusted for: Model 2: 

sequencing run, age, race, gender, study center, educational attainment; Model 3: 

additionally adjusted for smoking, physical activity, diet quality score, and antihypertensive 

medication use; Model 4: additionally adjusted for BMI. Results are not shown for Model 5, 

which adjusted for Model 3 covariates plus waist circumference, as Model 5 results were not 

meaningfully different from Model 4 results.
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Table 1.

Characteristics
1
 of CARDIA Microbiome Study participants and non-participants

2
 (2015–2016).

Participant characteristic Participants Non-Participants p-value
3

N 529 2,752

Age, yr 55.3 (3.4) 55 (3.6) 0.068

Female, % 53.9 57.9 0.09

African-American, % 44.4 48.4 0.09

Field center, % <0.0001

Birmingham 13.4 24.6

Chicago 53.4 14.9

Minneapolis 19.5 27.4

Oakland 13.8 33.1

Educational attainment, yr 15.9 (2.6) 15.8 (3.1) 0.17

Smoking status, % 0.30

Current 12.3 14.5

Former 22.2 23.3

Physical activity, intensity units, med(IQR) 277 (127, 510) 252 (116, 456) 0.14

BMI, kg/m2 29.4 (6.3) 30.8 (7.4) 0.0003

Waist circumference, cm 94.4 (15.6) 96.6 (16.6) 0.024

Diabetes, % 12.4 14.8 0.15

Systolic blood pressure, mmHg 119.4 (15.8) 119.8 (16.1) 0.92

Diastolic blood pressure, mmHg 72.9 73.2 0.91

Antihypertensive medication use, % 29.2 34.1 0.09

Hypertension, % 35.1 40.3 0.03

1.
Mean (SD) unless noted.

2.
Non-participants who attended the c examination.

3.
Differences in categorical variables assessed with chi-square and continuous variables with a non-parametric test for comparing means (or 

medians for physical activity).
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Table 2.

Multivariable-adjusted
1
 associations between gut microbial alpha diversity

2
 and blood pressure measures

3
 in 

CARDIA
4
.

Hypertension Systolic blood pressure

Model specification Odds ratio (95% CI) p-value Beta coefficient (95% CI) p-value

Shannon index

Model 1 0.83 (0.69, 1.00) 0.053 −1.69 (−2.99, −0.28) 0.018

Model 2 0.82 (0.67, 1.00) 0.052 −1.50 (−2.78, −0.22) 0.022

Model 3 0.86 (0.70, 1.06) 0.10 −1.44 (−2.72, −0.16) 0.028

Model 4 0.88 (0.71, 1.10) 0.26 −1.33 (−2.60, −0.052) 0.042

Model 5 0.90 (0.72, 1.11) 0.32 −1.29 (−2.57, −0.0087) 0.049

Richness

Model 1 0.72 (0.59, 0.88) 0.0014 −1.75 (−3.19, −0.31) 0.018

Model 2 0.70 (0.56, 0.87) 0.0013 −1.71 (−3.09, −0.33) 0.016

Model 3 0.75 (0.60, 0.94) 0.012 −1.52 (−2.92, −0.12) 0.033

Model 4 0.78 (0.61, 0.99) 0.037 −1.37 (−2.76, 0.031) 0.056

Model 5 0.79 (0.62, 1.00) 0.048 −1.32 (−2.73, 0.083) 0.065

1.
Multivariable-adjusted regression models from –glm– command in R: family=binomial for odds ratios; family=Gaussian for beta coefficients. 

Model 1 adjusted for sequencing run. Model 2 additionally adjusted for age, gender, race, clinical field center, and education. Model 3 additionally 
adjusted for diet quality score, physical activity, and smoking status. Model 3 was also adjusted for antihypertensive medication use in models for 
systolic blood pressure. Model 4 included Model 3 covariates, additionally adjusted for BMI. Model 5 included Model 3 covariates, additionally 
adjusted for waist circumference.

2.
Associations are per standard deviation unit of genus-level diversity measures: Shannon index mean (SD)=2.46 (0.35); richness (SD)=90.2 (11.3).

3.
Hypertensive was defined as taking an antihypertensive medication, having systolic blood pressure ≥ 140, or having diastolic blood pressure ≥ 90.

4.
n=529 participants at the CARDIA Year 30 exam (2015-2016).
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