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Pathway centrality in protein 
interaction networks identifies 
putative functional mediating 
pathways in pulmonary disease
Jisoo Park   1, Benjamin J. Hescott2 & Donna K. Slonim3,4

Identification of functional pathways mediating molecular responses may lead to better understanding 
of disease processes and suggest new therapeutic approaches. We introduce a method to detect such 
mediating functions using topological properties of protein-protein interaction networks. We define the 
concept of pathway centrality, a measure of communication between disease genes and differentially 
expressed genes. Using pathway centrality, we identify mediating pathways in three pulmonary 
diseases (asthma; bronchopulmonary dysplasia (BPD); and chronic obstructive pulmonary disease 
(COPD)). We systematically evaluate the significance of all identified central pathways using genetic 
interactions. Mediating pathways shared by all three pulmonary disorders favor innate immune and 
inflammation-related processes, including toll-like receptor (TLR) signaling, PDGF- and angiotensin-
regulated airway remodeling, the JAK-STAT signaling pathway, and interferon gamma. Disease-specific 
mediators, such as neurodevelopmental processes in BPD or adhesion molecules in COPD, are also 
highlighted. Some of our findings implicate pathways already in development as drug targets, while 
others may suggest new therapeutic approaches.

Identification of biological mechanisms underlying disease is crucial to the development of new therapeutic strat-
egies. A common approach to understanding disease processes is through functional analysis of either genes that 
are differentially expressed in disease, or of putative disease-causing genes identified through GWAS or targeted 
studies. However, it has long been noted that causal disease genes are not necessarily differentially expressed, 
and that differential expression does not easily lead to the discovery of disease genes1. In many cases, differential 
expression predominantly reflects the tissue-specific downstream effects of a disease-causing process that inte-
grates complex genetic and environmental responses. This makes differentially expressed genes useful as diagnos-
tic markers, but often poor as therapeutic targets2. Conversely, functional analysis of causal disease genes often 
doesn’t fully explain how these downstream responses occur3. To bridge this gap, there is a need to identify the 
functional pathways mediating the transcriptional response in disease.

We do so by considering the roles that proteins corresponding to disease genes or differentially expressed 
genes play in protein-protein interaction networks. Such networks are often represented by graphs, where the 
nodes represent individual proteins and edges represent physical interactions between pairs of proteins. We pos-
tulate that the functional pathways mediating disease response will disproportionately reflect communication 
between these two sets of proteins, and that if we look for such “central” pathways we will find mediators. This 
topological property is well captured by the concept of betweenness centrality, where fractional betweenness char-
acterizes how many of the shortest paths between all pairs of nodes passes through a given node4,5. We start by 
introducing a variant of node betweenness called disease fractional betweenness, which counts only the shortest 
paths between disease genes and differentially expressed genes for a given node. To identify putative mediating 
pathways in disease response, we then introduce a generalized notion of group centrality6 called pathway central-
ity, which aggregates disease fractional betweenness scores across all genes in a given pathway.
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We apply our novel pathway-centrality method to three pulmonary diseases that primarily affect patients at 
different stages of life: bronchopulmonary dysplasia (BPD), a neonatal complication of preterm birth; asthma, 
which is relevant across the lifespan but is often diagnosed in childhood; and chronic obstructive pulmonary dis-
ease (COPD), which encompasses a number of progressive lung disorders that predominantly affect the elderly. 
For each disease, we examine the pathway centrality of all KEGG pathways and all Biological Process gene sets 
from the Gene Ontology. Approximating significance via permutation, we identify sets with significantly high 
pathway centrality as functional mediating pathways. We use a separate collection of genetic interaction data 
to demonstrate systematically that the identified pathways fill the desired topological roles in the network. Our 
approach finds candidate mediators not discovered through traditional hypergeometric enrichment of the disease 
gene or differentially expressed gene sets. We also discuss published evidence consistent with our disease-specific 
findings.

While group centrality has previously been applied via an optimization framework to discover new groups of 
important nodes in gene networks7, it has not yet been used to identify the functional gene sets playing a pivotal 
role in disease. This approach is the first to identify functional pathways mediating signals between disease genes 
and differentially expressed genes by measuring disease-specific communication passing through pathway genes 
in protein-protein interaction networks. We emphasize that this aim is different from that of finding disease genes 
themselves. The pathways we identify appear to mediate cellular response to disease states, and yet their compo-
nent genes may be neither mutated nor significantly differentially expressed in disease.

The prior work most relevant to this effort is a collection of related results linking expression quantitative trait 
loci (eQTLs) to differentially expressed genes via protein-protein, protein-DNA, and phosphorylation networks. 
These studies were initially intended to find the causal gene in a disease-linked locus by tracing back the path of 
information flow from selected target genes that are differentially expressed8–11. Such efforts are related to ours 
in the sense that they examine information flow between genes linked to disease and differentially expressed 
genes. However, these analyses focus on only selected differentially expressed genes, and they do not directly 
point to mediating biological functions. Our focus is on the disease-related pathways, and our aim is to iden-
tify underlying biological functions that mediate cellular response in disease, rather than to identify genes with 
disease-causing mutations or variants.

We find that pathways involved in innate immunity, and several related signaling pathways including 
PDGF, JAK/STAT, and toll-like receptor signaling, are common mediators of all three pulmonary disorders. 
Disease-specific mediators include lipid homeostasis pathways in COPD, integrin mediated cell adhesion in 
asthma, and insulin-like growth factor receptor signaling in BPD. While a number of our findings have already 
been proposed as disease mediating pathways, diagnostic tools, or sources of therapeutic targets in previous pub-
lications, we discovered several novel mediators that may suggest new therapeutic approaches for these diseases.

Results
A pathway centrality approach to finding mediating pathways in disease.  To discover functional 
processes mediating disease response, we start by identifying a set of disease genes whose mutations or variants 
have been shown to cause the indicated disease. Additionally, we identify differentially expressed genes from 
previously-published transcriptomic profiles of disease-relevant tissues. Our protein-protein interaction network 
is derived from the HIPPIE database12. Details describing network construction, sources of disease genes, and 
expression data appear in the Methods section.

We define pathway centrality to measure the amount of information a set of pathway genes handles by count-
ing the shortest paths linking disease genes and differentially expressed genes. Specifically, let V be the set of all 
vertices in a protein-protein interaction network. While the classical definition of fractional betweenness (FB) 
for a node v ∈ V is the fraction of shortest paths between all pairs of nodes in the network passing through v, our 
pathway centrality score is based on a modified FB score which we call disease fractional betweenness (DFB). For 
node v and disease d, disease fractional betweenness only reflects the shortest paths between disease genes and 
differentially expressed genes that pass through v.

Formally, if D(d) is the set of genes in V associated with disease d, E(d) is the set of differentially expressed 
genes in V for disease d, Bs,t is the number of shortest paths between s and t, and Bs,t(v) is the number of shortest 
paths between s and t that pass through v, then disease fractional betweenness is defined as:

∑= ∈ ∈DFB v
B v

B
( )

( )

(1)s D d v t E d v
s t

s t
( )\{ }, ( )\{ }

,

,

We then define pathway centrality (PC) as the average disease fractional betweenness score across all genes in a 
pathway. Specifically, for a pathway k containing the gene set P(k), pathway centrality PC(k) is defined as:
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Once we have computed the pathway centrality score for a pathway k, we need a method to assess significance by 
characterizing how surprising it is to see a score at least as large as PC(k). The significance of the observed PC(k) 
score is assessed using a null distribution derived by selecting 10,000 random gene sets of size |P(k)|. The observed 
fraction of random sets with higher pathway centrality scores than PC(k) is reported as pcent(k), a rough measure 
of significance. (When the gene set or pathway is clear from context, we omit the argument and just write pcent).

However, developing a valid null distribution requires a non-trivial strategy for random gene set sampling, 
as pathway genes are known a priori to be relatively central in protein interaction networks. Thus, it is likely that 
pathway genes have higher fractional betweenness than those that are not involved in well-annotated functional 
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processes. Another fundamental issue is that different centrality measurements are highly correlated13; in par-
ticular, fractional betweenness centrality is correlated with degree centrality. This can be problematic because the 
degree of a gene strongly correlates with how “popular” or well-annotated the gene is. Thus, our pathway central-
ity analysis could favor pathways containing well-studied genes unless we force the random sampling process to 
mimic the original degree distribution.

To overcome such biases, we therefore impose restrictions on our random gene set sampling process. First, 
we require our random samples to be drawn from the collection of genes belonging to at least one pathway. We 
also want the degree distribution of each random gene set to resemble that of the candidate mediating pathway. 
However, because there are only a few high-degree genes, we cannot necessarily exactly match the degree of high 
degree genes in the candidate pathway while choosing from a sufficiently large population of alternatives. Thus, 
we “bin” the nodes by degree, such that similarly high-degree nodes are placed into a single bin for sampling. 
This process, described further in the Methods section, ensures that there are a sufficient number of choices for 
approximately matching the degree of high-degree nodes in mediating pathways.

Finding disease-specific and shared mediators of pulmonary disease.  Pathways with signifi-
cant pathway centrality in individual pulmonary data sets include known disease mediators, along with other 
pathways whose disease-relevance has not yet been identified. Tables 1 and 2 show a selection of the top Gene 
Ontology Biological Processes (GO BP) terms and KEGG pathways, respectively, identified in exactly one of the 
pulmonary disorders; the featured terms were manually selected to represent the functional range of the signif-
icant results. There are fewer significant KEGG pathways, but they tend to implicate similar functions to those 
found using GO BP gene sets. Full results for both pathway collections are available in Supplementary Table S1.

The functional annotations in Table 1 predictably identify immune processes as mediators of each of the three 
pulmonary disorders, but they highlight different aspects of immunity and signaling that appear to distinguish 
the individual diseases. Significant immune mediators in asthma include cells of both myeloid and lymphoid 
origin, emphasizing the role of the innate immune response (e.g., mast cell activation; macrophage activation) in 
the disease. In contrast, those unique to COPD highlight adaptive immunity. Because both innate and adaptive 
immune pathways are known to play a role in both diseases14, these results suggest that the innate immune path-
ways mediating the COPD response (such as Th1) are also implicated in other airway disorders.

When we look at pathways that play a significant role across all three pulmonary disorders (Table 3), we again 
find a preponderance of inflammatory and immune processes. Significant immune pathways across all three 
data sets largely focus on innate immunity, though there are some predominantly adaptive processes (e.g. T cell 
signaling) and others (IL-1, cytokine signaling) that have roles in both. Several specific signaling pathways and 
systems are implicated, including JAK/STAT signaling, toll-like receptor signaling, PDGF, interferon gamma, and 
the renin-angiotensin and complement systems. (Fig. 1(a) shows the JAK/STAT pathway topology in BPD as an 
example).

To distinguish our significant mediating pathways from enriched functions within the disease-related 
genes, we next assessed whether the identified pathways were significantly enriched (hypergeometric, 
Benjamini-Hochberg adjusted FDR < 0.05) in either the disease gene set or the differentially-expressed gene set 
for the indicated disease. Many significant mediating pathways are not detectable by functional enrichment anal-
ysis. Pathways in Tables 1 and 2 marked with an asterisk in the right-most column meet a more conservative cri-
terion: no significant enrichment of either the indicated pathways, nor any with a substantially similar function, 
was detected. For example, in BPD, the GO gene set “Epidermal Growth Factor Receptor Signaling Pathway” is 
identified as a significant mediator. Yet the disease and differentially expressed genes in BPD did not show signif-
icant enrichment of this or any gene sets related to EGFR. The ability of pathway centrality to identify such medi-
ating gene sets suggests that the use of network structure in computing pathway centrality implicates pathways 
that would not be found by traditional enrichment approaches. Supplementary Table S2 lists the hypergeometric 
enrichment scores for disease and differentially expressed gene sets for all significant pathways.

Genetic interaction data confirms the mediating topology of identified pathways.  One way to 
verify that the proposed mediating pathways truly include genes mediating responses to disease genes would be 
to identify an excess of epistatic relationships between them. For example, if a mediating pathway looks like that 
shown in Fig. 1(b), one might expect a higher likelihood of seeing certain kinds of genetic interactions between 
a disease gene gD in set D and a mediating gene gP from set P(k)* than between gD and genes that are not in a 
mediating pathway for that disease. The genetic interactions of most interest are “alleviating” or positive interac-
tions, where the deleterious effect of the double mutant of both gD and gP is less severe than would be predicted by 
combining the independent effects of individual mutations in gD or gP. Such relationships might arise when gP is 
part of a pathway mediating the response to gD.

However, because it is difficult to find sufficient numbers of verified human genetic interactions, we additionally 
collected alleviating (positive) genetic and phenotypic suppression genetic interactions from the model organisms 
Schizosaccharomyces pombe, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. For 
each gene set P(k), we then define pmed(k), the probability of finding the observed number of positive genetic 
interactions between disease genes and genes in P(k) through a similar binning approach to that used for pcent(k).

To assess how surprising it is to see the observed number of such positive genetic interactions between the dis-
ease genes and the pathway, we compute a null distribution of the number of alleviating or suppressing interactions 
between the same set of disease genes and 10,000 random gene sets of the same size as the candidate mediating 
pathway. Again, we impose restrictions on the source of our random gene sets: they must be drawn from a pool of 
genes that belong to at least one pathway in the collection and that are downstream genes of any alleviating genetic 
or phenotypic suppression interactions (Fig. 2(a)). We used a binning strategy analogous to that for pcent to approx-
imately match the in-degree distributions of known downstream genes of disease genes and our random samples.

https://doi.org/10.1038/s41598-019-42299-3


4Scientific Reports |          (2019) 9:5863  | https://doi.org/10.1038/s41598-019-42299-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

We would then like to assess whether a significant disease-mediating pathway k having a low pcent value is 
more likely to have a low pmed value. If it does, that indicates an excess of positive genetic interactions between 
disease genes and genes in P(k), suggesting that the disease genes are potentially located “upstream” of the medi-
ating pathway.

Pathway asthma p-value BPD p-value COPD p-value Not HG

blue Positive Regulation of Mast Cell Activation 0.0013 0.0651 0.2274

blue Myeloid Cell Activation Involved in Immune Response 0.0016 0.1200 0.2881

blue Leukocyte Degranulation 0.0075 0.1483 0.3737

blue T Cell Mediated Immunity 0.0033 0.0613 0.9692

blue Antigen Processing… via MHC class II 0.0050 0.0560 0.6590

blue Positive Regulation of B Cell Differentiation 0.0068 0.0942 0.2204 *
blue Macrophage Activation Involved in Immune Response 0.0077 0.0705 0.1990

green Cation Transport 0.0004 0.1773 0.1186

green Positive Regulation of Calcium Mediated Signaling 0.0052 0.0541 0.4756

green Positive Regulation of Nitric Oxide Synthase Activity 0.0053 0.1376 0.1330

yellow Positive Regulation of ERBB Signaling Pathway 0.0030 0.1172 0.2060 *
red Positive Regulation of Cell Adhesion Mediated by Integrin 0.0080 0.0743 0.3015

pink Amyloid Precursor Protein Metabolic Process 0.0027 0.8259 0.7919 *
pink Regulation of Glucose Import 0.0044 0.0944 0.2334

blue Negative Regulation of TNF Mediated Signaling Pathway 0.3954 0.0042 0.1453

blue Negative Regulation of Antigen Receptor Mediated Signaling 0.2772 0.0004 0.2115 *
blue Negative Regulation of T Cell Receptor Signaling Pathway 0.2701 0.0005 0.2132 *

blue B Cell Mediated Immunity 0.1489 0.0006 0.0667 *
blue Regulation of Interleukin 1 Secretion 0.4228 0.0083 0.4387

yellow Epidermal Growth Factor Receptor Signaling Pathway 0.1158 0.0000 0.1275 *
yellow Regulation of Insulin Like Growth Factor Receptor Signaling 0.4711 0.0002 0.1137 *
yellow Activation of MAPKK Activity 0.1732 0.0033 0.4494 *
yellow VEGF Receptor Signaling Pathway 0.1577 0.0063 0.0732 *
orange Forebrain Development 0.3310 0.0000 0.1579 *
orange Cerebral Cortex Cell Migration 0.3632 0.0016 0.9484 *
orange Neuroepithelial Cell Differentiation 0.0947 0.0031 0.9680 *
orange Auditory Receptor Cell Differentiation 0.0814 0.0008 0.8433 *
red Positive Reg. of Substrate Adhesion Dependent Cell Spreading 0.4722 0.0005 0.0626 *
red Actin Filament Organization 0.1692 0.0034 0.1645

red Wound Healing 0.0665 0.0002 0.1049

pink Regulation of Glucose Metabolic Process 0.5563 0.0041 0.2729 *
pink Positive Regulation of Phospholipid Metabolic Process 0.1055 0.0006 0.1371

blue Negative Regulation of TGF Beta Receptor Signaling Pathway 0.1454 0.1127 0.0001

blue Positive Regulation of Adaptive Immune Response 0.2672 0.2108 0.0004

blue Positive Regulation of Natural Killer Cell Activation 0.3802 0.1776 0.0026 *
blue Negative Regulation of Leukocyte Migration 0.1067 0.2482 0.0038

green Response to Metal Ion 0.0588 0.0729 0.0000

green Reactive Oxygen Species Metabolic Process 0.1188 0.1878 0.0003

green Response to Increased Oxygen Levels 0.6638 0.2764 0.0034

green Negative Regulation of Apoptotic Signaling Pathway 0.3339 0.1617 0.0023

red Regulation of Extracellular Matrix Organization 0.1161 0.0692 0.0006

pink Regulation of Amyloid Precursor Protein Catabolic Process 0.1834 0.1097 0.0038 *
violet Lipid Homeostasis 0.5030 0.1191 0.0000 *
violet Anion Homeostasis 0.3261 0.0796 0.0022

violet Acylglycerol Homeostasis 0.6552 0.1044 0.0033 *

Table 1.  Disease-specific mediating GO Biological Processes for each pulmonary disorder. Selected GO terms 
with pcent < 0.01 (highlighted in bold) in exactly one of the pulmonary disorders. Full results are available in 
Supplementary Table S1. Colors indicate functional classes; immune: blue; oxygen/oxidative-stress response: 
green; signaling: yellow; neurodevelopment: orange; adhesion/ECM/structural: red; metabolic: pink; 
homeostasis: purple. An asterisk on the right (“Not HG”) means that neither that pathway nor any similar 
pathway is significantly enriched (with hypergeometric (HG) FDR < 0.05) in either the disease gene set or the 
differentially-expressed gene set for the indicated disease.
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To capture this relationship, we compute a histogram of the percentage of pmed scores below 0.05 for each of 
20 quantiles of possible pcent values. A sample plot of these frequencies is shown in Fig. 2(b); plots for all data sets 
and gene set collections are available as Supplementary Figure S1. One-sided, non-parametric Wilcoxon tests 
comparing the distribution of pmed values in the first quantile (i.e., pcent below 0.05) to the distribution in all the 
other quantiles (pcent ≥ 0.05) confirm that the most significant mediating pathways are associated with lower pmed 
scores in all the pulmonary disease cases. These (raw) significance values are shown in Table 4.

As an example, the KEGG MAPK signaling pathway has a pcent score of 0.0038 in BPD. There are ten support-
ing alleviating genetic interactions between BPD disease genes and genes in the KEGG MAPK signaling path-
way: PLAU-HRAS, PLAU-MAP2K1, TIRAP-MP3K7, TIRAP-TRAF6, TLR4-ECSIT, TNF-CHUK, TNF-RAC, 
FGFR2-RAC1, FGFR2-KRAS, and FGFR2-CDC42; leading to a corresponding pmed score below 0.0001. This 
pathway is one of the more than a third of pathways with pcent below 0.05 in BPD whose pmed score is also below 
0.05, contributing to the dark bar on the left-hand side of Fig. 2(b).

Both the Wilcoxon tests and the plots support the conclusion that there is enrichment of alleviating genetic 
relationships between disease genes and pathway genes for the pathways whose pcent values are deemed signifi-
cant, confirming that pathway centrality is indeed generally finding gene sets with the desired network topology.

Discussion
We have introduced a new centrality-based method to identify functional pathways mediating disease responses 
by dominating communication between disease and differentially expressed genes. Although there are many 
issues with the available genetic interaction data, the conservation of genetic interactions across species being 
one of the most salient, systematic evaluation using genetic interactions confirms that our method finds pathways 
with the desired network topology. Recent work discussing the plethora of GWAS hits with modest effects sug-
gests that functional network analysis is essential for translating these hits into actionable knowledge15. Our work 
illustrates one such approach.

The journey from identifying disease-relevant pathways to the discovery of novel and effective therapeutics 
may involve multiple steps, but it has been widely considered to be a promising approach to drug-discovery in 
the genomic era. One question is whether the pathway is simply a list of potential targets. In many cases the story 
will be more complex than that; in particular, it is not always plausible that there is a single targetable molecule 
that will disrupt the relevant processes16. Still, recent work in airway diseases emphasizes that understanding the 
relevant pathways is essential to discovering more effective treatments modifying their functions17.

Several of the pathways identified by pathway centrality are already under consideration as therapeutic tar-
gets for the indicated disease. For example, the KEGG gene set “Cell Adhesion Molecules (CAMS)” tops the 
unique KEGG list in COPD (Supplementary Table S1). Prior work suggests that adhesion molecules also play 

Pathway asthma p-value BPD p-value COPD p-value Not HG

blue FC Gamma R Mediated Phagocytosis 0.0081 0.1145 0.1830

blue B Cell Receptor Signaling Pathway 0.0133 0.1030 0.1444

blue Endocytosis 0.0092 0.0523 0.4102

yellow Neurotrophin Signaling Pathway 0.0464 0.0921 0.4021 *

pink Glutathione Metabolism 0.0265 0.8872 0.2423

pink Sulfur Metabolism 0.0049 1.0000 0.5412 *

blue Allograft Rejection 0.3217 0.0003 0.1082

blue Intestinal Immune Network for IGA 
production 0.3588 0.0004 0.2877

blue Epithelial Cell Signaling in Helicobacter 
Pylori Infection 0.2658 0.0060 0.2032

blue Graft Versus Host Disease 0.3037 0.0019 0.2215

green Calcium Signaling Pathway 0.6121 0.0331 0.4865 *

yellow GNRH Signaling Pathway 0.5226 0.0021 0.1937 *

yellow MAPK Signaling Pathway 0.1084 0.0038 0.2018

yellow ERBB Signaling Pathway 0.2109 0.0122 0.0834 *

yellow VEGF Signaling Pathway 0.2003 0.0153 0.1221 *

orange Dorso-ventral Axis Formation 0.4219 0.0112 0.2261 *

red Regulation of Actin Cytoskeleton 0.3866 0.0000 0.0684

red Tight Junction 0.5570 0.0237 0.6362 *

red Gap Junction 0.4007 0.0022 0.1372

red Cell Adhesion Molecules CAMS 0.2227 0.0884 0.0014

pink Arachidonic Acid Metabolism 0.1433 0.8886 0.0048

pink Arginine and Proline Metabolism 0.5466 0.4317 0.0466 *

Table 2.  Disease-specific mediating KEGG pathways for each pulmonary disorder. Selected pathways 
with pcent < 0.05 (highlighted in bold) in exactly one of the pulmonary disorders. The color code indicating 
functional classes is the same as in as Table 1.
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a significant role in the pathogenesis of COPD18, and that clinical trials of therapeutics regulating adhesion and 
integrin are underway for both COPD and asthma19. “Positive regulation of cell adhesion mediated by integrin,” a 
non-overlapping GO gene set we uniquely identified as a mediator in asthma, has more recently been considered 
as a targetable process to reduce airway hyper-responsiveness20. Therefore, it is important that although adhesion 
and leukocyte chemotaxis are important to all three disorders21–23, the pathway centrality approach highlights 
different sets of genes mediating these responses.

Similarly, the JAK/STAT pathway, implicated as a mediator in all three disorders, has been suggested as an 
asthma target through inhibitors of activating cytokines and receptors24. JAK pathway inhibitors are in devel-
opment for a number of inflammatory disorders25. Work in animal models has suggested that targeting this 
pathway can reduce airway hyperresponsiveness but has widespread effects, leading to efforts to develop inhaled 

Pathway asthma p-value BPD p-value COPD p-value

GO biological process terms

blue Innate Immune Response 0.0000 0.0000 0.0000

blue Response to Bacterium 0.0001 0.0001 0.0000

blue Cellular Response to Cytokine Stimulus 0.0001 0.0002 0.0000

blue Cellular Response to Interferon Gamma 0.0005 0.0008 0.0047

blue Positive Regulation of Alpha Beta T Cell Activation 0.0072 0.0011 0.0012

blue Response to Interleukin 1 0.0117 0.0045 0.0055

blue Regulation of Toll Like Receptor Signaling Pathway 0.0100 0.0266 0.0039

yellow Regulation of PDGF Receptor Signaling 0.0054 0.0001 0.0011

red Platelet Degranulation 0.0000 0.0000 0.0000

red Regulation of Homotypic Cell Cell Adhesion 0.0010 0.0000 0.0002

red Regulation of Vasoconstriction 0.0003 0.0044 0.0000

pink Regulation of Lipid Metabolic Process 0.0005 0.0072 0.0005

KEGG pathways

blue Cytokine Cytokine Receptor Interaction 0.0000 0.0000 0.0000

blue Chemokine Signaling Pathway 0.0029 0.0022 0.0242

blue Complement and Coagulation Cascades 0.0117 0.0000 0.0166

blue Natural Killer Cell Mediated Cytotoxicity 0.0165 0.0029 0.0243

yellow JAK-STAT Signaling Pathway 0.0000 0.0091 0.0137

red Renin Angiotensin System 0.0095 0.0007 0.0025

Table 3.  Common mediating pathways of all three pulmonary disorders. Selected GO Biological Process 
terms and KEGG pathways with significant (pcent < 0.05) in all three pulmonary disorders. The color key is as in 
Table 1. Full results are available in Supplementary Table S1.

Figure 1.  (a) Mediating topology of the JAK-STAT signaling pathway in BPD. One of the significant mediating 
pathways for bronchopulmonary dysplasia (BPD) is the KEGG JAK-STAT signaling pathway. Here, mediating 
pathway genes are colored dark green and appear between BPD disease genes (red) and differentially expressed 
genes (blue). Edges directly linking the disease genes to the pathway or the pathway to the differentially 
expressed genes in BPD are shown. The pathway is visualized using cytoscape49. (b) Idealized topological 
property of disease-mediating pathways. Let D(d) be a set of disease genes and E(d) be a set of differentially 
expressed genes for disease d. Genes in P(k)*, a significant mediating pathway of disease d with pcent(k) < 0.05, 
are expected to play central roles in passing signals from D(d) to E(d).
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therapeutics targeting the JAK pathway for both COPD and asthma26. The role of JAK/STAT signaling in bron-
chopulmonary dysplasia is less clear, but it has been suggested that it plays a role in airway smooth muscle 
mitogenesis, implicated in both asthma and BPD27, and postulated that it may be an alternative mediator of the 
oxidative stress response in both diseases28. (Fig. 1(a) shows a subset of this pathway and the PPI network for 
BPD.) Thus, our work suggests that if safe and effective compounds targeting this pathway are developed for 
asthma or COPD, there may be some potential for their relevance in BPD as well.

Toll-like receptor (TLR) signaling, which activates the innate immune response and was implicated in all three 
diseases, is another familiar part of the story of airway hyperreactivity and fetal lung development29. TLR poly-
morphisms have been linked to an increased risk of developing BPD30, and TLR agonists are already being tested 
for therapeutic efficacy in asthma31. However, the role of this system in COPD is not as well studied. Aspects of 
the innate immune response are often demonstrably suppressed in COPD patients32, consistent with our results in 
the previous section showing that most COPD-specific immune response pathways regulate the adaptive immune 
response. TLR polymorphisms also play a role in disease susceptibility and severity33,34. Our work therefore pro-
vides evidence for a role for TLR pathways in the diagnosis, stratification, and treatment of COPD.

Unique to BPD is a collection of mediating neurodevelopmental pathways. BPD has long been known to be 
associated with worse neurodevelopmental outcomes than those observed in infants without BPD delivered at 
similar gestational ages35. Recently, BPD has been shown to be associated with a measurable decrease in IQ36. 
Whether that decrease is a consequence of BPD or arises from a common cause is unknown. Our results, showing 
neurodevelopmental pathways mediating the expression response in the blood of 5 day old infants who go on to 

Figure 2.  (a) Systematic confirmation of significant mediating pathways. If identified pathways are truly 
mediating a disease response, the pathway genes are likely to be downstream of the corresponding disease genes. 
This topology can be captured by an excess of epistatic relationships between disease genes and a mediating 
pathway genes. To test whether our significant disease-mediating pathway genes form such topologies with the 
disease genes more than others, we first collected alleviating genetic interactions from human and a few model 
organisms. A is the set of all disease genes and B is the set of “downstream” genes that have alleviating genetic 
interactions with genes in A. We count x, the number of alleviating genetic interactions between disease genes 
and genes belonging to the specific identified mediating pathway (here x is the number of red edges), and then 
assess significance by calculating the probability that a random gene set of equal size has at least x alleviating 
genetic interactions with the disease genes. The null distribution is learned from 10,000 random samples 
drawn from a pool of genes of any known alleviating genetic interactions (set B). (b) Histogram showing the 
relationship between pcent and pmed, for GO BP gene sets and BPD. Each bar represents the fraction of pathways 
with pcent <0.05 in the designated range (from the labeled value minus 0.05, to the labeled value) that also have 
pmed <0.05. The plot shows that many of pathways with significant pcent scores (below 0.05, shown by the dark 
bar) also have low pmed scores.

Wilcoxon p-value

Asthma BPD COPD

BP 2.57E-05 5.78E-26 0.0124

KEGG 0.0263 2.18E-07 0.0106

Table 4.  Significance of relationships between pcent and pmed. The table shows the resulting p-values of one-sided 
Wilcoxon tests comparing the distribution of pmed values of the pathways with pcent < 0.05 to that of the pathways 
with pcent ≥ 0.05. pmed values of the pathways with pcent < 0.05 are significantly smaller than those of all other 
pathways.
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develop BPD, suggest that some of the association is likely due to molecular causes, rather than, say, the conse-
quences of neonatal hypoxia.

The identification of common mediating pathways in airway disease throughout the lifespan may shed light on 
potential implications of neonatal or childhood respiratory disorders. While the discovery of common immune 
pathways here is not surprising, the distinction between which pathways appear to be disease specific and which 
are common may be informative. Meanwhile, the shared involvement of vasoconstriction and adhesion pathways 
suggests a different commonality that might be exploited to mitigate later pulmonary issues in children with BPD 
or asthma.

One potential issue affecting our work is that disease genes and differentially expressed genes are not nec-
essarily distinct gene sets. We therefore treat genes in both sets as differentially expressed genes only. However, 
we also note that the overlap between these groups is sufficiently small (asthma: 1, BPD: 1, COPD: 9) that it is 
unlikely to substantially affect our results. Similarly, one could imagine that separating up- and down-regulated 
differentially-expressed genes might provide further power for this type of analysis. Exploring this hypothesis 
could be a fruitful avenue for future work, although the lack of directionality in many of the considered gene sets 
makes implementation of such an approach non-trivial.

Our method also suggests a new way to analyze protein-protein interaction networks in the context of a dis-
ease of interest. Disease-specific network analysis usually excludes genes not known to be associated with the dis-
ease. Our approach enables disease-specific analysis without altering the topology of protein-protein interaction 
networks, and accounts for roles of neighboring genes in disease-related communication. It also can be applied to 
any type of molecular network. We see an opportunity to improve the chance for finding novel disease-mediating 
pathways by combining networks of protein-protein interactions and other types of molecular data, such as tran-
scription factor-target interactions.

Overall, we have demonstrated that our pathway-centrality method finds functional mediators of disease 
using complementary interaction data. We have seen that the identified pathways include some therapeutic tar-
gets already in development, suggesting that others may be similarly promising but novel. Our findings confirm 
established connections of pulmonary disorders with inflammatory and immune processes, signaling processes, 
and airway remodeling. We expect that this approach may be applied more generally to discover relevant and 
informative pathways for any disease or phenotype of interest.

Methods
Protein-protein and genetic interaction networks.  We use two biological networks in our exper-
iments. To measure pathway centrality, physical protein-protein interactions were collected from the Human 
Integrated Protein-Protein Interaction rEference (HIPPIE)12 database. HIPPIE contains experimentally verified 
protein interactions with confidence scores. We downloaded the interaction data (version 2.1) on September 8, 
2017 and selected only those interactions described as “high confidence” (≥0.73), as these interactions are sup-
ported by more reliable evidence. We worked with the largest connected component extracted from the network, 
which contains 62,679 interactions between 12,064 proteins. Note that we use the protein to gene mapping pro-
vided by the HIPPIE database to map protein-protein interactions. Thus, although our canonical entities in the 
network are represented by Entrez gene identifiers, we refer to these interactions as protein-protein interactions 
throughout the manuscript.

To compute pmed scores based on genetic interaction data, we looked for genetic interaction data featuring 
alleviating (positive) genetic and phenotypic suppression interactions. Because relatively few of these genetic 
interactions are known for humans, we additionally collected such interactions from Schizosaccharomyces pombe, 
Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. These interactions came from 
BioGRID37 (version 3.4.160), the Saccharomyces Genome Database (SGD project, http://www.yeastgenome.org), 
and Flybase38, all downloaded on May 23, 2018. To find human homologous interaction pairs, we use a mapping 
downloaded from the HomoloGene database39 on July 19, 2016 (the current version was uploaded on April 14, 
2014). This approach yielded 9,395 pairs of putative positive human genetic interactions.

Disease-related genes and functional gene sets.  For Asthma and COPD, 111 and 192 disease genes 
were collected from recent reviews of asthma40 and COPD genes41. Lacking a similar-scale summary of BPD 
genetics, we collected 81 genes associated with BPD from Online Mendelian Inheritance in Man (OMIM)42 and 
Genopedia43, as described in44. These datasets were downloaded on April 4, 2018.

Gene expression microarray profiles for Asthma and BPD were obtained from the GEO database (acces-
sion numbers GSE4302 and GSE32472, respectively). The first measured differential expression in airway epi-
thelial cells between healthy controls and asthma patients45, while the second examined expression in peripheral 
blood cells from infants born preterm with or without BPD46. From the preterm study, we used only samples 
taken on postnatal day 5 (the earliest time point). We selected as differentially expressed genes between disease 
and control groups those with an adjusted Benjamini-Hochberg t-test p-value below 0.01, yielding 82 and 422 
expression-related genes in asthma and BPD, respectively. For COPD, we downloaded RNA-seq EdgeR results 
comparing expression in lung cells from COPD patients and controls (GSE57148)47. Relying on the analysis 
methods from the original study, since RNA-seq and Affymetrix analysis pipelines differ, we identified 266 signif-
icantly differentially expressed genes with an EdgeR q-value below 10−10.

Note that there may be disease genes that are also differentially expressed in that disease. To avoid confusion 
about how to use these in computing pathway centrality, we removed genes from the disease gene sets that also 
appeared in the corresponding set of differentially expressed genes. Disease genes and differentially expressed 
genes are further excluded from our experiments if they do not have any known interactions with other genes 
in our protein-protein interaction network data. Removing those genes without known interactions results in 86 
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(asthma), 70 (BPD) and 146 (COPD) disease genes, and 42 (asthma), 216 (BPD) and 198 (COPD) differentially 
expressed genes.

Supplementary Figure S2 shows the overlaps between these three disease gene sets and between the three 
differentially-expressed gene sets. There is very little overlap seen in the differentially-expressed gene sets, and at 
least half the disease genes for each disease are unique. Thus, common mediating pathways across all three net-
works are unlikely to have arisen from shared shortest paths between identical sets of genes.

Both the Gene Ontology and the KEGG gene set collections were downloaded from the Molecular Signature 
DataBase (MSigDB)48 on April 3, 2018 (http://software.broadinstitute.org/gsea/msigdb). This GO gene set col-
lection includes 4,436 Biological Process (BP) terms and 15,578 genes, and the KEGG collection includes 186 
pathways and 5,266 genes.

Assessing significance by matching degree distribution of random samples through binning.  
To compute pcent, we sort nodes by degree and place nodes of increasing degree into one bin, with all nodes of 
the same degree placed in the same bin, until the size of the bin is above a threshold. The algorithm also checks 
the last bin, and merges it with the previous bin if the size of the last bin is less than half of the size threshold. We 
used a bin size of b = 20 for the results presented here, as this appeared to give reasonable sized bins and to avoid 
combining nodes with too large a degree range. Supplementary Figure S3 shows the bin sizes and degree ranges 
for b = 20.

To determine the algorithm’s sensitivity to this bin size, we compared pcent values calculated using bin size 
b = 20 to pcent values calculated using size thresholds of 10 and 40 (i.e., b/2 and 2b). Table 5 shows that pcent values 
calculated using different bin size thresholds are highly correlated. Our conclusion is that the pcent values are fairly 
robust to two-fold variation in the bin size, suggesting that our somewhat arbitrary choice of size 20 has at most 
a modest impact on the results.

The process to compute pmed is identical to that for computing pcent, except for the bin sizes. Here, we chose 
5 for the bin size threshold, as it generated a reasonable range of bin sizes. As above, the resulting pmed values 
were analogously determined to be robust to the choice of this size threshold; Pearson correlations between pmed 
values calculated using bin sizes 3, 5, and 10 range from 0.9960 to 0.9998, all with Python Scipy p-values for the 
correlation <0.0001.

Data Availability
All programs we designed and implemented for this study are available for download at https://github.com/Tufts-
BCB/pathway-centrality. Data generated during our experiments are in supplementary information files, and also 
accessible at http://bcb.cs.tufts.edu/jpark/pathway-centrality/. This repository includes an excel file containing 
our full experimental results, two pdf files containing two Venn diagrams and twelve R plots, and three cytoscape 
session files.
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