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ABSTRACT
The role of extracellular vesicles (EV) in osteoarthritis has
become the focus of much research.  These vesicles were
isolated from several cell types found in synovial joint
including chondrocytes and synovium. As articular cartilage
is an avascular tissue  surrounded by synovial fluid, it is
believed that EV might play a crucial role in the homeostasis
of cartilage and also could hold key information in the
pathogenesis of osteoarthritis. This is thought to be due to
activation  of pro-inflammatory factors leading to a catabolic
state and degradation of cartilage. In addition, due to the
nature of articular cartilage lacking neuronal innervation,
knowledge of EV can contribute to identification of novel
biomarkers in this debilitating condition. This can be either
directly isolated from aspirate of synovial fluid or from
peripheral blood. Finally, EVs are known to shuttle
important signalling molecules which can be utilised as
unique modality  in transferring therapeutic compounds in a
cell free manner. 
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The synovial joint and articular cartilage
Articular cartilage is composed of an extensive extracellular
matrix (ECM) in which a single cell type, the chondrocyte, is
embedded. Chondrocytes are unique cells that are
approximately 10 µm in diameter and are sparsely
distributed within the ECM, accounting for only 2-5% of the
total tissue volume1-2. Chondrocytes have many organelles
including the endoplasmic reticulum and Golgi apparatus,
which are required to produce large quantities of essential
matrix components. In addition, these cells have intracellular

secretory vesicles, lysosomes and intra-cytoplasmic
filaments all contributing to maintaining joint homeostasis.
The most common pathological condition affecting synovial
joint is osteoarthritis.

Osteoarthritis (OA): A brief overview
Worldwide, osteoarthritis (OA) affects one in three people
between the ages of 18-643, often leading to a debilitating
lifestyle for sufferers of the condition.  Unfortunately, this
number is on the rise with an increasing aging population
and related conditions, such as obesity, increasing the
numbers of those being diagnosed.   Osteoarthritis was
generally considered to be a ‘wear and tear’ disease,
predominantly affecting articular cartilage and subchondral
bone, maintained with painkillers, non-steroidal
anti-inflammatories and, in the late stage, joint replacement4.
However, this somewhat simplistic concept is being
challenged, resulting in a paradigm shift of our view of the
pathophysiology of OA.  Osteoarthritis is now recognised as
a complex syndrome effecting multiple tissues within the
synovial joint and involving many complicated homeostatic
pathways5. The discovery of stem-cell like cells and
MSC-OA cells within the cartilage has also led to exciting
research that has extended our knowledge of the joint and
thus cartilage tissue repair6,7.

In the articular cartilage of healthy adults, there is an
equilibrium between catabolism and anabolism to ensure the
ECM is maintained both structurally and functionally
throughout the life-span of an individual8. During the
progression of OA, chondrocytes and other tissues become
activated due to exposure to abnormal environmental insults
and the homeostatic balance is altered. Pro-inflammatory
factors are released and catabolic activation begins resulting
in a nett degradation of cartilage ECM.  The mechanisms of
cartilage degradation are well understood. Early OA is
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defined by aggrecanases (ADAMTS)-induced proteoglycan
loss, whereas late-stage OA is characterised by subsequent
degradation of the collagen network.  This latter stage is
induced by various matrix metalloproteinases (MMPs),
which cause irreversible collagen depletion and chondrocyte
apoptosis, ultimately compromising the tissue’s functional
ability of mechanical force dissipation, an irreversible
process whereby the cartilage cannot repair9-11. 

Research into OA is focused on ways that we can halt the
progression of the disease and enhance the natural repair
mechanism of the tissues, whether this is by using drugs to
prevent catabolic pathways, implanting bio-scaffolds
seeding with cells, potentially cartilage-MSCs, or using
genetic techniques to ‘change’ cell function, we still have a
long way to go before these treatments reach the patient.  It
is clear however, that the biology of the chondrocyte is an
essential avenue of research that needs to be investigated in
order that we might learn how the components of the cell
function and how we can use these findings to develop
preventative or reparative treatment regimes.

Extracellular vesicles (EVs)
Extracellular vesicles (EVs) are a group of submicron,
membrane-derived vesicles secreted by all human cell
types12-13.  The term “extracellular vesicles”  is largely used to
describe exosomes, microvesicles and apoptotic vesicles
which differ in size, biogenesis and biomolecular
composition, although there is no clear cut test to classify
each sub-group of vesicles. 

Briefly, exosomes are generally small in diameter (<150 nm)
and are produced as part of the endocytic pathway from
fusion of multivesicular bodies with the plasma membrane.
Hence, exosomes typically contain endocytic proteins such
as Rab proteins, Alix, TSG101 and Lamp 214. In contrast,
microvesicles arise from a disruption of both the

phospholipid asymmetry and the actin cytoskeleton of the
plasma membrane resulting in budding of vesicles directly
into the extracellular space15. Consequently, microvesicles
are generally larger in diameter compared with exosomes
(100 nm - 1µm), are more heterogeneous and bear many
surface characteristics of the cell of origin.  Apoptotic
vesicles are also classified as EVs, formed by plasma
membrane blebbing of cells undergoing apoptosis. These are
the largest, ranging from 100-5000nm in size.  The EVs are
thought to harbour specific tetraspanins including CD9,
CD63 and CD81, as well as biomolecules from the cell of
origin and integrins – receptor proteins that can bind and
respond to the ECM15-16.  Functional lipids and nucleic acids,
predominantly mRNAs and microRNAs (miRs) can also be
present alongside cellular components such as DNA and
RNA which can be delivered to and affect the function of
cells.  The presence of these biological cargo has resulted in
research into the role of EVs in various physiological
processes, including haemostasis, angiogenesis and
immunity17-19.  More recently focus of current EV research
has concentrated on their roles in disease as alterations in
quantity and content of EVs have been shown to have
detrimental effects in numerous types of cancers,
cardiovascular and autoimmune diseases20-22. 

EVs and OA
EVs have been detected in a variety of biological fluids, most
commonly plasma, urine and conditioned culture media but
relevant to our discussion here is that EVs are found in the
synovial fluid that fills the joint space23,24. The isolation of
EVs from synovial fluid is fairly recent and therefore, less
well characterised than other biological fluids25.
Consequently, the majority of evidence for a role for EVs in
the synovial joint comes from in vitro data.  Data has
indicated there is little difference between OA patients and
healthy subjects in the size and concentration of EVs isolated
from synovial fluid26 suggesting pathological differences
may reside in the molecular composition of EVs. Indeed,
EVs isolated from synovial fibroblasts treated with the
pro-inflammatory cytokine IL-1β (to mimic conditions of
OA) were able to induce MMP-13 and aggrecan expression
in articular chondrocytes isolated from healthy synovial
joints, suggesting in vitro this would lead to tissue
degeneration30.  It is well known in OA, that the synthesis
and activation of proteolytic enzymes such as MMPs and
aggrecanases is induced through the action of
pro-inflammatory cytokines such as tumour necrosis factor
(TNF)-α and interleukin (IL)-1β. Activation of these
enzymes causes degradation of the cartilage ECM leading to
progressive cartilage damage. This in turn induces further
TNF-α and IL-1β generation via an autocrine mechanism,
and the production of other pro-inflammatory cytokines such
as IL-6 and IL-8, causing a vicious cycle of inflammatory-
driven degradation27-29.   This preliminary study demonstrates
that EVs produced by both synovial fibroblasts and
chondrocytes under OA-like conditions upregulate the
release of pro-inflammatory cytokine cascades, including
MMP-13, creating a “positive-feedback loop” that drives

Fig. 1: Extracellular vesicles (EVs) in osteoarthritis. EVs released
from synovial joint play several roles. EVs are involved in
MSCs recruitment and tissue repair, tissue destruction
and matrix degradation. EVs are thought to be potential
tool for tissue repair and can be utilised as tissue
biomarkers.
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inflammation within the joint and ultimately leads to the
damage of articular cartilage and a loss of structural
integrity26. Already it is evident that EVs are playing a role in
the destructive cascade that exacerbates OA.

EVs derived from mesenchymal stem cells (MSCs)
A surge in research from many groups has focused on the
possibility of mesenchymal stem cells (MSCs) for use in
tissue repair, including cartilage. This is due to MSCs
multipotent property in that they can differentiate into the
mesenchymal lineages; bone, cartilage and adipose tissue31,32.
Several approaches were adopted in cartilage tissue
engineering including injection of MSCs directly into the
defect and placement of periosteal flap or lately embedding
MSCs in a synthetic matrix plug to fill the defect4,33.
Unfortunately, even with the discovery of a rare cohort of
articular cartilage stem cells in both OA and healthy tissue,
none of these current treatment therapies elicit long term
repair6,34-36. 

It was recently discovered that EVs can also be derived from
MSCs and potentially possess extensive therapeutic use in
wide array of human diseases.  A handful of studies have
shown positive outcomes in using MSC-derived EVs to
promote cartilage repair and protect against OA-induced
cartilage degeneration37-40. The method of MSC-EV action is
still not entirely clear but it seems to be due to the release of
paracrine factors.  Briefly, the mechanism by which EVs
derived from MSCs function is predominantly based on the
transfer of miRs; therapeutic effects have been demonstrated
in reduced cardiac fibrosis following myocardial infarction
and encourages functional recovery after stroke by means of
neural plasticity41,42.

EVs and MiRNAs
One of the widely known facts about EVs is that they contain
miRs. MiRs are a novel group of non-coding single stranded
RNA of 19-24 nucleotides. They have the ability to modulate
a large proportion of the genome post-transcriptionally as
they can bind to the 3’ untranslated region (UTR), or
sometimes the 5- UTRs, of the multiple mRNA targets. So,
in essence, one specific miRNA can inhibit the translation of
multiple genes.  This mode of action has established miRs
role in normal cellular homeostasis as crucial, and its
dysregulation is therefore associated with a wide range of
pathological conditions43. MiRs have been elucidated in
animal models of RA; considered the inflammatory joint
disease, and it is becoming evident that although the
aetiology of OA is different, similar miRs to those present in
RA have been discovered.  More than one study has
demonstrated a decrease in the miRNA-146a in human
synovial fibroblasts and in animal models of OA44,45.  Another
researched miR is miRNA-140; it is highly expressed in
chondrocytes and Hong et al have demonstrated its
importance in cartilage homeostasis46. Following on from
this study, miRNA-140 has been shown to be lower in

chondrocytes from OA patients47,48.  MiRs can also be found
in MSC-EVs as mentioned previously in this review.  In in
vivo rat OA models intra articular injections of MSC
exosomes partly prevented OA damage. Over expression of
miRNA-140-5p in the MSC exosome increased this effect40.
Research demonstrates that miRNAs play a vital role in
maintaining a healthy joint and their imbalance could
potentially lead to the degradation and eventual destruction
of the diarthrodial joint. On the flip side of this, if the miRs
that contribute to the signalling cascades involved in tissue
degeneration, targeting of these miRs has the potential of
de-activating pro-inflammatory pathways to slow down or
even prevent disease.

Ev therapeutics
Biomarkers
Given the prevalence of EVs in the synovial fluid derived
from synovial fibroblasts and chondrocytes in both healthy
and normal joints it would suggest that EVs have the
potential to function both as an invasive and non-invasive
diagnostic tool.   Unfortunately, few studies have profiled
EVs from synovial fluid. This can be explained in part due to
the invasiveness entailed in isolating such biofluid. If
research were to concentrate on the area of OA then there is
little reason why using the synovial fluid or even the blood
plasma EVs as biomarkers of disease state is not feasible.
This would, however, rely on the EVs being
comprehensively profiled.  To date a handful of studies have
isolated and profiled EVs with particular concentration on
the miRs.  Withrow et al, recently found that EVs isolated
from the synovial fluid of patients with OA were enriched in
miR-200c compared with healthy controls26. Upregulation of
this miRs may accelerate articular cartilage degradation;
EV-associated miR-200c may therefore prove a useful
biomarker in the early stages of OA development.  Kolhe
et al observed gender specific differences in the miRs
content of EVs from OA compared to non-OA subjects49.
Here, several miRs involved in oestrogen production,
signalling and inflammatory cascades were differentially
expressed in EVs from females with OA. A link that may
relate to the increased prevalence of OA in post-menopausal
females where oestrogen production is reduced and
inflammation is enhanced. 

Answering some of these questions, and ensuring healthy
tissues are included in the studies, could even provide data
that would allow us to predict whether an individual could be
pre disposed to degenerative or an autoimmune disease that
would lead to cartilage disorders.

Tissue repair/joint homeostasis
EVs could potentially allow tissue repair and long-term joint
homeostasis if we were to understand their mechanisms of
action and communication with surrounding tissues. EVs are
endogenous vehicles, making them superior to liposomes as
therapeutic agents as they are much less likely to be
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degraded and therefore protect and enhance the stability of
their cargo. EVs may also be strategically loaded with
exogenous treatments (e.g. pharmacological agents, proteins,
nucleic acids). 

As EVs play a role in regulating cell recruitment,
proliferation and differentiation, therefore having the
knowledge of how the EVs are involved in these
mechanisms would allow for the potential to control and
induce tissue regeneration.  Indeed, MSC-EVs exerted an
immunosuppressive and anti-inflammatory effect in one
study investigating MSCs as modulators of joint
homeostasis37.  Cell repair therapies for cartilage defects at
present are concentrating on seeding various biological
scaffolds with MCS and promising results have been
recorded.  However, it is likely that MSC-EVs are involved
in this cell recruitment, differentiation and repair response.
If we discover the mechanisms by which the MSC-EVs are
involved in the tissue repair process then MSCs could be
replaced with MSC-derived EVs.  This procedure could be
enhanced with the possibility of activating or de-activating
certain proteins/miRs to increase repair.  As such, a cell-free
treatment would reduce some clinical regulations and
therefore reduce the time from lab to the clinic for novel
therapeutics (Fig. 1).

EV preparation and selection
Whilst the application of EVs in cartilage repair therapies is
promising in vitro, outcomes are often dependent on
parameters such as the quality and reproducibility of cell
type, pre-analytical processing of EVs and EV
characterisation.  Although many studies have isolated EVs
from biological fluids, including that of synovial fluid, there
is no standard method of which to do this.  As the EV
isolation procedure determines the EV-mediated functional
effects then this process, if not standardised, will introduce
variations in data and results.  Purifying EVs using
ultracentrifugation and density gradient flotation should
provide a fraction that is not contaminated with several EV
subtypes and non-vesicular particles. For example, MSC
derived EVs are dynamic, much like their cell of origin and
it has been shown that their contents can be altered
dependent on the tissue type cultured50.  We are already
aware that MSCs require bioengineering to be able to
differentiate into multiple lineages as adipocytes,
chondrocytes and osteoblasts51.  Therefore, contextualising

the use of MSC-derived EVs in cartilage regeneration may
be achieved by the content of EVs altering the
microenvironment.  Delivering the EVs in a biomaterial
scaffold could achieve the desired outcome as although EVs
could be injected into the joint space, this would be actively
cleared.  If EVs are to be used in clinical applications then
this is one area where research needs to be targeted.

Conclusion and future work
Recent advances in our understanding of the complexity of
OA are helping to identify new mechanisms of disease
development, and subsequently, potential targets for therapy,
some of which are already reaching the clinics.
Unfortunately, due to the nature of the cartilage, repairing
defects within the joint have presented with little success,
and maybe we need to concentrate on reducing disease
progression.  There is accumulating evidence for a role for
EVs from synovial fluid, fibroblasts and chondrocytes, as
well as in the circulating blood plasma, that play an
important role in maintaining a healthy fully-functioning
joint.  It is becoming apparent that joint homeostasis
involves the contents or signalling cascades that the EVs are
involved in, and during the development and progression of
OA these mechanisms become unbalanced.  The exact
mechanism of how EVs are involved in initial tissue
destruction and, subsequent mechanisms of repair, are still
unclear but research is working towards answering some of
these questions and in doing so are finding that the EVs are
playing an even more critical role than first anticipated.
Indeed, it seems that if the EVs could be isolated in a
reproducible and controlled manner and then profiled they
would provide us with a vast amount of data that could be
used to target OA detection and prevention.  The unique
bio-cargo of EVs make them prime candidates for novel
biomarkers of disease progression and potentially, also
determining if patients are pre-disposed to OA.  The ability
to understand how the EVs function within the joint would
allow us to target certain pathways to prevent tissue
destruction or enhance the tissues natural repair mechanisms.
If we were to understand more fully the involvement of EVs
in the mechanisms of OA, the future for these valuable
biomolecules is promising. This could potentially lead to a
huge surge in research towards cartilage repair therapeutics,
an outcome that the millions of OA sufferers worldwide
would truly appreciate.
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