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Alveolar type II cells constitute a small fraction of the total lung cell mass. However, they 
play an important role in many cellular processes including trans-differentiation into type I 
cells as well as repair of lung injury in response to toxic chemicals and respiratory patho-
gens. Transcription factors are the regulatory proteins dynamically modulating DNA struc-
ture and gene expression. Transcription factor profiling in microarray datasets revealed that 
several members of AP1, ATF, NF-κB, and C/EBP families involved in diverse responses were 
expressed in mouse lung type II cells. A transcriptional factor signature consisting of Cebpa, 
Srebf1, Stat3, Klf5, and Elf3 was identified in lung type II cells, Sox9+ pluripotent lung stem 
cells as well as in mouse lung development. Identification of the transcription factor profile 
in mouse lung type II cells will serve as a useful resource and facilitate the integrated analy-
sis of signal transduction pathways and specific gene targets in a variety of physiological 
conditions.  
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Introduction 

The lung is a major organ involved in the critical function of respiration. In addition, the 
lung is also involved in removal of pathogens such as influenza and Mycobacterium as well 
as detoxification of environmental chemical pollutants accumulated in respiratory tissue 
[1-3]. Lung tissue contains airway and parenchyma compartments with more than 30 cell 
types including fibroblast, endothelial, epithelial, smooth muscle and macrophages [4-6]. 
Alveolar epithelium consists of two morphologically distinct type I and type II cells repre-
senting approximately 95% and 5% of the alveolar surface area, respectively [7]. Consider-
able progress has been made in understanding the role of type II cells in lung function and 
disease. Lung epithelium plays an important and active role in influenza virus and CD8+ 
T-cell mediated lung injury [8,9]. Surfactant is composed of phospholipids, proteins and 
carbohydrates and is mainly produced by lung type II cells. Surfactant promotes lung ex-
pansion, reduces edema and surface tension [10]. Lung type II cells participate in vesicular 
transport, lipid metabolism and detoxification. Furthermore, type II cells can undergo cell 
proliferation and transdifferentiate into type I cells in response to lung injury [11]. The de-
velopment of type I and type II cell-selective monoclonal antibodies to apical surface 
membrane proteins such as T1-α and MMC4 facilitated investigating the role of lung epi-
thelium in lung injury and repair [12,13]. Cell specific expression of a small number of 
genes such as surfactant proteins (SP-A, SP-B, and SP-C) in type II cells has been de-
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scribed [6,7]. Identification of sequence elements in the SP-C gene 
promoter and transcription factors that mediate tissue-specific ex-
pression in lung type II cells facilitated transgenic expression of het-
erologous genes [5,14]. Microarray technology allows for monitor-
ing the transcriptional activity of several thousands of genes simul-
taneously [15]. Application of this technology to the lung develop-
mental regulation, response to toxic chemicals and diseases have 
been described [16-18]. Furthermore, gene expression profile of 
human and mouse primary lung type II cells were reported [19-
21]. Transcription factors are regulatory proteins that bind specific 
parts of the genome in tightly coiled structures called chromatin 
and regulate the availability of distinct stretches of DNA to be ex-
pressed in a tissue-specific manner. However, the role of transcrip-
tion factors in the functional 2 organization of the mouse lung type 
II cell transcriptome is not well understood. The role of transcrip-
tion factors such as Sox9 in pluripotent lung stem cells and AP1, ac-
tivator transcription factor (ATF) in tissue-specific expression of 
Surfactant protein genes in type II cells has been demonstrated [22-
24]. Isolation and characterization of lung stem cells capable of dif-
ferentiating into alveolar epithelial type II cells has been described 
[22,25]. However, connecting the distinct profile of transcription 
factors and the gene expression within the transcriptome to eluci-
date biological functions of type II cells remains a major challenge. 
Gene knockout mice provided significant insights into the relative 
contribution of individual transcription factors into lung type II cell 
development and function [20,26,27]. Signal transduction path-
ways and transcriptional regulatory control of mouse lung type II 
cells were investigated using mouse lung and type II microarray 
data to gain novel insights into the biological organization of the 
transcriptome. 

Methods 

Animals and primary alveolar type II cell preparation 
BALB/c mice (5–7 weeks old) were used. All experiments were 
conducted in strict accordance with the guidelines of the institution-
al animal care and use committee. Lung primary alveolar type II cells 
were prepared as described [7,21]. Briefly, lungs from BALB/c mice 
were dissected and put in a sterile culture tube containing serum-free 
Dulbecco’s modified Eagle’s medium (DMEM) and dispase and in-
cubated for 45 min at room temperature. Lungs were then trans-
ferred to a culture dish containing DNAse1 (Sigma, St. Louis, MO, 
USA) and the tissue gently teased away from the airways. The cell 
suspension was successively filtered and then pelleted. Crude cell 
suspensions were added to culture dishes coated with anti-CD45 
and anti-CD32 antibodies (BD Pharmingen, San Diego, CA, USA) 
and incubated for 1–2 h. Culture dishes were removed from the in-

cubator, gently rocked to free settled type II cells and then resus-
pended in DMEM with 10% fetal bovine serum. Purity of the type 
II cell preparations 3 used for these studies was greater than 95% by 
morphological, immunocytochemical, and reverse transcriptase 
PCR assays of selected cell-specific markers criteria. 

Gene expression profiling 
Total RNA was prepared from lung type II cells by using the Qia-
gen Rneasy kit (Valencia, CA, USA). For cDNA synthesis, RNA 
(10 μg) was annealed to the oligodT-T7 promoter at 70℃ for 10 
min and then reverse transcribed at 42℃ for 3 h. The resulting 
double-stranded cDNA was used as a template to generate bioti-
nylated cRNA from an in vitro transcription reaction using the 
Enzo Diagnostics RNA transcript labeling kit (Farmindale, NY, 
USA). The biotin-labeled cRNA were purified and hybridized to 
the murine U74A genomic array as directed by Affymetrix techni-
cal procedures manual (http:// www.affymetrix.com). The washed 
arrays were stained with phycoerythrin-streptavidin and scanned 
by using an Affymetrix Gene-array scanner. The experiment was 
performed with RNA from lung type II cells pooled from 3 animals 
each for a chip and a total of 4 chips were used with similar results. 

Microarray data analysis 
Scanned images were analyzed with Affymetrix microarray analysis 
suite 6.0 gene expression software. The gene list was selected based 
on the signal intensity of > 700 arbitrary units and consistency of 
the signal intensity across the four chips. The signal intensity was 
normalized to glyceraldehyde-3-phosphate dehydrogenase (Gap-
dh) levels. Functional organization of the transcriptome was estab-
lished using Database for Annotation, Visualization and Integrated 
Discovery (DAVID) bioinformatics [28]. Affymetrix identifiers 
(ID) of transcription factors were analyzed in the functional anno-
tation tool of the DAVID 6.8 website (http://david.abcc.ncifcrf.
gov). The software generated annotated chart with biological terms 
and p-value (Benjamini-Hochberg corrected for false discovery 
rate) associated with the transcriptional factors. Selected examples 
were shown. Expression profiling of a variety of mouse tissues has 
been described previously [29]. Tissue-specific gene expression 
dataset from multiple mouse tissues was downloaded from the 
website (http://www.biogps.org). Mouse lung type II data were 
normalized to 4 Gapdh levels and resulting data were analyzed by 
linkage across arrays and genes by using CLUSTER software [30]. 

Transcription factor interactions were visualized using pro-
tein-protein interactions databases (https://openwetware.org/ 
wiki). Microarray datasets for mouse developmental stage E12.5 
and adult CDH+, CDH–; EpCAM+, EpCAM– Sox9+ lung stem 
cells as well as in vitro differentiated E12.5 stage Sox9+ cells at pas-
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sage 2 and 10 (P2, P10) were previously reported [22]. Mouse lung 
developmental gene expression dataset was downloaded from Jack-
son Lab website (http://www.jax.org) and analyzed using software 
from the website (http://www.heatmapper.ca). 

Results and Discussion 

Global gene expression in mouse lung type II cells was examined 
using oligonucleotide microarrays in order to gain insights into the 
expression levels of transcription factors and signal transduction 
pathways critical for the transcriptome. Transcript analysis revealed 
that approximately 2,000 genes (16.6%) were expressed in type II 
cells, out of the 12,000 genes represented on the U74A mouse 
Affymetrix chip. About 575 genes were highly expressed whereas 
about 1,425 were expressed at low levels. Furthermore, a master list 
of about 350 known and highly expressed genes was constructed 
(Supplementary Table 1). This list includes about 50 transcription 
factors that were highly expressed in mouse lung type II transcrip-
tome. Transcriptional factors bind to upstream regulatory elements 
such as promoters and enhancers and in co-operation with co-reg-
ulators and general transcriptional factors regulate gene expression 
[31]. The transcription factor profile of type II cells includes several 

members of the activator protein (AP1), ATF, nuclear factor-kap-
paB (NF-κB), Kruppel-like zinc-finger proteins (KLF), and CAAT/
enhancer binding proteins (c/EBP) families. A general feature of 
the transcriptome is the differential expression of multiple mem-
bers of a transcription factor family that controls redundant, over-
lapping or non-redundant functions (Fig. 1A and 1B). These in-
clude AP1 (Fos, Fosb, jun, Junb, and Jund), ATF (Atf3 and Atf4), 
NF-κB (Nfkb1 and Rela), and nuclear receptor or NR (Nr4a1 and 
Nr5a1) 5 family members. Many of these transcription factors have 
a prominent role in immune responses. Protein domain analysis re-
vealed that the transcription factors have specific domains (leucine 
zipper, helix-loop-helix, zinc finger, Rel or Kruppel) that facilitate 
extensive homo-dimerization (ex., c-Jun) or hetero-dimerization 
(ex., Fos-Jun) that further expands the repertoire of gene regulation. 
Members of cellular enhancer binding protein or C/EBP family are 
involved in the regulation of multiple cell types [26]. Metallo-
thioneins (Mt) are regulated by heavy metals and inflammatory re-
sponse [32]. Nrf2 is a transcription factor with a basic-leucine zip-
per domain and regulates a large number antioxidant and xenobiot-
ic-metabolizing enzyme genes through the antioxidant response el-
ement (ARE) [27]. Nuclear Receptor family members (Nr4a1 and 
Nr5a1) are highly expressed in lung epithelium [33]. KLF family 

Fig. 1. Relative mRNA expression levels of transcription factors in the mouse lung type II transcriptome. (A) The mRNA levels of activator 
protein (AP1), activation transcription factor (ATF), nuclear factor-κB (NF-κB), and nuclear hormone receptors (NR) family members involved 
in inflammatory response. (B) The mRNA levels of Mt, Cebp, Klf, and Btg family members of transcription factors. (C) High, medium, and low 
expression of transcription factors in four separate RNA preparations of mouse lung type II cells represented by red, yellow and green colors, 
respectively.
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members such as Klf4, Klf5 and Klf9 are implicated in the regula-
tion of cell growth, differentiation and apoptosis [34]. Mammalian 
Btg/Tob family regulates transcription in the nucleus and messen-
ger RNA deadenylation and implicated in anti-proliferation in mul-
tiple cell types [35]. Expression levels of transcription factors could 
vary significantly from high such as Y-box1 (Ybx1) and high mobil-
ity group (Hmgn1); moderate such as catennin β (Ctnnb) and 
metallothionein1 (Mt1) or low like Stat3 and sterol regulatory ele-
ment binding protein (Srebf1) in type II cells (Fig. 1C). Cluster 
analysis of transcription factors with biological terms in DAVID 
Bioinformatics revealed that hetero-dimerization leucine zipper 
domain as a key regulatory property present in AP1, ATF, and NR 
families. Furthermore, protein phosphorylation, metal binding and 
dimerization are major regulatory mechanisms of this category 
(data not shown). Functional properties of type II cells such as de-
toxification (response to organic cyclic compounds), cytokine sig-
naling (tumor necrosis factor or TNF-α) and cell growth (develop-
ment and cancer) were also well represented based on p-value (Fig. 

2A). Mapping the list of transcription factors on to Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways revealed that 
TNF-α is the major signal transduction pathway functional in lung 
type II cells (Fig. 2B). TNF receptor 1 (TNFR1) is ubiquitous and 
is expressed on lung epithelial cells [9]. TNF signaling is mediated 
through TNFR1 to regulate mitogen-activated protein kinases in-
cluding c-Jun N-terminal kinase ( JNK), extracellular receptor ki-
nases (ERK), p38 and IκB kinases to activate NF-κB [36,37]. In ad-
dition to NF-κB, TNF-α also activates AP1 via JNK and ATF via 
JNK, ERK, and p38 mitogen-activated protein (MAP) kinase path-
ways [36-38]. Involvement of ERK, JNK, p38 MAP kinases and 
transcription factors AP1, NF-κB, and ATF has been described in 
response to influenza infection [39]. TNF-α plays an important 
role in CD8+ T-cell mediated lung injury [21]. In a mouse trans-
genic model, lung injury was largely mediated by chemokines ex-
pressed by the epithelial cells upon CD8+ T-cell recognition and 
this response was dependent on TNFR1 [9]. Protein-protein inter-
actions play an important role in co-operative and functional diver-

Fig. 2. Annotation of biological functions and signal transduction pathways in mouse lung type II cells. (A) Signaling pathway terms associated 
with transcription factors of mouse lung type II were ranked by significance. (B) Schematic representation of tumor necrosis factor (TNF-α) 
mediated intracellular signal transduction pathways in mouse lung type II cells. NF-κB, nuclear factor-κB; MAP, mitogen-activated protein.
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sity of transcriptional networks in biological functions of multiple 
cell types [31]. Network analysis of transcription factor interactions 
in protein interaction databases revealed that extensive interactions 
between AP1, ATF, NF-κB, NR, and C/EBP family members are 
possible (Fig. 3). Furthermore, these interactions also predict a po-
tential role for Atf3, Nr4a1, and AP1 family members in TNF-α in-
duced CD8+ T-cell mediated lung injury. In gene expression analy-
sis, clustering algorithm is often used to discriminate genes that are 
co-regulated in the experimental conditions studied [30]. Further-
more, cluster analysis in multiple tissues facilitates detection of 
overlapping and tissue-specific patterns of gene expression. This 
analysis revealed that the gene expression profile of lung and type II 
were closely related among all tissues tested (Supplementary Fig. 1). 
Consistent with these observations, shared transcription factor 
co-expression profiles include Xbp1, Stat3, and Srebf1. Further-
more, transcripts of Mt1, Atf3, Ybx1, and Hmgn1 levels were highly 
expressed in lung type II compared to the lung (Fig. 4). Cluster 
analysis also showed examples of highly expressed genes in type II 
cells compared to lung included SP-C, mucin1 (Muc1), lysozyme2 
(Lyz2), ATP binding cassette transporter (ABCA3), sodium-phos-
phate co-transporter, hemolytic component, heat shock protein (84 
kDa), catenin-src, Gro1, and Rab9 (Figs. 4 and 5, Supplementary 
Fig. 1). There is an overlapping gene expression profile signature 
between liver and type II cells (data not shown). Liver and lung 
type II have also a common role in lipid metabolism and express 

Fig. 3. Transcription factor interactions in mouse lung type II cells 
predicted from Protein Interaction Databases. Transcription factors 
are represented by ovals and protein-protein interactions represented 
by connecting lines.

Fig. 4. Tissue-specific expression of transcription factors. Cluster analysis of transcription factor levels in multiple mouse tissues. Lung type II 
markers such as surfactant protein C (Sftpc), mucin (Muc1), and lysozyme (Lyz2) were included for the purpose of comparison.
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Fig. 5. Heat Map representation of differentially expressed genes between E12.5 development and adult lung Sox9+ progenitors in vivo. (A) 
Cadherin (Cdh) and epithelial cell adhesion molecule (EpCAM) positive (+) and negative (–) adult epithelial cell populations were shown. (B) 
E12.5 Sox9+ progenitor cells after early (P2) or late (P10) cell passage in chemically defined medium in vitro. Lung type II gene markers such 
as Sftpc, Muc1, and Lyz2 were included for the purpose of comparison. Representative genes with differential expression are shown. Raw data 
values were normalized and are shown as rlog and a >2-fold change were represented by blue and red colors in either direction.

high level of transcription factors Cebpa and Srebf1 that are impli-
cated in lipid metabolism [26,40]. 

Expression levels of cell surface adhesion molecules such as 
E-cadherin (Cdh) and EpCAM are useful for staining and sorting 
lung epithelial cells [22]. A highly conserved cellular process in de-
velopment known as epithelial-to-mesenchyme transition is re-
sponsible for transforming epithelial cells in metastatic lung cancer 
and tumor [41]. Sex determining region Y-box 9 (Sox9) was origi-
nally known for its functions in embryonic development specifical-
ly in bone formation, testis and lung development [42]. Sox9 is im-
portant for stem cell maintenance, tumor progression and metasta-
sis [43]. Pluripotent Sox9 positive lung stem cells are capable of 
generating airway and type II cells in mice and transplantation of 
the Sox9+ human lung stem cells in cancer patients have been de-
scribed [22,25]. I have investigated the transcription factors signa-
ture characteristic of lung type II cells in Sox9 positive stem cells of 
E12.5 lung mouse development and adult lung stem cells from 
mice [22]. Cluster analysis showed that the gene signature consist-
ing of Stat3, Srebf1, Elf3, Klf5, Cebpa was highly expressed in adult 

mouse lung stem cells sorted for epithelial markers Cdh or EpCAM 
(Fig. 5A). Consistent with these results, lung type II marker genes 
such as surfactant protein C (sftpc), Mucin (Muc1), lysozyme 2 
(Lyz2) were also highly expressed in adult compared with E12.5 
Sox9+ stem cells. Under defined chemical conditions, E12.5 Sox9 
positive lung stem cells can be differentiated into type II cells in vi-
tro, after 2–10 passages in cell culture [22]. Interestingly, the same 
five transcription factors were also highly expressed under these 
conditions (Fig. 5B). A major disadvantage of many transcriptome 
data studies is that they provide a snapshot of gene expression pro-
file in cells or tissues. However, it is well known that gene expres-
sion is dynamically and temporally regulated during mouse devel-
opment. For example, gene expression profile of proteins encoding 
extra-cellular matrix varies significantly during lung development 
[16]. Klf5 is expressed at higher levels in lung epithelial cells at the 
E18.5 stage of mouse development and mice lacking Klf5 die at the 
time of birth due to respiratory distress [34,44]. Data mining of the 
transcription factor signature of Stat3, Srebf1, Elf3, Klf5, and Cebpa 
within the gene expression data set of mouse lung developmental 
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stages revealed that the expression was relatively low in early devel-
opmental stages such as E9.5–E12.5, moderate in E14.5–E15.5 and 
relatively high during late embryonic developmental stages of 
E16.5–E18.5 (Fig. 6). These results suggest that the gene expres-
sion levels are dynamic over time in 8 different stages of mouse lung 
development. Transcription factor profile is intimately linked with 
the gene expression profile of any given cell type. Unique combina-
tion of transcription factors assembled on individual gene promoter 
determines the level of gene activity [23,31]. Furthermore, func-
tional organization of mouse lung type II transcriptome can be elu-
cidated in terms of potential role of specific combination of tran-
scription factors. Multiple transcription factors have been shown to 
play an important role in the lung type II specific cell functions 
such as detoxification, lipid metabolism, immune responses and 
cell growth as revealed by knockout mouse models, as discussed 
below (Fig. 7). 

Detoxification 
Proteins involved in detoxification and antioxidant defense are 
abundant in lung type II transcriptome. The redox system of gluta-
thione (GSH) consists of primary and secondary antioxidants, in-
cluding GSH peroxidase, GSH reductase and GSH S-transferase 
[45]. Depletion of GSH in the lung is associated with the increased 

risk of lung injury and disease [46]. Nrf2 plays a major role in de-
toxification by sequence-specific binding to ARE and up-regulating 
several genes [47,48]. Pathogenesis of lung diseases is tightly linked 
to exposure to environmental chemicals which require an enzymat-
ic activation to exert their deleterious effects on pulmonary cells 
[49]. Nrf2 has a potential chemo-preventive activity, by upregulat-
ing antioxidant defenses and attenuating of inflammation and oxi-
dative stress. Deficiency in Nrf2-GSH signaling attenuates type II 
cell growth and enhances sensitivity to oxidants implicated in ciga-
rette smoke induced emphysema [46,48]. Metallothionein regu-
lates the intensity of the induction of inflammatory proteins such as 
chemokines and cytokines. In Mt knockout mice the induction of 
cytokines and chemokines as well as pulmonary inflammation were 
greater in response to bacterial lipopolysaccharide. Mt protects 
against coagulation and fibrinolytic disturbance and acute lung in-
jury by inhibition of pro-inflammatory mediators [50]. Knock-
down of Nr4a1 in human lung epithelial cells resulted in significant 
increase in IκB-α phosphorylation and degradation resulting in en-
hanced NF-κB activity, whereas Nr4a1 overexpression decreased 
NF-κB activity [33,51]. Nr4a1 knockout mice show significantly 
enhanced allergic airway inflammation and aggravated mucus pro-
duction [33].  

Lipid metabolism 
Alveolar type II cells convert glycogen into phospholipids that are a 
major component of the surfactant proteins [8,52]. Keratinocyte 
growth factor (KGF) stimulates lipid metabolism in alveolar type II 
cells cultured on a matrix of collagen and matrigel [53]. Lung type 
II cells express lipogenic enzymes such as fatty acid synthase (Fasn) 
and stearoyl-CoA desaturases (Scd1, Scd2) and transcription fac-
tors such as C/eba, Klf5, Srebf1, and Stat3 that are implicated in fat-
ty acid and phospholipid synthesis [20,26,40]. It is interesting to 
note that Cebpa, Fasn, and Scd1 are also highly expressed in brown 

Fig. 6. Heat map representation of differentially expressed 
transcription factors during mouse lung development. Raw data values 
were normalized and are shown as rlog and a >2-fold change were 
represented by blue and red colors in either direction. Transcription 
factors with differential expression are shown during development. 
Lung type II markers such as Sftpc and Lyz2 were included for the 
purpose of comparison.

Fig. 7. Schematic view of the transcription factors network in the 
functional organization of the transcriptome in mouse lung type II 
cells.
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fat, adipose and liver tissues that are involved in lipid and energy 
metabolism [54]. Cebpa knockout mice display abnormalities in 
liver and adipose tissues as well as hyper proliferation of lung type 
II cells and disturbed alveolar architecture resulting in perinatal 
death [26,55]. Klf5 is required for lung development and knockout 
mice die perinatally due to respiratory distress and also have defects 
in surfactant and lipid metabolism [44]. Stat3 regulates Abca3 
transporter expression and influences lamellar body formation in 
alveolar type II cells [20,56]. 

Immune responses 
Alveolar type II cells secrete a variety of anti-inflammatory and an-
timicrobial substances into the alveolar fluid including surfactant 
proteins, lysozyme, lipocalin 2 and reduced GSH. A variety of his-
tocompatibility antigens involved in antigen processing and adhe-
sion molecules involved in inflammation were also expressed in 
type II cells. Pathogen response was mediated by chemokine-guid-
ed neutrophil and macrophage influx in pathogen response of lung 
type II cells [9]. AP1, ATF, and NF-κB transcription factors have a 
major role in influenza virus and cytokine induced signal transduc-
tion pathways and is consistent with the functional role of alveolar 
epithelium in virus and CD8+ T-cell mediated lung injury [8,21]. 

Regulation of cell growth 
Lung type II cells can undergo cell proliferation and differentiate 
into type I cells [11]. Several growth-associated genes regulate cell 
proliferation, growth arrest and apoptosis in the lung. These in-
clude KGF, hepatoma derived growth factor (Hdgf), heparin bind-
ing epidermal growth factor (Hb-egf), and amphiregulin (Areg). 
Previous studies have shown that keratinocyte and hepatocyte 
growth factors play an important role in lung development, inflam-
mation and repair [53]. Klf5 is part of the pluripotent stem cell 
gene signature along with Oct4, Sox2 and, Myc that is required for 
perinatal lung morphogenesis and function [44]. AP1, NF-κB, ATF 
family members have been shown to participate in a variety of 
growth factor, stress response and cell death pathways [36,37]. Elf3 
is a member of Ets family of transcription factors and is highly ex-
pressed in epithelial tissues. High level of Elf3 expression in mouse 
embryogenesis and 30% fetal lethality in homozygous knockout 
mice suggest important role in early development [57]. Further-
more, Elf3 regulates non-small cell lung carcinoma by modulating 
oncogenic signal transduction pathways [58]. 

Global gene expression profiling studies revealed that transcrip-
tion factors regulate the functional organization of the transcrip-
tome in mouse lung type II cells and the list provides an important 
resource. Taken together, transcription factor profiling in signal 
transduction pathways involved in lung injury as well as develop-

ment expand our view of the transcription factor landscape in the 
regulatory genome architecture of mouse lung type II cells. A com-
prehensive transcriptome resource of many cell types in humans 
and mice called Cell Atlas is being developed [29,59]. This ap-
proach may be used for constructing novel signal transduction 
pathways from transcription factor profiles in developmental and li-
gand inducible gene expression microarray datasets. Further studies 
may provide a framework for generating novel mouse models for 
human lung diseases and potential therapeutic targets.  
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