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Abstract

Osteocytes are the most prevalent cell in the skeleton and are the master regulator of bone 

remodeling. Despite the understanding that osteocytes have a multiyear lifespan, and some factors 

induce apoptosis in osteocytes, much less is understood about the induction and consequences of 

osteocyte senescence. Filling these gaps in knowledge will provide novel approaches to slowing 

age-related bone loss and preventing fragility fractures. The purpose of this review is to examine 

the roles of senescence and apoptosis in osteocytes in age-related bone loss. Based on evidence 

that exercise can prevent senescence in skeletal muscle, we provide a novel hypothesis by which 

exercise can prolong skeletal health.
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Introduction

Preventing bone loss with aging is of considerable public health interest because of the cost, 

morbidity and mortality associated with osteoporosis and fragility fractures [1–4]. 

Osteocytes are the primary mechanosensor of the skeleton and the master regulator of bone 

remodeling [5]. As such, the uncoupling of bone resorption and bone formation that leads to 

age-related bone loss can often be traced back to changes in osteocyte number or function. 

There has been a resurgence of investigations into cellular metabolism of osteoblasts, 

osteoclasts, and osteocytes, and their contributing roles in integrated physiology and whole 

body energy balance. The increased appreciation that osteocytes are metabolically active 

creates a need to reexamine how osteocytes adapt, senesce, or die in response to different 
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metabolic environments across its multi-year lifespan [6–9]. By applying what has been 

gleaned about senescence in other cell types, reexamining the lifespan of osteocytes could 

yield paradigm shifts in our understanding of age-related bone loss. In muscle, there is a 

renewed focus on the role of age-related changes in mitochondrial number and function on 

the induction of senescence. Age-related changes in mitochondrial function that occur in 

muscle and could occur in osteocytes include loss of mitophagy, changes in fission and 

fusion, increased mitochondrial uncoupling and superoxide production [10–12]. Within this 

context, physical activity and exercise programs are often utilized as non-pharmacologic 

therapeutics for preserving mitochondrial number and function and preventing senescence. 

However, the potential consequences of senescence and mitochondrial dysfunction with 

aging is underappreciated in osteocytes. The purpose of this review is to examine the roles of 

senescence in osteocytes in age-related bone loss, and provide novel hypotheses by which 

exercise can prolong skeletal health.

The notion of senescence in osteocytes

Osteocytes arise from terminally differentiated osteoblasts that become imbedded in the 

bone matrix over time. More than 90% of the cells in bone are osteocytes, so understanding 

their life cycle is essential. Seminal work from the Bonewald lab over two decades has 

defined most of what we know about the origin and function of these cells [5]. And because 

osteocytes are in communication with cells on the bone surface, and are bathed in 

extracellular fluid, much has been made of their ‘command and control’ function within the 

remodeling unit. But those tasks require osteocyte survival. Most studies on osteocyte 

viability have focused on inducing or preventing apoptosis, which in osteocytes, is an event 

that promotes bone loss through RANKL activation and sclerostin up-regulation. 

Senescence, on the other hand, is a cell fate program that is part of a DNA Damage 

Response (DDR) to prevent replication of maladaptive DNA mutation [13]. Senescence 

occurs throughout the lifespan, but senescent cells particularly accumulate with aging in 

other tissues. These death resistant cells can cause significant damage in surrounding tissues 

through release of various cytokines. Indeed, senescent cells are detected and defined based 

on the presence of that pro-inflammatory secretome, often referred to as senescence-

associated secretory phenotype (SASP). Accordingly, senescent vs non-senescent cells can 

be independently identified based on the secretion of SASP-related factors such as p53, p21, 

and several interleukins [14–16].

Osteocytes have been traditionally considered ‘old’ osteoblasts buried within the bone 

matrix; hence the notion that there is a significant population of senescent osteocytes driving 

bone loss through SASP bone loss is appealing. Furthermore, it is tempting to assume since 

cell cycle arrest is part of senescence, and osteocytes don’t replicate that a large proportion 

of osteocytes are senescent. Moreover, reducing the number of senescent cells has been 

shown to be beneficial in several age-related disorders. This can be accomplished through 

administration of senolytics, a class of small molecules that can selectively induce death of 

senescent cells.
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Osteocyte senescence and mechanical loading

With the introduction of senolytics, there are clear benefits to elucidating the mechanisms 

that induce or prevent senescence in osteocytes. This is reinforced by recent evidence 

indicating that senolytics could be effective for slowing bone loss [17]. There is overlap in 

age- or damage-related factors that can induce senescence and apoptosis, including the 

activation of tumor suppressor p53 through oxidative stress, gamma radiation, loss 

mitochondrial membrane integrity and accompanying release of cytochrome c, and nuclear 

or mitochondrial DNA degradation. p21, a kinase inhibitor and a major target of p53, 

induces cell cycle arrest leading to senescence [18, 19]. It is unclear whether senescence in 

osteocytes results from a development of resistance to apoptosis [20]. Apoptosis of 

osteocytes can be induced by both unloading and damage-inducing loading [21]. Because 

senescence is part of DDR, it is conceivable, based on the mechanosensing of osteocytes that 

damage-inducing loading can induce senescence in osteocytes.

The effect of age-related reductions in the loading environment on osteocyte senescence has 

not yet been tested. Aging produces changes in mechanical stimuli and the response to 

stimuli at a tissue and cellular level [16, 22]. Specifically, decreases in physical activity and 

increases in sedentary time that are common with aging engender a degree of skeletal 

unloading [23, 24]. Aging and physical inactivity are each associated with a decrease in 

lacunae that contain osteocytes, loss of directional orientation of lacunae, and the number 

and length of dendrites that connect through canniculi; all of which would interfere with the 

detection of strain or fluid-flow shear stress [25–28]. Connexin43, a gap junction protein 

involved in mechanotransduction, protects from osteocyte apoptosis, but also decreases with 

aging [29–32]. Alternatively, unloading could induce senescence indirectly through the 

effect of inactivity on reductions in myokines, adverse changes in whole body nutrient 

trafficking, and the resulting lipid accumulation in both osteoblasts and osteocytes. Further 

research will be needed to distinguish the role of (un)loading on senescence.

Regardless of whether unloading directly induces senescence in osteocytes, the loss of 

mechano-sensitivity, the resulting uncoupling of bone remodeling, and the generation of 

SASP may be the biggest negative consequences of presumed osteocyte senescence. If 

SASP promotes further senescence or apoptosis of osteocytes through a prolonged secretory 

phenotype as it does in other cell types, then apoptosis would be preferable because 

apoptotic osteocytes are providing a one-time stimulus prior to ingestion by phagocytes. The 

increased burden of senescent cells would then likely promote additional bone resorption 

and inhibition of bone formation through the secretion of pro-inflammatory cytokines. The 

loss of mechanically sensitive osteocytes could result in accelerated bone loss.

Targeting osteocyte senescence with exercise to slow age-related bone 

loss

Exercise is often recommended for maintaining and improving bone health, in part, because 

of the demonstrated increases in bone formation rate and bone strength in response to 

mechanical loading, although gain in bone mass is less apparent [33]. From a 

mechanocentric view, exercise prescriptions for bone health favor activities that provide 
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higher intensity or faster rates of loading (e.g., resistance training, jumping) to induce 

important stimuli for existing osteocytes and promote the differentiation of MSCs into the 

osteoblast lineage, ultimately resulting in more osteocytes. Endurance or aerobic exercise 

typically provides a smaller-magnitude and rate of loading, and acutely stimulates bone 

resorption [34]. However, because serum calcium drops precipitously during intense 

exercise, and PTH rises to compensate acutely, it is likely that osteocytic osteolysis is a 

major driver of that physiologic compensation [35]. A readily available pool of viable 

osteocytes that could induce skeletal osteolysis would thus seem to be essential. As noted, 

aerobic exercise is not often highlighted as an important part of promoting bone density or 

bone strength. However, aerobic exercise could provide benefits to osteocyte viability in 

ways that are independent from mechanical loading, including the release of exercise-

stimulated myokines, altering of macronutrient trafficking, and preservation of cellular or 

mitochondrial repair. Unloading, on the other hand, might lead to greater senescence 

because of the lack of stimulus for promoting viability (Figure 1). Certainly spaceflight 

studies with rodents could help identify determine if osteocyte senescence is a major 

component of enhanced bone resorption, particularly since an inflammatory profile is noted 

during unloading.

Muscle-bone units have been studied for over 40 years as mechanical units, but in the past 

few years has evolved into focusing on the biological cross-talk through myokines and 

osteokines. Several candidate myokines have the potential to influence aspects of bone 

turnover, as recently reviewed by Bonewald [36]. β-aminoisobutyric acid (BAIBA) and irisin 

are among the exercise-induced myokines with the potential for directly slowing age-related 

osteocyte senescence by protecting mitochondrial integrity [37, 38]. Irisin is a peptide 

cleaved from Fndc5, a muscle surface protein. It is found in the circulation in nanogram 

concentrations (i.e. in mice and humans) and its levels are increased during and following 

exercise. It was first noted to be an inducer of thermogenic programs in white adipose tissue. 

However recent work has shown that irisin can induce sclerostin in osteocytes, as well as 

RANKL[38]. The receptor for irisin an integrin, alphaV beta 5, was recently discovered and 

characterized in osteocytes. Moreover, irisin prevents apoptosis of IDG-SW3 osteocytes 

[38]. As such it appears the major skeletal target for irisin is the osteocyte, although 

preliminary evidence from our lab suggests irisin may have a direct effect on osteoclasts. 

Whether irisin prevents osteocyte senescence is unknown. However tantalizing preliminary 

evidence suggests irisin may have a neuroprotective role.

Fat oxidation and osteocyte viability

Aerobic exercise improves fat oxidation and redirects nutrient trafficking through more 

energetically expensive pathways [39, 40]. This could translate into preventing excess lipid 

trafficking to osteocytes, but studies are needed to directly test this hypothesis. 

Accumulation versus oxidation of lipid is dependent on mitochondrial capacity. 

Mitochondria are active in MSCs, particularly during early differentiation, osteoclasts, and 

osteocytes, and both glycolysis and oxidative phosphorylation contribute to the synthesis of 

ATP [6, 41]. A critical gap in knowledge is whether aerobic or resistance exercise has direct 

or indirect effects on mitochondrial number, fission, fusion or capacity in osteocytes. If so, 

exercise could target senescence in osteocytes through the preservation of mitochondrial 
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content, coupling, and capacity, through preservation of biogenesis, mitophagy, fusion, and 

fission capabilities [42–45]. In muscle, exercise induces mitochondrial biogenesis to a lesser 

extent with aging, but is still effective in stimulating increases in mitochondrial enzymes and 

oxidative capacity [10–12].

Further, lifelong physical activity slows the age-related decline in mitochondrial number and 

capacity [46, 47]. There is less oxidative damage to muscle mitochondrial membranes in 

response to acute exercise and improved antioxidant capacity with aging in those who 

chronically exercise [48–50]. There are initial clues to suggest that osteocyte mitochondrial 

activity is responsive to exercise and/or aging. For instance, when applying mechanical 

loading in vivo, osteocyte calcium responses to the load, which were used as an indicator or 

osteocyte recruitment, were related to applied strain magnitude and frequency [51]. 

Recently, in situ imaging was used to demonstrate that mitochondrial activity is higher in 

osteocytes close to the periosteal surface and decreases as cells become closer to the 

endocortical surface. Osteocytes closest to the endocortical surface had greater numbers of 

nonfunctional mitochondria. This seems counterintuitive to the notion of marrow fat being a 

source of lipid during periods of fasting,[41] but this location-based variance in 

mitochondrial content may indirectly reflect either the effect of aging or adaptations to local 

energetic needs. Genetic deletion of the growth hormone receptor leads to longer lifespan in 

mice, but we recently showed that mitochondrial function in osteocytes was reduced and 

ROS was increased [52]. These data would imply that aging itself may result in either 

damaged osteocytes or senescent osteocytes characterized by impaired mitochondrial 

dynamics. Whether exercise can prevent those changes remain to be determined.

Summary

Understanding the induction and removal of senescent cells in bone is an important step 

forward in discovering new targets for slowing age-related bone loss. Much of what is 

currently hypothesized about senescence in osteocytes, or the potential for exercise to 

prevent senescence in osteocytes, is derived from decades of experiments in skeletal muscle. 

Exercise that involve high strains or rates of strain are highly touted for maintaining bone 

health and reducing fracture risk across the lifespan. However, more work is needed to 

understand the potential metabolic and anti-senescent benefits of endurance/aerobic exercise 

or reductions in sedentary behavior on osteocyte function. Further, it is known that 

mitochondria are important for energy production in all bone cells, and are intricately linked 

to senescence in other cell types. Determining the osteocytic mitochondrial adaptations to 

exercise should help bridge the metabolic and mechanical factors to promote bone health 

throughout the lifespan.
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Highlights

• Osteocyte apoptosis and senescence independently contribute to age-related 

bone loss.

• Exercise may prevent osteocyte senescence by preserving mitochondrial 

function.

• Endurance and resistance exercise may have distinct benefits for osteocyte 

viability.
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Figure 1. 
Model of how exercise could slow age-related bone loss by preventing the accumulation of 

senescent osteocytes. Exercise could prevent osteocytes senescence by inducing the release 

of myokines, altering nutrient trafficking to prevent lipid overload in bone, providing 

mechanical loading, and directly or indirectly maintaining mitochondrial number and/or 

function in osteocytes.
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