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Abstract

Superresolution algorithms in ultrasound imaging are attracting the interest of researchers recently 

due to the ability of these methods to enable enhanced vascular imaging. In this study, two 

superresolution imaging methods are compared for postprocessing images of microbubbles 

generated using passive acoustic mapping (PAM) methods with a potential application of three-

dimensional (3-D) brain vascular imaging. The first method is based on fitting single bubble 

images one at a time with a 3-D Gaussian profile to localize the microbubbles and a 

superresolution image is then formed using the uncertainty of the localization as the standard 

deviation of the Gaussian profile. The second superresolution method is based on image 

deconvolution that processes multiframe resolution-limited images iteratively and estimates the 

intensity at each pixel of the superresolution image without the need for localizing each 

microbubble. The point spread function is approximated by a Gaussian curve which is similar to 

the beam response of the hemispherical transducer array used in our experimental setup. The 

Cramér–Rao Bounds of the two estimation techniques are derived analytically and the 

performance of these techniques is compared through numerical simulations based on 

experimental PAM images. For linear and sinusoidal traces, the localization errors between the 

estimated peaks by the fitting-based method and the actual source locations were 220 ± 10 μm and 

210 ± 5 μm, respectively, as compared to 74 ± 10 μm and 59 ± 8 μm with the deconvolution-based 

method. However, in terms of the running time and the computational costs, the curve fitting 

technique outperforms the deconvolution-based approach.
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I. Introduction

ULTRASOUND brain vascular imaging is hindered by spatial resolution limitations arising 

from the need for the ultrasound to propagate through the skull bone. The poor penetration 

of higher frequencies through the skull bone and the aberrating effect of the heterogenous 

human skull limit the achievable resolution, making ultrasound imaging for brain vascular 

mapping a challenging problem. To improve the signal detected through the skull bone, a 

solution of contrast agent consisting of gas filled microbubbles can be injected to the 

vascular network [1]. Due to their gaseous content and high compressibility (which results in 

a nonlinear response) these micron-sized bubbles scatter the sound wave more efficiently 

resulting in higher sensitivity to the blood flow [2]. Microbubbles can also act as acoustical 

sources which can be localized by passive beamforming techniques [3], [4]. For ultrasound 

therapy purposes, the feasibility of mapping microbubble emissions through the skull bone 

has been demonstrated using passive acoustic mapping (PAM) [4]–[6] providing the 

potential for real-time therapy monitoring.

The reconstruction methods applied for PAM are categorized into either data independent 

delay-and-sum (DAS) beamforming or the data dependent adaptive beamformers. In the 

DAS approach, different time-of-flights from each transducer element to each point in the 

region of interest (ROI) are compensated for and then a summation is performed on all the 

aligned observations to form the image [3], [7]. The performance of conventional 

beamforming techniques like DAS is limited by the bandwidth restriction of the receivers 

and its performance degrades when there are coherent sources in the medium [3]. Also, DAS 

beamforming is independent of the second order statistics of the data. Therefore, it provides 

lower resolution and worse interference suppression capability as compared to data-

dependent techniques like Capon beamforming [8] and Multiple Signal Classification 

(MUSIC) [9] methods. These adaptive beamforming techniques have been applied to 

cavitation mapping [10], [11], but require an estimate of the number of cavitating bubbles 

beforehand which is difficult in case of bubble clouds. Also, it is worth noting that one of the 

most common reasons for performance degradation of adaptive beamfomers is a mismatch 

between the presumed and the actual array responses due to imprecise knowledge of the 

transducer responses and locations. There are a handful of research works on improving the 

robustness of the adaptive beamformers [8], [12] but most of these are based on narrowband 

assumptions. Microbubble responses either occupy a wideband of frequencies or are 

centered over multiple bands, which also limits the use of the narrowband adaptive 

beaforming techniques and revising these methods is a must for the PAM-based imaging.

Recently, several groups have suggested ultrasound superresolution methods for microvessel 

imaging [13]–[20]. Some of these approaches are based on curve fitting on low resolution 

images of single bubbles to produce higher resolution post-processed images [13]. While 
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other approaches in [14] and [21] are based on fitting the RF data with parallel parabolas to 

find their summit and then super-localize the microbubbles. Single bubbles may be isolated 

either using very low contrast agent concentrations [13], [16] or by capitalizing on the 

temporally varying signal of bubbles moving in the blood stream [14]. The former method 

has been used to image the vessel tree in a mouse ear [16], while the latter method has 

produced images of the vascular networks in rat brain [14]. In [20], a phase correlation 

method for motion correction of microbubbles is suggested to improve the localization 

accuracy. Our group integrated a 128-element hemispherical sparse receiver array (central 

frequency of 612 kHz) into an existing hemispherical phased array prototype of 30 cm 

diameter [22] for focused ultrasound therapy with simultaneous 3D cavitation mapping 

through ex vivo human skulls [23]. In [13], a preliminary result of using this array for 3D 

super-resolution mapping of a vessel phantom through human skull bone was reported. In 

the present study, we examine in greater depth super-resolution imaging techniques 

proposed in fluorescence microscopy [24]–[29]. The first set of these methods is based on 

switching the fluorescence of single emitters (or sparse subset of molecules) sequentially on 

and off either stochastically or in a targeted manner and then using a simple fitting algorithm 

to localize them. A super-resolution image can then be formed using numerous fluorophore 

positions over time [24]–[26]. We applied this method in our initial experimental study [13]. 

The second set of super resolution methods is based on image deconvolution that processes 

the multiframe fluorescence images and estimates the intensity at each pixel of the super-

resolution image (i.e., an image with a pixel size finer than that of the original image) 

without the need for localizing individual molecules [28], [30]. In the present study, we 

adopt and compare both the localization and deconvolution based techniques for super-

resolution PAM-based imaging. For localizing the microbubbles, curve fitting-based 

processing is performed using a fast Levenberg-Marquardt algorithm [31] that takes less 

than a fraction of a second to derive the bubble’s estimated spatial location. The 

deconvolution based imaging, on the other hand, processes the multiframe resolution-limited 

images iteratively and estimates the intensity at each pixel of the superresolution image 

without the need to localize each microbubble. We also present the Cramér-Rao Bounds 

(CRB) [32] of the two estimation techniques, which is known to be the lower bound of any 

unbiased estimator. The performance of these techniques is compared through extensive 

numerical simulations based on experimental PAM data.

II. Passive Cavitation Mapping

This section describes the conventional beamforming formulation applied to the transducer 

recordings in order to image the cavitating bubbles. In this model, the bubbles are assumed 

to be point reflectors producing the field f(rs, t) = q(t)δ(rs) due to an excitation probe sent by 

the transducers. The notation δ(rs) is the multidimensional Dirac delta function at point rs 

with a strength of q(t) that depends on the probing signal and the forward path attenuation. 

The emissions from these reflectors are convolved with the Green’s function of the tissue 

recorded by the transducers at rm, for (1 ≤ m ≤ M) and produces the following pressure field 

at time t′ [33].

Foroozan et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p(rm, t′) = g(rs, t ∣ rm, t′) ⊗ f (rs, t), (1)

where the notation ⊗ stands for convolution. With c denoting the propagation speed, the 

Green’s function at time t′ and at an observation point r is given as follows:

g(r, t ∣ rm, t′) = 1
4π ∣ r − rm ∣δ( ∣ r − rm ∣ ∕ c − (t − t′)) . (2)

Let the recordings at the receivers in the frequency domain be denoted as Ym (ω) for 1 ≤ m 
≤ M for M transducers which can be presented as

Ym(ω) = Hm(ω)P(rm, ω) + Nm(ω), (3)

where Hm (ω) is the frequency response of transducer m, P(rm, ω) is the pressure field at the 

receiver m in response to the cavitating bubble field, and Nm (ω) is the observation noise. In 

this model, the receivers are assumed to be point transducers, however, in practice, due to 

the finite size of the transducer, Hm (ω) is also space dependent. In the frequency domain, 

the pressure Pm (ω) can be modeled as the multiplication of the Green’s function of the 

medium (with propagation velocity of c) and the source field generated from the bubble at 

location rs [3], [33]–[35]. Defining the frequency dependent near field array steering vector 
a(rs, ω) as

a(rs, ω) ≜ e
− j(ω ∕ c) ∣ rs − r1 ∣

4π ∣ rs − r1 ∣ , …, e
− j(ω ∕ c) ∣ rs − rM ∣

4π ∣ rs − rM ∣

T

(4)

the emission from the source bubble at rs are recorded at the receiver locations rm for 1 ≤ m 
≤ M. Then, the (M × 1) vector of received signals can be represented as

y(ω) = (h(ω) ⊙ a(rs, ω))F(rs, ω) + n(ω), (5)

with y(ω) = [Y1(ω), … , YM (ω)]T, the vector n(ω) is the stack vector of all the M 
observation noise Nm (ω), F (rs, ω) is the frequency representation of f (rs, t) presented in 

(1) and the notation ⨀ is the Hadamard product of the two vectors. The (M × 1) vector h(ω) 

= [α(r1, ω) H1(ω), … , α(rM, ω) HM (ω)]T takes care of both the frequency dependent 

attenuation factor of the medium α(rm, ω) as well as the frequency response of the 

transducers. Before applying the conventional beamforming, a bandpass filter is applied to 

highlight the frequency band of interest and suppress the observation noise as much as 

possible. We denote the filtered received signals as y(ω) and apply the conventional DAS 

beamforming to map the bubble cavitation spatially. In DAS, each received signal is shifted 
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using the delays based on distances between each observation point in the ROI and then the 

M shifted signals are summed to increase the signal-to-noise ratio (SNR) at the location of 

the cavitating bubble. Now, the search steering vector a(x, ω) over the ROI is used for this 

purpose as

Ik(x) = (1 ∕ Q)∑
ωq

aH(x, ωq)y(ωq), (6)

where the intensity of frame k is averaged over a number of frequency bins Q. We consider 

different frequency bins selections for each microbubble which results in multiple 

resolution-limited images or frames K. When the search steering vector matches the bubble 

location steering vector, the SNR is high and the intensity shows a peak at this location, 

otherwise the signals destructively cancel each other and the intensity is lower. In the 

following section, we apply super-resolution techniques to low resolution reconstructed 

images formed by the conventional DAS beamforming technique presented in (6).

III. Materials and Methods

Determining the best estimate of a microbubble location based on noisy beamformed images 

is a statistical estimation problem. The resulting degraded image of an imaging system is the 

convolution of the original image with the point spread function (PSF) of the system [36]. 

The goal of a super-resolution technique is to remove the limitations imposed by the PSF 

and to have access to the original image. In order to solve this estimation problem, two 

different approaches have been considered in this work. The first super-resolution imaging 

technique is based on localizing single bubbles one at a time which is based on the 

techniques proposed in fluorescence microscopy capable of imaging features with a 

resolution well beyond the diffraction limit [24]–[26]. We adapted the localization based 

technique for super-resolution ultrasound imaging of microbubbles [13]. This method finds 

the peaks of the beamformed images through a statistical fit of the ideal PSF to its 

beamformed image distribution. All the super-resolution images are then combined through 

a MIP technique [37] to form the final image of the microbubble trace. The second method 

directly estimates the intensity of the pixel grids in the super-resolution image by 

deconvolving the PSF nonlinearly from a series of noisy low resolution images [28]. The 

PSF parameters are derived again by fitting a 3D Gaussian function to single bubble low 

resolution images. In the following sections, we provide details for both of the super-

resolution imaging algorithms.

A. Localization Based Super-Resolution Imaging

This section explains single microbubble fitting based localization to obtain a super-

resolution image. The localization technique is based on the Photoactivated Localization 

Microscopy (PALM) [24] technique which temporally separates the spatially overlapping 

images of individual molecules. This can be achieved in ultrasound imaging using low 

concentration of microbubbles such that the bubbles are spatially isolated [13] or by 

exploiting the fact that microbubbles move with blood flow [14]. We assume that the PSF of 
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the system has a three-dimensional Gaussian shape. This is an approximation of the shape of 

the main lobe of the beam response in the hemispherical transducer array we used in our 

experiment. For microbubble l (for 1 ≤ l ≤ L), multiple beamformed images (K frames) are 

formed using different frequency bins within the frequency range of interest in (6). Then, a 

three-dimensional Gaussian function using an unweighted least-squares optimization is 

fitted to the image, yielding an amplitude of A, center position of [xc yc zc], and uncertainty 

of σx, σy, σz using all the K frames. Each bubble is then rendered in a new super-resolution 

domain X = [Xl Yl Zl], as a Gaussian with standard deviation of σx, σy, σz instead of the 

much larger deviation of the original image as given in Step 1.b of Algorithm 1. The least-

squares estimation is based on the Levenberg-Marquardt algorithm [31]. Finally, the 

aggregate position information from all sets of images are then assembled into one super-

resolution image using the MIP method after intensity normalization.

Algorithm 1: LOCALIZATION([in] Ik (x) [out] ˆI(X)).

Input: (i) Ik(x) − The intensity of the frame k for

1 ≤ k ≤ K in resolution‐limited image .
Output: I (X) − Estimated intensity in super‐resolution

image.
1: for l = 1 : L do

a . Fit a 3D Gaussian function to Ik(x) usign least

squares optimization based on Levenberg‐Marquardt
algorithm, yielding the coordinates xc, yc, zc .

b . Find the uncertainty of the position σx, σy, σz
using all K frames .
c . Position mapping of the Gaussian‐formed image
into high resolution image using

Il(X) = A
2πσxσyσz

exp

−
(Xl − xc)2

2σx
2 +

(Yl − yc)2

2σy
2 +

(Zl − zc)2

σz
2 .

2: end for
3: Combine the single bubble high resolution images

Il(X) for 1 ≤ l ≤ L into a composite image using

maximum intensity projection method.

B. Deconvolution Based Super-Resolution Imaging

We assume a model for the intensity of the pixels in the low resolution images at frame k 
(denoted as Ik (x)) as being the convolution of the PSF of the ultrasound imaging system 

(w(x)) with the original image with grid of X (denoted as Ik (X)) which has generally a finer 

grid than the imaging grids of the low resolution images (x). The expected intensity (which 

is presented by a circumflex to denote the estimated quantities) in the low resolution image 

at pixel x and frame k is given as
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I k(x) = ∑
X ∈ 𝒳

w(x − X)Ik(X) + b, (7)

where b is the background intensity of the image and 𝒳 is the set of all the points in the 

super-resolution image. Also, the PSF is normalized such that ∑X ∈ 𝒳w(x − X) = 1 for ∀x. 

This method approximates the maximum-likelihood image based on all available temporal 

and spatial data without explicitly localizing the microbubbles. We adapted the 

deconvolution STORM algorithm [28] to ultrasound passive cavitation imaging. This 

method follows the iterative image deconvolution algorithm in [36] which converges to the 

maximum likelihood estimate of the image from some blurred and noisy images with some 

prior statistics of the data. This algorithm starts at iteration (d = 1) with a uniform estimate 

of the image intensity at location X of the super-resolution image in frame k (i.e., I k
d(X) = 1). 

Following (7), the expected intensity at pixel x and at iteration time d is 

I k
d(x) = ∑X ∈ 𝒳w(x − X)Ik

d(X) + b. It is assumed that both the background intensity b and the 

PSF function w(x) are known or can be estimated beforehand from a set of single 

microbubble images. At each iteration d, the error between the observed intensity at frame k 

and the estimated intensity at that frame is defined as ek
d(x) = Ik

d(x) ∕ I k
d(x). This error at 

iteration d is then convolved with the PSF to produce the next iteration intensity as follows:

I k
d + 1(X) = I k

d(X) ∑
x ∈ ℛ

w(X − x)ek
d(x) ∕ c(X), (8)

where c(X) = ∑x ∈ ℛw(X − x) is a super-resolution grid dependent normalization constant. 

Once (8) converges, the mean intensity of all the K frames produces the intensity in the final 

super-resolution image. To increase the speed of convergence, an exponential prior 

distribution of the form exp ( − γI ) is used in [38] which is the same for every location in grid 

and every frame. Then, in (8), the normalization constant c(X) is replaced by c(X) + γ to 

accelerate the convergence of the algorithm. This method is summarized in Algorithm 2. 

Next section, presents the lower bounds of the accuracy of the two algorithms and studies 

the performance limitations imposed by different image parameters.
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Algorithm 2: DECONVOLUTION([in] Ik (x), w(X), b [out]
ˆI(X)).

Input: (i) Ik(x) − The intensity of the frame k for

1 ≤ k ≤ K in resolution limited image,and; (ii) w(X) −
estimated PSF of entire super‐resolution grid;
(iii) Background intensity − b .

Output: I (X) − Mean (over K frames) of the estimated
intensity in super‐resolution image.

1: Initialize the estimate of the super‐resolution image;

I k
1(X) = 1

2: for d = 1 : D do
a . Compute the ratio of the observed intensity to
predicted intensity

ek
d(X) =

Ik
d(x)

∑x ∈ ℛ I k
d(x)w(x − X) + b

for the entire image grids in low resolution images.
b . Estimate the sparsences parameter based on an
exponential prior distribution of form
P[I ] ∝ exp( − γI )
c . Update the sample estimate

I k
d + 1(X) =

I k
d(X)∑x ∈ ℛw(X − x)ek

d(x) ∕ (c(X) + γ) .

3: end for

C. Analytical Lower Bounds of the Localization Accuracy

CRB is a lower bound to the variance of any unbiased estimate of an unknown parameter. 

Although the CRBs are guaranteed to be lower bounds, they may not be achievable in 

practice. The CRBs depend upon the type and quality of information supplied to the 

estimation algorithms, and thus represent the impact of information, not algorithms on the 

estimation quality [39]. For the Gaussian profile estimation, references [40], [41] under 

certain assumptions, provide the covariance matrices of the unknown parameters (i.e., A, xc, 

yc, zc, σx, σy, σz). Then, the individual variances of each parameter are given by the 

diagonal elements of the covariance matrix. In this section, we briefly review the results 

presented in [40]–[42] to find how well the parameters can be estimated and in what ways 

the estimation accuracy is limited. The CRB has already been used for demonstrating the 

accuracy bounds of the localization method used in [18] for microbubble super-resolution 

imaging. Assuming that the ROI is much larger than the standard deviations of the 3D 

Gaussian model, the localization uncertainties are given by [43]
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σxc
2 , CRB ≈

2σxσk
2

π
3
2a2σyσz

vox3 and

σyc
2 , CRB ≈

2σyσk
2

π
3
2a2σxσz

vox3

σzc
2 , CRB ≈

2σzσk
2

π
3
2a2σxσy

vox3,

(9)

where a flat noise of variance σk
2 is considered to be the same for all pixels in frame k, vox is 

the number of voxels, assumed to be the same for all three dimensions, and a is the contrast 

of the 3D Gaussian model relative to the background. The assumption of equal noise in all 

three directions is necessary to be able to derive the CRBs of the localization method as it is 

not possible to come up with a closed form expression of the lower bounds unless the noise 

is considered equal. As shown in the CRBs, the accuracy of the curve fitting algorithm 

depends on the variance of the noise of pixels, the number of pixels at the ROI, the 

background intensity (hidden in parameter a), the variance of the data in the same axis while 

having an inverse relation with the variance of the data in other axes. These results also 

justify the larger variance in the axial direction compared with the lateral direction because 

of the larger σz relative to σx and σy. The other factors involved in the localization accuracy 

are the size of the pixel in the original reconstructed image and the size of the ROI; the 

bigger the ROI, the less accurate the fit will be. On the other hand, in algorithm 2, the 

unknown parameters are the intensities of all pixels in kth frame of the super-resolution 

image. We assume that we have noisy images (K frames) in the resolution-limited domain 

with the intensity of gk (x) which are noisy versions of Ik (x) presented in (7). Assuming that 

the log-likelihood function is denoted by ln P(gk∣Ik (x)), the Fisher Information Matrix 

(FIM) of the unknown parameters Ik (X) is given by [39]

J(Ik(X)) = ε{∇Ik(X) ln P(gk ∣ Ik(x))∇Ik(X)
T ln P(gk ∣ Ik(x))},

where ∇ is the gradient with respect to the unknown parameter Ik(X) and ℰ{.} is the 

expectation operator. Here, we assume that the noisy resolution-limited images gk (x) have a 

Gaussian probability distribution with mean of Ik (x) and variance of σk
2. Assuming the 

independence of the intensity of the pixels from each other, for the ith pixel in the super-

resolution image, the FIM of the intensity is given as
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(J(I(X)))i, i

= ∑
k = 1

K 1
σk

2 (∂Ik(x) ∕ ∂Ik(Xi))
2 = ∑

k = 1

K (w(x − Xi))
2

σk
2 .

(10)

Then, the CRB of the intensity of pixel i in the super-resolution image is the inverse of the 

above equation. The parameters that affect the lower bound of the intensity accuracy 

depends on (i) variance of the background noise in the resolution-limited image, (ii) PSF of 

the imaging system and (iii) number of frames K of the resolution-limited image.

D. Experimental Setup

As reported previously in [13], the ultrasound was generated by a subset of 128 elements in 

the 306 kHz, 30 cm diameter hemispherical therapy array described by [22]. As shown in 

Fig. 1, the array was driven using a 128 channel driving system (Verasonics, Inc., Redmond, 

WA, USA). Bursts were five cycles in length, repeated at a 10 Hz PRF. The receiver array 

was configured in an optimized sparse arrangement distributed over the full hemispherical 

array aperture. The receiver array has a total of 128 piezo-ceramic elements (Del Piezo 

Specialties, LLC., West Palm Beach, FL, USA), with center frequencies of 612 kHz, or two 

times the transmit frequency. The received signals were captured with a 128 channel receiver 

(SonixDAQ, Ultrasonix, Richmond, B. C., Canada) at a sampling rate of 10 MHz.

The array contained in a rubber-lined tank filled with degassed, deionized water. An ex vivo 
human skullcap was degassed in a vacuum jar for 2 hours prior to experimentation. The 

skullcap was placed in the tank and a 0.8 mm internal diameter tube was placed at the array 

focus. The tube was filled with deionized water and sonicated with the transmit array. The 

scattered waveforms were captured by the receive array. Next a solution of deionized water 

and Definity microbubbles (1–3 μm mean diam., Lantheus Medical Imaging, North 

Billerica, MA, USA) was pumped through the tubing and the tube was again sonicated and 

the waveforms were captured. The bubbles were diluted in water at an approximate 

concentration of 1600 bubbles/mL, or 12 mm of tubing per bubble, allowing the assumption 

of single bubbles being excited at the array focus. This estimate is based on the mean 

concentration of undiluted bubbles measured by Coulter Counter in [4] and the dilution ratio 

used. To suppress strong reflections from the skull bone, the signals captured with bubbles 

present are subtracted from the case of just water prior to further processing. Phase 

correction for the delays induced by the skull were corrected for using time-of-flight 

measurements of the signal from a narrowband source, captured directly and through the 

skull. We have demonstrated elsewhere [13] that non-invasive bubble-based methods can 

also be used to calculate the phase and amplitude correction terms.
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IV. Results

A. Localization Based Results

Example RF data is plotted in Fig. 2 both in time and frequency domains. A zero-phase 

bandpass butterworth filter of order 4 was used to suppress the other frequency bins and 

highlight the frequency range between 400–800 kHz. Compensating for the effects of the 

skull bone, 3D and 2D single bubble images are plotted in Fig. 3, at a grid spacing of 0.5 

mm. As shown in Fig. 3, the elongation artifact significantly reduces the axial resolution due 

to the limitation of the hemispherical transducer array in the z-direction. Then, using a PAM 

based image of a single bubble, different scenarios are simulated to track the movement of 

microbubbles. In this article, we present linear and sinusoidal traces to evaluate the 

performance of the proposed localization method. In a linear trace, the source is shifted 

along all three directions with 160 micron spacing between adjacent bubbles with 20 

bubbles in total. The RF received signals of a single bubble by the hemispherical transducers 

are up-sampled by 4 to increase delay accuracy and then delayed based on the difference 

between the shifted source positions. The reconstructed image for each microbubble is 

formed separately based on the delayed RF data and a Gaussian function is fitted to each 

microbubble. We use an existing implementation of Matlab via the optimization toolbox 

(lsqcurvefit), in which we enable the Levenberg-Marquardt option as minimization scheme. 

The results are shown in a 2D plane in Fig. 4. The center points of the Gaussian functions 

after curve fitting are considered as the estimated peak of the microbubble and are plotted 

together with the bubble locations in linear and sinusoidal traces in Fig. 5. The uncertainties 

on the fit were calculated to be 20 ± 2 μm (mean ± S.D.) for each microbubble. In order to 

evaluate the performance of the localization algorithm, the reconstruction grid step was 

varied from 0.1 mm to 0.4 mm for each bubble image and the root-mean-square errors 

(RMSE) are plotted considering all the bubble locations in the trace (Fig. 6). We repeated the 

same experiment with other single microbubble reconstructed images to get the RMSEs and 

also compensated for the effect of the varying number of grid points. As shown in Fig. 6, the 

lower discretization step in the initial reconstructed image reduces the error of the peak 

estimation but seems to reach a limit around 0.1–0.2 mm for the reconstruction grid size.

B. Deconvolution Based Results

In this section, we present the super-resolution imaging results based on deconvolution as 

presented in Algorithm 2. Here, we present the results for the same linear and sinusoidal 

traces of bubbles as we formed previously for the localization based imaging except that we 

are directly estimating the intensity for a single microbubble one at a time. The maximum 

intensity projection is used to form the traces both in the original and super-resolution 

images. Fig. 7(a) shows the low resolution image with 0.4 mm reconstruction grid size and 

Fig. 7(b) shows the super-resolution images after applying Algorithm 2 with eight times 

finer grid size. Fig. 8 also, presents the results for a sinusoidal shape bubble trace using the 

deconvolution based estimation. The results indicate that the bubbles in the reconstructed 

images are not spatially resolvable, while the traces in the super-resolution images almost 

always can differentiate between the two adjacent bubbles. However, the lateral resolution 

achieved by both the algorithms is around 2 times higher than the axial resolution. Also, the 

peak of the intensity in the super-resolution images for each bubble is the estimated source 
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location. The error between the estimated peaks and the actual source locations is computed 

for the linear and sinusoidal traces to be 74 ± 10 μm and 59 ± 8 μm, respectively. These 

errors are less than the errors of the localized peaks based on algorithm 1 for the same 

reconstruction grid (0.4 mm) which are 220 ± 10 μm and 210 ± 5 μm, for the linear and 

sinusoidal traces, respectively. The above examples indicate the potential of using super-

resolution techniques to analyze the bubble dynamics more efficiently compared with the 

existing beamforming techniques, but the performance in practice depends on parameters 

such as the density of the bubbles and the size of the image features.

C. Comparison of the Methods

This section compares the performance of the two proposed algorithms in terms of the 

localization error, running time and the computational costs. First, we plot the CRBs for a 

single bubble location estimation using (9)–(10). Random noise is added to each pixel of the 

low resolution image to simulate different SNRs and the CRBs are calculated for each SNR. 

Fig. 9 shows the CRBs of the localization algorithm in x, y, and z directions as compared 

with the deconvolution based CRB. The figure shows that in general, the deconvolution 

based algorithm has lower CRB than the localization algorithm at different SNRs.

In terms of the localization error, we demonstrate the superresolution capability of the 

proposed algorithms by generating images of two bubbles separated by a given distance. Fig. 

10 shows the localized bubbles with 1 mm spacing (Fig. 10(a)) after curve fitting and the 

maximum projection along the x-axis with the two Gaussian fitted curves (Fig. 10(b), (d) 

and (f)) and after applying the deconvolution based algorithm (Fig. 10(c) and (e)). In this 

figure, we show the 2D images along the x-y axis for clarity. As shown in this figure, both 

the algorithms can resolve the bubbles but the width of the main lobe indicates that the 

deconvolution based algorithm provides better resolution. Based on the peak intensity along 

the x-axis, the absolute value of the error for the algorithms 1 and 2 are 310 μm and 130 μm, 

respectively at reconstruction grid size of 50 μm of the original image. We repeat the 

experiment for lower bubble spacing (0.5 mm in x-direction) and the results are presented in 

Fig. 11. This makes the absolute value of the error for the curve fitting-based imaging to be 

348 μm as compared to the 152 μm absolute error of the deconvolution based imaging. We 

also compared the relative visibility v of the projected intensity profiles given in Fig. 10(e) 

and (f) and also in Fig. 11(e) and (f), defined as [27]

v = v0
min {Imax, 1 ∕ I1, Imax, 2 ∕ I2}
max {Imax, 1 ∕ I1, Imax, 2 ∕ I2}

sign(v0)

,

v0 = 0.5
Imax, 1 − Imin
Imax, 1 + Imin

+
Imax, 2 − Imin
Imax, 2 + Imin

(11)

where Imax, i for i = 1, 2 are the maximum mean intensity at the known source locations 

when each algorithm is applied (as shown in Fig. 10(e)–(f)), Imin is the mean intensity of the 

half of the sum of the source locations, and I1, I2 are the real source intensities. This metric 

is a number between 0 to 1 and is a measure of how much the intensity of the super-
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resolution point targets are at the exact locations of the initial targets with respect to the 

background intensity between the two targets. For bubble spacing of 1 mm and 0.5 mm, 

these metrics are respectively 0.12 and 0.2 for algorithm 1 and 0.72 and 0.62 for algorithm 2 

which indicates that, by this metric, the deconvolution based super-resolution image is 

better.

Curve fitting based processing can be performed using a fast Levenberg-Marquardt 

algorithm that takes less than a second. On the other hand, deconvolution procedures 

estimate the intensity of the entire image, i.e., a gray scale value at each super-resolution 

pixel, therefore, algorithm 2 requires a great number of computations at each iteration 

compared to localization algorithms. Even with the use of a spatial and temporal statistical 

prior information to accelerate the convergence speed, in same cases, the deconvolution 

technique may need 103 iterations to converge. In terms of the running time using MATLAB 

(MathWorks, Inc.), with a 64-bit 8 core Intel(R)Xeon(R) CPU @2.5 GHz and 32 GB of 

RAM, algorithm 1 takes 0.5 seconds while algorithm 2 with 30 iterations and original pixel 

size of 41*41 and 200 frames with 10 times more pixels in the superresolution image, takes 

around 20 minutes to run. Therefore, algorithm 1 is much faster.

The computational complexity of curve fitting approach with respect to required operations 

(i.e., time complexity) depends on several parameters. First of all, the number of iterations of 

the iterative minimization process has large influence on the algorithmic complexity of the 

approach. This value cannot be predicted beforehand and depends on the quality of the 

initial parameters and the suitability of the Gaussian fitted model. For each iteration, with s3 

and t being the number of voxels in the ROI and the number of model parameters (i.e., 7 in 

3D), respectively, the process involves 𝒪(s3t2) operations [43]. For all iterations (D), the 

algorithmic complexity is given by 𝒪(Ds3t2). It can be seen that for 3D images, the 

algorithmic complexity of fitting is dominated by the size of the ROI. This process is 

repeated for each microbubble of each L images and K frames, resulting in 𝒪(DKLs3t2)
operations. Comparing with this number of operations, we neglect the number of operations 

to form the super-resolution image with s′3 voxels in the ROI. The computational 

complexity of the conventional MIP is 𝒪(s′3) [37], which can be neglected with respect to the 

computational complexity of that of the curve fitting 𝒪(DKLs3t2). For each iteration, the 

computational complexity of the deconvolution phase of algorithm 2 by means of Fast 

Fourier Transform (FFT), is 𝒪(s′3log s′3) [44] and is independent of the number of bubbles, 

L. Then, for D iterations and K image frames, the total computational complexity will be 

𝒪(DKs′3log s′3). We assume that the other step of the algorithm which involves in estimating 

the sparseness parameter is dominated by the first step due to the size of the ROI, s′3. 

Comparing these two computational complexities, it can be seen that the deconvolution 

based super-resolution imaging will take many more operations than the curve fitting based 

approach.

Both of these algorithms process a number of multiframe resolution limited images from 

experimental PAM data and provide a super-resolution image, therefore, the practicality of 

both the approaches in real time operations are limited. The other underlying assumption for 
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both localization and deconvolution-based algorithms is that there is only single 

microbubble one at a time in the ROI which may be a difficult setup to achieve in practice. 

We also artificially created the traces of microbubbles from a single PAM experimental data 

set. Our future work will focus on using experimental data from multiple bubbles. The 

localization-based algorithm assumes a Gaussian fit to the resolution limited images while 

the deconvolution-based approach assumes a model with known PSF. Finally, in order to 

determine the flow velocity within the microvasculature, microbubble tracking algorithms 

need to identify individual microbubble signals [16]. The deconvolution-based algorithm 

does not emphasize imaging individual microbubbles one at a time, therefore, it is difficult 

to use this method with tracking algorithms.

V. Conclusion and Future Work

There is a pressing need to develop more efficient superresolution imaging algorithms for 

PAM exhibiting an appropriate compromise between algorithmic simplicity, computational 

complexity, visibility, robustness against noise, and high accuracy. In this work, we proposed 

two methods to form a super-resolution image from a number of multiframe resolution-

limited images. The first approach is based on curve fitting to localize the bubbles, which 

runs in less than a second using common least squares estimation methods. Our future goal 

for the localization based method is to extend the algorithm to fit multiple bubbles at the 

same time. This requires iteratively finding all local maxima above a certain threshold, 

fitting a Gaussian curve to all the bubbles, forming the fitted image based on the localization 

parameters, calculating the residual error, lowering the threshold and continuing this process 

until a certain threshold of the error is reached [45]. Rather than processing data by 

estimating the locations, the deconvolution based method is fundamentally different and 

estimates the intensity of each pixel in the superresolution image, assuming that the PSF is 

known beforehand.

The accuracy of the proposed methods are investigated by presenting the corresponding 

CRBs. Using a single microbubble experimental data set, different traces of the 

microbubbles are formed and the performance of the two methods are compared in terms of 

the accuracy and the computational complexity. In terms of the localization error, the 

deconvolution based method has almost one third of the absolute mean error, while in terms 

of the running time and the computational costs, the curve fitting technique is superior. For 

future work, we plan to take advantage of parallel computing on different graphical 

processing units and develop parallel programming in Matlab and C language for analyzing 

multiple frames in parallel to form the deconvolution based image.
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Fig. 1. 
Experimental setup and the imaging phantom. The array is illustrated in dark gray and the 

skull in light gray. The microbubbles flow through a tube that is placed near the geometric 

focus of the array.
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Fig. 2. 
Snapshot of the RF data before and after filtering: (a) Raw data v.s. time in μs, (b) 

Normalized filtered data v.s. time in μ s, (c) Raw data v.s. frequency in MHz, and (d) 

Normalized filtered data v.s. frequency in MHz.
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Fig. 3. 
Reconstructed image of a single bubble; (a) Three dimensional image, (b) Two-dimensional 

representation of (a), the x-y-z axes show the number of grids.
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Fig. 4. 
Two dimensional Gaussian fitting for localization with 50 μm reconstruction grid size and 

the x-y axes being the number of grids.
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Fig. 5. 
Localization: Linear and sinusoidal bubble traces after applying the curve fitting algorithm 

on the original grid size, blue dots are source locations and the red stars are the localized 

sources.
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Fig. 6. 
Root-mean-square error of the localized peaks for: (a) the linear trace and (b) the sinusoidal 

trace.
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Fig. 7. 
Deconvolution method for a linear trace constructed from moving a single microbubble low 

resolution image, (a) 3D plot of the microbubble in a linear trace at the original resolution, 

(b) Super-resolution image after applying the deconvolution algorithm, plotted on an eight-

fold upsampled image grid.
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Fig. 8. 
Deconvolution method for a sinusoidal trace constructed from moving a single microbubble 

low resolution image, (a) 3D plot of the microbubble in a sinusoidal trace, (b) Super-

resolution image after applying the deconvolution algorithm, plotted on an eight-fold 

upsampled image grid.
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Fig. 9. 
CRB plot of both the fitting-based localization algorithm in x, y, and z directions as well as 

the deconvolution based algorithm at different SNRs.
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Fig. 10. 
Images of two bubbles separated laterally 1 mm (a) 2D lateral image, (b) Two Gaussian 

curves fitting of (a), solid line shows the fitted curve and the dots show the intensity 

projection along the x-axis, (c) Super-resolution image using deconvolution method plotted 

on an eight fold upsampled grid, (d) Super-resolution image using curve fitting method 

plotted on an eight fold upsampled grid (e) Projection of (c) along the x-axis (f) Projection 

of (d) along the x-axis.

Foroozan et al. Page 26

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Images of two bubbles separated laterally 0.5 mm (a) 2D lateral image, (b) Two Gaussian 

curves fitting of (a), solid line shows the fitted curve and the dots show the intensity 

projection along the x-axis, (c) Super-resolution image using deconvolution method plotted 

on an eight fold upsampled grid, (d) Super-resolution image using curve fitting method 

plotted on an eight fold upsampled grid, (e) Projection of (c) along the x-axis (f) Projection 

of (d) along the x-axis.
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