Skip to main content
. Author manuscript; available in PMC: 2019 Apr 11.
Published in final edited form as: IEEE Trans Biomed Eng. 2018 Mar 8;65(12):2692–2703. doi: 10.1109/TBME.2018.2813759
Algorithm 2: DECONVOLUTION([in] Ik (x), w(X), b [out]
ˆI(X)).
Input:(i)Ik(x)The intensity of the framekfor1kKin resolution limited image,and;(ii)w(X)estimated PSF of entire super-resolution grid;(iii)Background intensityb.Output:I^(X)Mean (overKframes) of the estimatedintensity in super-resolution image.1:Initialize the estimate of the super-resolution image;I^k1(X)=12:ford=1:Ddoa.Compute the ratio of the observed intensity topredicted intensityekd(X)=Ikd(x)xRI^kd(x)w(xX)+bfor the entire image grids in low resolution images.b.Estimate the sparsences parameter based on anexponential prior distribution of formP[I^]exp(γI^)c.Update the sample estimateI^kd+1(X)=I^kd(X)xRw(Xx)ekd(x)(c(X)+γ).3:endfor