Skip to main content
. Author manuscript; available in PMC: 2019 Apr 11.
Published in final edited form as: Med Image Comput Comput Assist Interv. 2018 Sep 26;11070:871–879. doi: 10.1007/978-3-030-00928-1_98

Table 1.

Comparative evaluation of classification performance. In column “Inputs”, “I”and “A” refer to US images and attention maps, respectively. “SS-cls Net” refers to single-stream network trained only on attention maps to classify US video frames.

Models Inputs Precision Recall F1-score
M-SEN BCE + GAN I 96.8 96.2 96.5
M-SEN BCE I 96.7 90.5 93.5
M-SEN MSE + GAN I 94.8 91.9 93.3
M-SEN MSE I 92.4 75.6 83.2
SonoNet-32 [4] I 79.3 82.1 80.7
SonoNet-16 [4] I 73.6 74.1 73.8
SS-cls Net A 71.5 76.4 73.9
SonoEyeNet-Late FT [5] I and A 96.5 99.0 97.8