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Author summary

Modern network science is a new and exciting research field that has transformed the

study of complex systems over the last 2 decades. Of particular interest is the identification

of small “network motifs” that might be embedded in a larger network and that indicate

the presence of evolutionary design principles or have an overly influential role on sys-

tem-wide dynamics. Motifs are patterns of interconnections, or subgraphs, that appear in

an observed network significantly more often than in compatible randomized networks.

The concept of network motifs was introduced into Systems Biology by Milo, Alon and

colleagues in 2002, quickly revolutionized the field, and it has had a huge impact in wider

scientific domains ever since. Here, we argue that the same concept and tools for the

detection of motifs were well known in the ecological literature decades into the last cen-

tury, a fact that is generally not recognized. We review the early history of network motifs,

their evolution in the mathematics literature, and their recent rediscoveries.

Complex networks now feature prominently in many aspects of modern science and society

[1–18]. Within this still rapidly growing discipline, there is strong recognition that large-scale

dynamical properties of a network are governed by its much smaller constituent “network

motifs,” and so the chief focus is often on motifs. In more technical terms, motifs may be

defined as “patterns of interconnections (or subgraphs) occurring in complex networks at

numbers significantly higher than those in randomized networks” [1]. Their presence indi-

cates the operation of underlying nonrandom structural or evolutionary design principles that

might have been involved in building the network. In a key paper by Milo and colleagues

(2002) [1] entitled “Network motifs: Simple building blocks of complex networks,” the authors

propose a powerful technique for identifying nonrandom motifs that might otherwise remain

hidden. The ability to detect network motifs has had far-reaching scientific impact, and the

article of Milo, Alon and colleagues [1] and its three associated papers [2–4] are considered

transformative in the field, as can be gauged from the approximately 860 citations they receive

annually. However, it is not well known that the very same method used by Milo, Alon and

colleagues [1] has a long history in the ecological and social sciences, as discussed here.

In practice, motifs arise in different contexts with diverse forms, as seen in Fig 1 showing a

checkerboard motif used in the study of ecological networks [5] (and discussed in more detail

below), a clustering triangular motif used in sociological and epidemiological contexts [6–9],
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and a feed-forward loop motif commonly used in systems biology [1,3,10]. These are only a

few examples. Algorithms that detect overabundant motifs have had many applications in sys-

tems biology in which they have been used, for example, in the search for regulatory algo-

rithms [4] of the cell and for applications concerning cancer diagnosis [11]. The same

techniques are also being applied to study neuronal networks [12], brain function [13], social

Fig 1. Network motif examples. Motifs in different contexts (right column) and example systems (left column). (A)

Checkerboard motif. For example, 4 species (A–D) occupy 5 islands (I1–I5). The checkerboard motif highlighted in red

represents 2 species that do not co-occur on the same island (here, B appears on I5 but D does not, and conversely, D

appears on I3 but B does not), suggestive of competitive interactions. (B) Triadic clustering motif. For example, the

motif represents cases in which an individual’s connected friends are also connected with each other, having

significance, for example, in social networks and epidemiological contact networks. (C) Feed-forward loop motif. For

example, a circuit in gene transcription networks, in which DNA target β can be activated only through simultaneous

binding of two transcription factors A and B, and in which B depends on A initially binding to DNA targets α and β,

suggesting regulatory control on transcription.

https://doi.org/10.1371/journal.pcbi.1006749.g001
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networks [14], financial [15] and trade networks [16], and internet and mobile wireless com-

munication [17]. This has led to a whole range (quite likely hundreds) of software toolboxes or

one-off programs for detecting network motifs [18]. This paper outlines briefly the origins and

history of network motifs and the main algorithm for identifying motifs, that is, before its

recent “rediscovery” [19] (Merton 1961) at the turn of the millennia by Milo and colleagues

(2002) [1] and Shen-Orr and colleagues (2002) [3].

In order to proceed, we define a few basic terms from network theory. Any network or

graph may be studied in terms of its binary adjacency matrix A. For a network with n nodes,

and an n × n binary adjacency matrix A, then Aij = 1 implies that node-i is connected to node-

j, and Aij = 0 otherwise. The network is undirected if Aij = Aji, but in general, we deal with

directed networks in which this equality usually doesn’t hold. The row and column sums of A
are given by ri ¼

Pn
j¼1

Aij, and cj ¼
Pn

i¼1
Aij, and represent the in- and out-degrees of all

nodes in the network. A key goal is to find a way to generate independent random samples

from the full “universe” of all possible binary adjacency matrices that have the same row and

column sums r = (ri), c = (cj), respectively. This universe of matrices is referred to as U(r,c) and

constitutes the universe of all possible matrices having the same row and column constraints,

thus preserving an important topological feature of the observed adjacency matrix A.

In ecological applications, let us suppose for a given adjacency matrix A that rows represent

species and columns represents islands. Then Aij = 1 implies that species-i inhabits island-j.
The random matrix ensemble should lock-in characteristics that reflect the ability of some spe-

cies to colonize islands better than other species as well as the feature that some islands hold

more species than others. For this reason, we generate a reference ensemble of random matri-

ces for our null-model in which the row sums (reflecting species colonization abilities) and col-

umn sums (reflecting island species numbers) never change [20].

To our knowledge, the first rigorous methods for detecting nonrandom patterns in adja-

cency matrices or networks, when compared to the universe U(r,c) of all possible matrices, can

be traced to the works of Connor and Simberloff (1979) [20], Stone (1988) [21], and Stone and

Roberts (1992) [5]. These studies use the so-called switch method to generate an ensemble of

random matrices. The method randomly switches or interchanges checkerboard configura-

tions, as shown in Fig 2, and rests on the observation that applying a single such switch leaves

the row and column sums of the matrix unchanged. Applying enough switches randomizes

the adjacency matrix, but with each switch the row and column sums of the matrix remain pre-

served. The latter are generally fixed to the values of the observed matrix being tested. Simberl-

off (1986) [22] and Stone (1988) [21] attempted to show computationally that the switch

method randomly samples the universe of all possible matrices from U(r,c) in a manner that is

approximately uniform and discussed schemes for drawing samples after every k successive

interchanges. Zaman and Simberloff (2002) [23] and Artzy-Randrup and Stone (2005) [24]

show rigorously, using different methods, that exact uniformity can be achieved with easily

implemented weighting schemes. Independent matrix samples so generated from the ensem-

ble U(r,c) provide a reference frame that can be used to estimate motif frequencies that should

be expected with a random model. Other novel sampling methods have since been devised

[25,26].

A method specifically for finding an over-represented “network motif” was, to our knowl-

edge, first outlined explicitly in Stone (1988) [21] and Stone and Roberts (1992) [5]. They

defined the C score as the average number of checkerboard units or motifs between a typical

pair of nodes or species. Figs 1A and 2 help explain the concept. Again, the rows of the adja-

cency matrix A represent species and columns represent islands. In Fig 1A, an example check-

erboard motif represents a subset of two species (here, B and D) and two islands (I3 and I5). In
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this case, B does not appear on I3 whereas D does, and although B does appear on I5, D does

not, suggesting competitive interactions. Fig 2 gives an adjacency matrix in which in the first

two rows (species-1 and species-2) have no checkerboard motifs, whereas species-3 and spe-

cies-4 (third and fourth rows) have two checkerboards. The C score of the observed matrix,

Cobs, is the average number of checkerboard motifs per species pair, when examined for all spe-

cies pairs. The method then requires finding μ, the average of the C scores in the ensemble of

random matrices, and their standard deviation σ. These statistics allow determination of how

many standard deviations the observed C score is from the mean, namely,

z ¼ ðCobs � mÞ=s:

A large value of z (e.g., z> 1.96) indicates the checkerboard motif is overrepresented in the

network, relative to that expected by chance. This is identical to the method for studying over-

representation of motifs described by Milo and colleagues (2002) [1] more than 10 years later.

Similar ideas were also used even earlier. In the late 1970s, Holland and Leinhardt (1976)

[6,27] attempted to identify small-scale social structure using 3-node motifs (triadic structures

of Fig 1). Their research, however, was restricted to analyses of specific classes of random

matrices (e.g., having row and column sums that are on average all the same constant), rather

than samples having the exact network structure U(r,c) particular to r and c. The latter

approach allows analysis of a much wider and very flexible range of network topologies. Chase

(1980, 1982) [28,29] also used triadic network motifs to study hierarchical relationships in ani-

mal societies, but these studies were restricted to specific classes of random matrices rather

than samples from U(r,c).
The random matrix and network motif methods, once introduced in ecology, metastasized

into a huge literature covering foodweb theory, community null models, and assembly rules.

This corpus multiplied at a still greater rate when Milo and colleagues (2002) [1] unleashed

this method for use in systems biology. These two different fields share the same technique but

were discovered independently. We should not be surprised. The phenomenon of multiple dis-

covery is not a rarity, and their occurrences are not simply strange coincidences. Robert Mer-

ton (1961) [19] goes so far as to argue that multiple discoveries, rather than unique ones, are

the most common pattern in science, sometimes decades apart. Examples include calculus

(Newton and Leibniz), evolution (Darwin and Wallace), and the atomic-bomb (Szilard and

Rotblat; see also https://en.wikipedia.org/wiki/List_of_multiple_discoveries).

With respect to binary matrices and the search for motifs indicating nonrandom structure,

it is not surprising that independent research should have arisen at the beginning of the 21st

Fig 2. Randomizing matrices with switches. Switches between one checkerboard configuration to another (see 0s and

1s marked in red) leave the row and column sums of the matrix unchanged. One method to generate a set of random

samples from the universe of all possible matrices U(r,c) simply requires implementing a large set of switches to

randomly chosen checkerboard configurations in the adjacency matrix.

https://doi.org/10.1371/journal.pcbi.1006749.g002
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century. Binary matrices and associated graphs have long been subjects of interest in mathe-

matics, tracing back at least as far as Macmahon (1971) [30] and Sukhatme (1938) [31]. A

burst of activity by mathematicians in the late 1950s and early 1960s (e.g., [32–35]; cf. [36])

resulted in many theorems about properties of such matrices, including the size of U(r,c) and

locating a “random” subset of U(r,c). Purely mathematical explorations continued well beyond

that period (e.g., [36–39]).

“Null models” arose as a hot topic in community ecology and biogeography in the 1970s,

primarily in the context of controversies over the importance of interspecific competition and

how such competition would be manifested in geographic distribution patterns [20,40].

Because available data were generally in the form of presence or absence of particular species

at particular sites, it was inevitable that ecologists with a mathematical cast of mind would

eventually come to represent them as species-by-site binary matrices, and the question of man-

ifestations of interspecific competition would then reduce to seeking submatrices representing

pairs of mutually exclusive species—motifs, in network terminology. An early ecological effort

by Pielou and Pielou (1968) [41] came close to representing such data as a binary matrix but

instead turned to analyzing the data as a contingency table. Connor and Simberloff (1979) [20]

instead first used a binary matrix representation and analysis. Because the subject of interspe-

cific competition was prominent and controversial during that period, it was inevitable that

methods for examining such matrices proliferated in the literature, originally largely indepen-

dently of the mathematical literature. At approximately the same time, exploration of social

networks became a major research focus in sociology, leading to a similar attempt to define

and enumerate U(r,c) and to search for nonrandom patterns in observed networks [42,43].

The rise of network theory in several fields then led almost automatically to research on how

to identify patterns and thus to the depiction of network motifs (including checkerboard

motifs in ecological networks [44]). Because the fields are quite disparate, some of the relevant

literature consists of independently inventing the same wheel. As a result, the rediscovery pro-

cess occurred over several scientific disciplines, both in parallel and out of sync, and over

many years as we have outlined here (and as also independently discussed in Fosdick and col-

leagues (2018) [45] but from the more recent perspective of stub-labeled configuration mod-

els). For these reasons, it is not surprising that the general algorithm for detecting network

motifs as invented by Milo and colleagues (2002) [1] is almost identical to that developed by

Stone (1988) [21] and Stone and Roberts (1992) [5], which in turn has close similarities to the

algorithm suggested by Connor and Simberloff (1979) [20] in their study of ecological

networks.
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