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ABSTRACT Mycobacterium tuberculosis has evolved to become
the single greatest cause of death from an infectious agent. The
pathogen spends most of its infection cycle in its human host
within a phagocyte. The bacterium has evolved to block the
normalmaturation and acidification of its phagosome and resides
in a vacuole contiguous with the early endosomal network.
Cytokine-mediated activation of the host cell can overcome
this blockage, and an array of antimicrobial responses can limit its
survival. The survival of M. tuberculosis in its host cell is fueled
predominantly by fatty acids and cholesterol. The ability of
M. tuberculosis to degrade sterols is an unusual metabolic
characteristic that was likely retained from a saprophytic
ancestor. Recent results with fluorescentM. tuberculosis reporter
strains demonstrate that bacterial survival differs with the host
macrophage population. Tissue-resident alveolar macrophages,
which are biased towards an alternatively activated, M2-like
phenotype, are more permissive to bacterial growth than
monocyte-derived, inflammatory, M1-like interstitial
macrophages. The differential growth of the bacterium in
these different phagocyte populations appears to be linked
to host cell metabolism.

INTRODUCTION
The foundations of our understanding of intracellu-
lar parasitism by a range of eukaryote and prokaryote
pathogens has been laid by using tissue culture infec-
tion models. These models, using defined cell lines or
expanded primary cell cultures, have been invaluable in
the generation of the knowledge base on which the field
currently relies. However, the models artificially com-
press the heterogeneity that exists for all these pathogens
in their natural in vivo infection cycle. It is the hetero-
geneity within the pathogen population that enhances a
pathogen’s capacity to adapt and survive under the dif-

ferent immune pressures and tissue environments within
its host (1–3).

The past few years have seen the development of a
new generation of tools that will enable us to better un-
derstand the functional consequences of heterogeneity
both in the pathogen population and in the subsets of
host cells present in vivo (4–6). Mycobacterium tuber-
culosis is a human pathogen and is the largest single
cause of death by a single infectious agent. There are no
effective vaccines against infection and no biomarkers for
protective immunity (7–10). While there are drugs that
are effective against M. tuberculosis, treatment requires
a cocktail of three or four drugs taken continuously for
8 to 9 months. Such drug regimens are a serious strain on
the resources of the health care systems inmany resource-
challenged nations, and drug-resistant strains emerge with
disturbing frequency in many countries. Understanding
the consequences of bacterial heterogeneity in vivo with
respect to both drug action and immune containment re-
mains a serious challenge to the field.
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THE IMMUNE ENVIRONMENT
AT THE SITE OF INFECTION
While not an obligate intracellular pathogen, M. tu-
berculosis does spend the greatest part of its infection
cycle within host phagocytes, and the granuloma, the
tissue response to M. tuberculosis infection, is an ex-
tremely macrophage-rich structure (11, 12). Recent data
indicate that, following inhalation of infectious M. tu-
berculosis, the bacterium is phagocytosed by alveolar
macrophages (AMs) patrolling the airway surface (13).
Uptake of M. tuberculosis activates an inflammatory re-
sponse through the stimulatory capacity of the multiple
Toll-like receptor ligands on the bacterial cell wall. The
infected AM invades the subtending tissue of the lung,
and the proinflammatory response amplifies. This re-
sponse leads to the generation of chemokines, such as
CCL2, that are the primary drivers of the recruitment
of interstitial macrophages (IMs) derived from periph-
eral blood monocytes in the circulatory system (14–17).
This proinflammatory response persists until the de-
velopment of an acquired immune response, which in
the murine model system is delayed until 3 to 4 weeks
postinfection because it is dependent on dendritic cells
carrying M. tuberculosis antigen to draining lymph
nodes to prime the initial T-cell response to infection
(18, 19).

Upon initiation of a specific immune response against
M. tuberculosis, the replication of the bacterium is re-
stricted and the infection transitions into a containment
state with a relatively static bacterial burden (Fig. 1A). In
non-human primates and, by inference, in humans, the
infection is paucibacillary, whereas in mice there is a
much greater bacterial burden. This is one of the features
of the murine infection that raises concerns regarding
its usefulness as a model for human tuberculosis (TB).
During this phase of containment and cellular consoli-
dation, new macrophage phenotypes, such as epitheli-
oid macrophages, multinucleated giant cells, and foamy
macrophages, appear within the granuloma (20). In non-
human primates and humans, the granuloma is a highly
stratified structure with distinct transcriptional signa-
tures associated with the different regions (Fig. 1B). The
central, caseous region of the granuloma has a proin-
flammatory signature, while the region surrounding the
caseum shows marked enrichment for transcripts as-
sociated with anti-inflammatory programs (21, 22). In-
triguingly, each granuloma functions like an independent
entity, and while the systemic immune response appears
to be unchanged, some granulomas may progress to ac-
tive disease while others continue to control the infection,
or even progress to a sterile state (23). The factors that

determine the localized progression to active disease have
remained elusive (24).

This phenomenon reflects one of the greatest obstacles
to combating this disease. There are no reliable biomark-
ers for protective immunity and therefore no surrogates to
inform vaccine development programs (7–9). Increasingly
sensitive indicators of early disease progression have been
reported (25), but these indicators require initiation of the
tissue damage that accompanies actual disease, so they are
not useful indicators of protective immune status. Myco-
bacterial growth inhibition assays are the most utilized
peripheral indicator of protective immunity (26). The data
look compelling because they show a functional readout
linked to bacterial survival. However, recent comprehen-
sive evaluation of extensive data sets for the application of
mycobacterial growth inhibition assays to different hu-
man populations indicates that, while the data are indic-
ative of trained innate immunity, they do not correlate
with the protection status of the individual (27).

LIFE OR DEATH IN THE PHAGOCYTE
M. tuberculosis is internalized by classic phagocytosis.
Inert particles phagocytosed by macrophages are deliv-
ered to the acidic, hydrolytic environment of the phago-
lysosome, but M. tuberculosis has evolved strategies to
subvert the process of phagosome maturation (28). The
compartment in which M. tuberculosis resides is slightly
acidified (pH 6.4), remains interactive with the endo-
somal network, and shows limited acquisition of lyso-
somal hydrolases. Classic activation of the macrophage
with interferon gamma (IFN-γ) prior to infection enables
the macrophage to overcome this process and deliver the
bacterium to an acidic lysosome (29, 30). The killing of
M. tuberculosis by activated macrophages is dependent
on multiple factors, most significantly, the production of
nitric oxide (NO), the low pH of the lysosome, and the
delivery of antimicrobial peptides through the process of
autophagy (31–33).

Several publications document the ability of M. tu-
berculosis to escape the phagosome and access the cy-
tosol of its host cell (34–37). Escape from the phagosome
appears to precipitate the necrotic death of the infected
macrophage and a marked growth spurt in the intracel-
lular bacterial population (38, 39). This transient event
may have significance with respect to the pathology
observed in late-stage disease but may be of less signifi-
cance to long-term survival of the pathogen in its host.
Data indicate that, temporally and spatially, the intra-
vacuolar population of M. tuberculosis likely represents
the more significant target for therapeutics (40).
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FIGURE 1 (A) Schematic illustration of the potential outcomes of infection with M. tuberculosis. In most hosts, M. tuberculosis
exhibits rapid expansion of the bacterial burden during the first 3 to 4 weeks of infection. At this point, the acquired immune
response has developed and controls the bacterial burden at a subclinical level but is unable to clear the infection. In vaccinated
hosts, this transition to control of the bacterial burden is achieved at around 1 log fewer bacilli. While resolution of infection
is theoretically possible, it is virtually impossible to demonstrate. Progression from latent disease to active disease appears to
occur in the face of a robust systemic immune response that is Th1 dominant. While there are candidate indicators of early disease
progression, the field lacks immunological markers to detect vaccine-induced protection. Published previously in reference 10.
(B) The main features of the human TB granuloma. A fully formed human TB granuloma is an extremely stratified structure. The
center of the granuloma is caseous and rich in lipids, thought to be derived from the lipids present in foamy macrophages. The
caseum is surrounded by a macrophage-rich layer that contains foamy macrophages, multinucleated giant cells, and epithelioid
macrophages.M. tuberculosis bacilli are observed in many of these cells. This structure is frequently encased in a fibrous capsule
of collagen and other extracellular matrix proteins. Lymphocytes tend to be restricted to the periphery of the granuloma outside
the fibrous outer layer. Published previously in reference 77.
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UNDERLYING MECHANISMS OF IMMUNE
CONTROL AND DISEASE PROGRESSION
Our understanding of immune control of TB is shaped
heavily by failed immunity in the form of knockout
mouse studies or catastrophic human genetic lesions (41,
42). IFN-γ is known to be important because mice de-
ficient in IFN-γ fail to control M. tuberculosis infection
and humans with genetic defects in the IFN-γ receptor
are exquisitely susceptible to TB and to infection with
M. bovis BCG. IFN-γ release assays have also been used,
unsuccessfully, as indicators of a protective immune re-
sponse or treatment efficacy (43). However, our current
knowledge indicates that while a Th1-biased immune
response and the production of IFN-γ are required for
an effective immune response to M. tuberculosis, they
are not sufficient to protect against either infection or
disease progression. Moreover, the assumption that dis-
ease progression is the consequence of failure of Th1-
dependent immune control, while widely held, is actually
unsubstantiated.

A recent study used fluorescentM. tuberculosis fitness
reporter strains to identify host phagocytes that best
controlled M. tuberculosis growth and those that were
permissive (44). The strains all expressed mCherry con-
stitutively and expressed green fluorescent protein (GFP)
either as a fusion protein with the single-strand binding
protein (SSB) as a readout for replication or condition-
ally under regulation of the NO-responsive promoter for
hspX (4–6) (Fig. 2). Studies in vaccinated and naïve mice
demonstrated that expression of hspX′::GFP correlated
with the development of a Th1 immune response and
the expression of iNOS in the host tissue and that fluo-
rescent SSB-GFP foci were less numerous in the face of
a Th1 immune response (5). These data were generated
with tissue sections from the murine granulomas. The
phenotype of the bacterium at individual cell level was
determined on cell suspensions from infected tissue (44).
At 2 weeks postinfection, the bacteria were present pre-
dominantly in neutrophils, AMs, and IMs. Upon char-
acterization of the reporter M. tuberculosis strains, it

FIGURE 2 Usefulness of the hspX′::GFP reporter strain in assessing and reporting on the
localized induction of inducible nitric oxide synthase at the site of infection. Phosphate-
buffered saline-immunized (naïve) mice and mice vaccinated with heat-killed M. tuber-
culosis (vac) were infected with an hspX′::GFP smyc′:: mCherry Erdman M. tuberculosis
reporter strain. Fluorescence induction of the hspX promoter-dependent GFP is higher at
14 days in the vaccinated animals, as assessed by confocal microscopy of thick tissue
sections (A), which were scored subsequently by Volocity (B). (C) The thick tissue sections
were probed with antibodies against murine NOS2 (magenta), demonstrating the colo-
calization between GFP induction and NOS2 expression at the site(s) of infection. N.S., not
significant. Data are from reference 5).

4 ASMscience.org/MicrobiolSpectrum

Huang et al.

http://www.ASMscience.org/MicrobiolSpectrum


was found that the levels of stress induction (hspX′::
GFP) were higher in M. tuberculosis in IMs and neu-
trophils than in bacilli in AMs. Conversely, the SSB-GFP
puncta were more frequent in M. tuberculosis in AMs
and neutrophils than they were in M. tuberculosis in
IMs. These data suggested that M. tuberculosis in AMs
experienced less stress and replicated more actively than
those in IMs. This result was corroborated with M. tu-
berculosis expressing a clock plasmid, pBP10, which is
lost from the bacteria at a fixed rate linked to replication
(45, 46).

Clodronate liposome-mediated depletion of the mac-
rophage subsets was conducted to demonstrate the func-
tional significance of the IM andAMhost cell populations.
Delivery of clodronate liposomes to the lung airways de-
pleted the AM population, and intravenous inoculation of
clodronate liposomes depleted the blood monocytes and
therefore the IM population. In the mice with depleted
AMs, the bacterial burden was reduced by approximately
1 log, while in the mice with depleted IMs, the bacterial

burden was increased by 1 log (Fig. 3). These data dem-
onstrate that by altering the relative proportion of IMs and
AMs available to act as host phagocytes, one can impact
the bacterial load in the mice either positively or nega-
tively, an observation consistent with previous macro-
phage depletion studies (14, 16, 17).

IMs AND AMs ADOPT MARKEDLY
DIFFERENT METABOLIC STATES IN
RESPONSE TO M. TUBERCULOSIS
INFECTION
Analysis of the transcriptional profiles of both M.
tuberculosis-infected and uninfected IMs andAMs showed
that all four phagocyte populations had their own discrete
signatures (44). Pathway analysis of the M. tuberculosis-
infected AMs and IMs indicated that infected AMs were
enriched in transcripts associated with fatty acid metab-
olism and cholesterol homeostasis. In contrast, infected
IMs were up-regulated in transcripts linked to inflam-

FIGURE 3 Selective depletion of AMs and IMs results in a decrease and an increase in
bacterial burden, respectively. Mice were treated with clodronate (Clodro.) liposomes
delivered either intranasally (i.n.) (A) or intravenously (i.v.) (B) to deplete the AMs or the
circulating monocytes, which depleted the recruited IMs. Neither treatment impacted the
neutrophil population within the infected lung tissue. Interestingly, depletion of AMs led to
a reduction in bacterial burden, while depletion of IMs led to an increase in bacterial
burden. The data demonstrate how modulation of the relative dimensions of the per-
missive (AM) and controller (IM) macrophage populations directly impacts bacterial bur-
den. Data are from reference 44.
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matory responses, glycolysis, IFN-γ signaling, and hy-
poxia. Treatment of infected mice with the nonhydrolyz-
able glucose analog 2-deoxyglucose led to a decrease in
IM number without impacting the AM population. The
reduction in IM number was accompanied by an increase
in bacterial burden, providing an independent demon-
stration that the reduction in the relative proportion
of IMs and AMs drives an expansion in the bacterial
burden.

A functional link between host cell metabolism
and bacterial growth was demonstrated through the
manipulation of M. tuberculosis-infected bone marrow-
derived macrophages with the metabolic inhibitors 2-
deoxyglucose and the fatty acid oxidation inhibitor
etomoxir in vitro. Inhibition of glycolysis in the infected
bone marrow-derived macrophages enhanced bacterial
growth, while inhibition of fatty acid oxidation with
etomoxir led to a reduction in bacterial growth. Neither
compound had any impact on bacterial growth in rich
Middlebrook 7H9 bacterial broth.

BASIS OF THE DIFFERENCE BETWEEN AMs
AND IMs
Until very recently, it was thought that all macrophages
in the body were differentiated from peripheral blood
monocytes derived from hematopoietic precursors in the
bone marrow. This is now known not to be the case;
most tissue-resident macrophages, including AMs, de-
rive from fetal yolk sac and fetal liver stem cells dur-
ing embryogenesis (47, 48). These tissue-resident cells
are self-maintaining and capable of replication, albeit at
a low rate during homeostasis. Interestingly, recent re-
ports suggest that M. tuberculosis infection arrests cell
cycle in infected cells while increasing bystander mac-
rophage replication within the infected tissue (44, 49). A
similar state of monocytosis has been observed in hu-
man TB, indicating that this response is not restricted to
the murine infection model (50, 51). The induction of
replication within the macrophage populations in the in-
fected lung provides another route for the selective ex-
pansion of permissive AM populations.

FIGURE 4 Models of macrophage reprogramming and preprogramming. How macro-
phages function in the reprogramming model (Model 1) is determined by immune sig-
naling within the tissue niche. In the proposed preprogramming model (Model 2), the
function of coexisting macrophage lineages in the lung in M. tuberculosis infection is
determined, in large part, by the origin of the macrophage. Mtb, M. tuberculosis; IL, in-
terleukin; FAO, fatty acid oxidation. Published previously in reference 44.
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The larger question emerging from these studies is
how the IM and AM lineages, which experience the same
immune milieu generated by M. tuberculosis infection,
adopt such divergent metabolic states. IMs and AMs are
ontologically distinct macrophage lineages, suggesting
that ontogeny is the dominant determinant controlling
their response to infection. This interpretation is sup-
ported by recent data from an acute lung injury model
where IMs and AMs exposed to lipopolysaccharide in
the lung responded divergently despite experiencing the
same insult (52). The accepted tissue culture model for
macrophage polarization invokes the adoption of an M1
(inflammatory and antimicrobial) state in response to
IFN-γ and progression to an M2 (anti-inflammatory and
tissue repair) state following exposure to interleukins 4
and 13 (Fig. 4) (53–55).

While these definitions provide a useful sense of con-
text, multiple labs report that in vivo, in both humans

and mice, different macrophage populations coexpress
numerous proteins or transcripts that in vitro are thought
to associate exclusively with either M1 or M2 activa-
tion states (56, 57). Extensive analysis and modeling of
macrophage subsets in TB infection of non-human pri-
mates have detailed different populations of macrophages
that express M1 (endothelial and inducible nitric oxide
synthase)- or M2 (Arg1 and Arg2)-associated markers
(58). A subsequent model suggests that the ratio of M1
to M2 macrophage subsets is an accurate predictor of
whether any individual granuloma is likely to progress
to active disease (59). The model is consistent with data
indicating that ontogenically distinct macrophage popu-
lations, the AMs and IMs, are actually preprogrammed to
respond divergently when experiencing the same immu-
nological milieu duringM. tuberculosis infection. Analysis
of peripheral blood mononucleocyte-derived macrophages
and tissue-resident macrophages under homeostatic con-

FIGURE5 Major classes of cholesterol-dependent anti-M. tuberculosis compounds identified
in a screen against intracellular M. tuberculosis (M.tb). The primary screen of 340,000 com-
pounds identified 300 hits with 50% inhibitory concentrations (IC 50) less than 5 μM, 50%
of which showed activity only against intracellular bacteria and had no activity against
M. tuberculosis in rich broth. However, the majority of these compounds recovered their
activity when M. tuberculosis was grown in medium with cholesterol or fatty acids as the
limiting carbon source. Major targets or functions inhibited by the compounds are shown.
Activators of an adenylate cyclase (rv1625c [Cya]) were shown to be involved in regulation
of cholesterol utilization, as well as specific inhibitors of the enzymes HsaAB and PrpC,
which are involved in cholesterol breakdown or propionyl coenzyme A (propionyl-CoA)
detoxification. Data are from reference 70.
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ditions suggests that the bias towardsM1-like andM2-like
phenotypes in these different macrophage lineages exists
prior to any insult or infection (60, 61).

BACTERIAL METABOLISM IN THE HOST
ENVIRONMENT
The advances in our understanding of host cell metab-
olism and bacterial control now connect with our ap-
preciation of bacterial metabolism within the host cell
environment. M. tuberculosis’s preference for lipids and
fatty acids as carbon sources has been discussed since the
1950s, but the central significance of this metabolic de-
pendence for the virulence and pathogenesis of M. tu-
berculosis has been demonstrated experimentally only
recently. In 2000, McKinney and colleagues reported
that mutants of M. tuberculosis deficient in expression

of isocitrate lyase (icl1) could not sustain an infection
in the face of immune pressure (62). Isocitrate lyase of
M. tuberculosis is a bifunctional enzyme whose more
significant activity is that of a methyl isocitrate lyase
that is required for the methylcitrate cycle, which is the
primary route for detoxification of propionyl coenzyme
A, which accumulates upon degradation of cholesterol
(63–66).

M. tuberculosis has specific transport systems dedi-
cated to the acquisition of fatty acids and cholesterol.
The Mce family of lipid transporters is conserved across
the bacterial kingdom (67) and is present in M. tuber-
culosis as four distinct multigenic transporter complexes
(68). Mce1 and Mce4 are the preferred uptake trans-
porters for fatty acids and for cholesterol, respectively
(69). The two transporters share some of their subunit
proteins, which stabilize the transporter complexes, and

FIGURE 6 M. tuberculosis infection leads to retention of the foamy macrophage phe-
notype and facilitates bacterial access to host-derived lipids. (A) Murine bone marrow-
derived macrophages were induced to form foamy cells through incubation with 400 μM
oleate for 24 h. The cells were subsequently infected with M. tuberculosis or left unin-
fected. At 0 h and 48 h after infection (t=0 and t=48), cells were fixed and stained with
BODIPY 493/503. M. tuberculosis organisms are displayed in red, BODIPY 493/503 is
displayed in green, and DAPI (4′,6-diamidino-2-phenylindole)-stained nuclei are shown in
blue. The absence of green stain in uninfected cells at 48 h indicates loss of oleate-
induced lipid droplets. (B) Visualization of trafficking of host-acquired lipids into intra-
cellularM. tuberculosis. Murine bonemarrow-derivedmacrophages were infectedwithM.
tuberculosis for 5 days and treated with 400 μM oleate for 24 h. The cells were incubated
with the fluorescent fatty acid BODIPY FL-C16 for 60 min prior to analysis by confocal
microscopy.M. tuberculosis organisms are displayed in red, BODIPY FL-C16 is displayed in
green, and colocalization of M. tuberculosis with the fluorescent lipid appears in yellow.
Data from reference 78.
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most notably, all Mce transporters use a common mo-
tor, the ATPaseMceG (69). The linking of fatty acid and
cholesterol acquisition is not surprising given the re-
quirement for the balanced production of downstream
intermediates to feed the tricarboxylic acid cycle and
provide building blocks for the synthesis of complex cell
wall lipids (63, 66).

The significance of cholesterol for M. tuberculosis
growth was also demonstrated by a large empirical screen
to identify compounds active against intracellular M. tu-
berculosis (70). The screen identified several inhibitors
that blocked specific steps in bacterial cholesterol degra-
dation or its regulation (Fig. 5). In addition, transcrip-
tional profiling from a panel of 15 clinical strains of
M. tuberculosis that represented the global genetic di-
versity of the M. tuberculosis complex confirmed that
genes involved in the processing of cholesterol and fatty
acids were up-regulated during intracellular growth as
part of a common core transcriptome shared across all
isolates (71).

COUPLED METABOLISM OF HOST
AND PATHOGEN
While it is clear that the metabolism of M. tuberculosis
is shifted towards heavy dependence on fatty acids and
cholesterol and that the predisposition of the AM pop-
ulation towards fatty acid oxidation appears to provide
M. tuberculosis with a permissive host cell population,
the modulation of host metabolism extends beyond the
host cell to the surrounding tissue.

Figure 1B illustrates the caseous center of the human
TB granuloma. Thin-layer chromatography and mass
spectrometry analysis of the lipid species in the human
granuloma demonstrated that the major lipid species
were triacylglycerols, cholesterol, and cholesterol ester
(21). The presence of abundant cholesterol ester in the
caseum is strong evidence that these lipids came from
lipid droplets present in the foamy macrophages that
typically surround the caseous center of the granuloma
(72, 73). When cells accumulate cholesterol, they usually
esterify the sterol prior to transport from the endoplas-
mic reticulum and incorporation into the lipid droplet.
This esterification is proposed to reduce the toxicity of
the cholesterol. M. tuberculosis infection in culture in-
duces a foamy macrophage phenotype in the infected
cell and in uninfected bystander macrophages in the
same culture. The mycobacterial cell wall lipid trehalose
dimycolate has been shown to induce this behavior (72).
Trehalose dimycolate is recognized by the scavenger re-
ceptor MARCO and signals through both TLR2 and

Mincle (74, 75). It is thought that the prolonged, chronic
activation of the proinflammatory pathways in macro-
phages drives this transformation into foamy cells (Fig. 6),
similar to the cascade invoked in atherosclerotic plaques.

CONCLUDING REMARKS
It is interesting to see how evolution appears to have
drivenM. tuberculosis to exploit the nutrient sources that
it has the capacity to enhance at the site of infection, thus
maximizing its chance of success. But the odds are not
entirely in favor ofM. tuberculosis. Of immune-competent
individuals that acquire an M. tuberculosis infection, dur-
ing the course of their lifetime, only 5 to 10%will progress
to develop active disease. These constitute good odds
for the human species. However, a problem arises with
the bacterium’s extraordinary efficiency of transmission,
which enables a single individual with active TB to infect
a large number of people. Recent estimates indicated
that approximately 25% of the world’s population is
subclinically infected with M. tuberculosis (76). In areas
of high HIV endemicity, such as sub-Saharan Africa, this
constitutes a major challenge to human health. Not only
is M. tuberculosis the largest single cause of death by an
infectious agent, it is also the single greatest cause of death
in individuals living with HIV. The challenges remain, but
our increased knowledge of the physiology and metabo-
lism of intracellularM. tuberculosis, and its interplay with
different host macrophage populations, will likely provide
new avenues to combat this pathogen.
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