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Abstract
Alcohol use disorder (AUD) is a complex psychiatric disorder with strong genetic and environmental risk factors. We studied the
molecular perturbations underlying risky drinking behavior by measuring transcriptome changes across the neurocircuitry of
addiction in a genetic mouse model of binge drinking. Sixteen generations of selective breeding for high blood alcohol levels
after a binge drinking session produced global changes in brain gene expression in alcohol-naïve High Drinking in the Dark
(HDID-1) mice. Using gene expression profiles to generate circuit-level hypotheses, we developed a systems approach that
integrated regulation of gene coexpression networks across multiple brain regions, neuron-specific transcriptional signatures, and
knowledgebase analytics. Whole-cell, voltage-clamp recordings from nucleus accumbens shell neurons projecting to the ventral
tegmental area showed differential ethanol-induced plasticity in HDID-1 and control mice and provided support for one of the
hypotheses. There were similarities in gene networks between HDID-1 mouse brains and postmortem brains of human alco-
holics, suggesting that some gene expression patterns associated with high alcohol consumption are conserved across species.
This study demonstrated the value of gene networks for data integration across biological modalities and species to study
mechanisms of disease.
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Introduction

Binge drinking is a dangerous pattern of alcohol (ethanol)
drinking that produces blood alcohol levels (BALs) of
0.08 g/dL or higher [1]. Binge drinking increases the risk of
developing alcohol use disorder (AUD) and poses serious

health and social problems for individuals and the community
(e.g., alcohol-related cancers, unintended pregnancies, HIV
infections and other sexually transmitted diseases, violence,
and injury or death, especially from traffic accidents) [2–4].
Investigating the biological basis of binge drinking will help
guide the development or repurposing of suitable interven-
tions to reduce this hazardous behavior. Similar to other com-
plex psychiatric phenotypes, there are both genetic and envi-
ronmental components that drive excessive alcohol consump-
tion. HighDrinking in the Dark (HDID-1) mice are selectively
bred from the HS/Npt stock to drink consistently to BALs of
0.1 g/dL or greater in the DID behavioral test, a procedure
used to model binge-like drinking in which ethanol is avail-
able for a limited time during the circadian dark cycle [5, 6]. A
review by Crabbe and colleagues provides detailed discussion
of DID and other preclinical models of binge drinking [7].

Selective breeding to produce the HDID line capitalized on
the genetic heterogeneity in the founding population, resulting
in fixation of alleles responsible for excessive drinking. These
genetic changes were associated with expression changes in
the ventral striatum, one of the brain areas involved in
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regulating alcohol consumption [8]. Gene expression is a sen-
sitive measure of cell function, and neuronal and glial cells
work together to translate molecular signals into the expres-
sion of complex phenotypes, such as normal behavior or brain
pathology. A fundamental challenge in neuroscience is to un-
derstand how perturbation-induced molecular changes in dif-
ferent cell types are integrated to change activity of the neural
networks that drive behavior.

In this study, we investigated the effects of genetic se-
lection on genome-wide gene expression in seven brain
areas implicated in regulating alcohol consumption [pre-
frontal cortex (PFC), nucleus accumbens core (AcbC), nu-
cleus accumbens shell (AcbSh), bed nucleus of the stria
terminalis (BNST), basolateral amygdala (BLA), central
nucleus of the amygdala (CeA), and ventral tegmental area
(VTA)]. We found many changes in brain gene expression
between ethanol-naïve HDID-1 and HS/Npt mice, suggest-
ing that some of these changes drive the genotype differ-
ences in ethanol intake and BALs. The seven brain regions
studied here are highly interconnected to form a neural
network that drives motivated behaviors, allowing us to
examine integrated gene expression profiles across the
neurocircuit. A gene network-based systems approach
was used to partition the transcriptional variability across
the brain regions into several gene modules with correlated
expression. Selection-dependent, cell type-specific gene
networks were identified, many of which were conserved
in human alcoholics. Based on coregulation of gene net-
works across multiple brain regions, specific neural con-
nections were also identified that may be altered in HDID-
1 mice.

Results

Genetic Selection for Ethanol Binge Drinking Alters
Brain Gene Expression

Gene expression analysis identified 17,679 microarray probes
(corresponding to 10,853 unique genes) that passed the detec-
tion filter in at least one out of seven brain regions, with ~
13,000 to ~ 16,000 probes expressed in any individual brain
region. In a plot of the first two principal components, sepa-
ration of the expression data was based on brain region, vali-
dating our previous finding that brain region and cell type are
primary contributors to variance in gene expression (Fig. S1 in
Online Resource 1), e.g., [9, 10]. Interestingly, the PFC sam-
ples do not congregate as closely as samples from other brain
areas, presumably attributable to biological variability, be-
cause care was taken to limit technical variability. This may,
at least in part, explain the lower numbers of DEGs in this
brain region. Differential expression analysis showed that ge-
netic selection for high BALs produced global changes in

brain gene expression, with 4,122 genes differing between
HDID-1 and HS/Npt mice in at least one brain region (Table
1; full differential expression results are reported in Table S1
in Online Resource 2). The number of differentially expressed
genes (DEGs) was statistically greater than expected by
chance in six out of seven brain regions (Fig. 1a).
Approximately one-third of the DEGs were regulated across
most brain regions, while the rest showed region-specific reg-
ulation (Fig. 1b). One-third of these were in the extended
amygdala (BNST, AcbSh, and CeA), indicating the impor-
tance of this structure in binge drinking. Average fold change
was greater for those DEGs present across multiple regions.
Smaller fold change for region-specific DEGs may be attrib-
uted to a Bdilution^ effect, suggesting that these genes are
regulated in specific cellular (potentially neuronal) subpopu-
lations (Fig. 1c). There was a highly significant overlap be-
tween the DEGs in the nucleus accumbens identified by our
study and an independent study that characterized gene ex-
pression in the ventral striatum (a region containing the nucle-
us accumbens) from ethanol-naïve male HDID-1 and HS/Npt
mice [10] (hypergeometric p < 5E-28), providing validation
for our gene expression platform.

To discern meaningful patterns from the diverse tran-
scriptional response to genetic selection, we used current
knowledge databases to perform functional enrichment
analysis on the list of 4,121 overall DEGs and the sepa-
rate DEGs in each brain area (see BMaterials and
Methods^). The 4,121 DEGs were enriched with neuron-
associated terms, such as neuron projection (q = 8.12E-30)
and synaptic transmission (q = 1.97E-10). Many of these
DEGs were GABA-A (Gabrb1, Gabrb2, Gabrb3, Gabrd,
Gabrg1, Gabrg2) and glutamate receptor subunits (Gria1,
Grin1, Grik1, Grik5, Grm5). Additional DEGs involved
in the glutamate/GABA-glutamine cycle included the en-
zymes producing glutamate, GABA, and their common
precursor, glutamine (Gls, Gls2, Gad1, Glul), and an ex-
citatory amino acid transporter important for terminating
excitatory synaptic transmission (Slc1a3). Ingenuity
Pathway Analysis (IPA) identified several glutamate-
and GABA-related molecular networks, suggesting a shift
in balance between excitatory and inhibitory transmission,
specifically in the AcbSh (Fig. 1d). The enrichment re-
sults are shown in Tables S2 and S3 in Online Resource
2. Additionally, IPA suggested the involvement of dopa-
minergic systems in selection-responsive gene expression,
as levodopa (L-DOPA), the precursor to the catechol-
amines (dopamine, norepinephrine, and epinephrine),
was predicted to be an upstream regulator of the DEGs
in every brain region (Fig. 2 in Online Resource 1). The
comparison analysis also revealed enrichment of immune-
related pathways in most brain regions, such as antigen
presentation (Hla-a, Psmb6) and the complement system
(C1qb, C1qc) (Table S4 in Online Resource 2).
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Identification of Selection-Responsive and Cell
Type-Specific Gene Coexpression Networks

A gene network analysis was performed to group genes that
share similar expression patterns across the brain regions and
genotypes. Expression data were combined and the increased
variability in gene expression was used to identify robust cor-
relations and to determine the biological significance of gene
networks. The network approach partitioned the diversity of
transcriptional responses to genetic selection into several

modules of correlated genes (Fig. 2a). This dimensionality
reduction shifted the focus from individual genes to gene net-
works, representing specific cell types and biological func-
tions, and provided a systems-level measure of the effects of
genetic selection on behavior. Twenty-five of 44 modules
were significantly enriched with the DEGs from at least one
brain region (Fig. 2b and Tables S5 and S6 in Online Resource
2), and we refer to them as the selection-responsive modules.
A functional over-representation analysis was performed for
each selection-responsive module (Table 2, Table S7 in

Fig. 1 Effects of genetic selection for high blood alcohol levels after
binge drinking on brain gene expression. Gene expression for seven
brain regions was measured using microarrays. Expression levels for all
detected genes were compared in High Drinking in the Dark (HDID-1)
and HS/Npt control mice by empirical Bayes-moderated t statistics using
the Bioconductor limma package version 3.24.15 in R (N = 11-12 mice/
genotype). All comparisons combined results from up-regulated (HDID-
1 >HS) and down-regulated (HDID-1 < HS) genes. Numbers of DEGs
between genotypes in each brain region are shown in (a) and were sig-
nificantly greater than those expected by chance in all brain regions ex-
cept for the PFC. To visualize brain region-specific regulation, t values for
top statistically significant genes (p < 0.001) were clustered across brain
regions using K-means clustering (Cluster 3.0 and Java TreeView free

software) (b). The average (± SEM) fold changes of DEGs are plotted
according to the number of brain regions in which the gene is differen-
tially expressed (c). About 40% of DEGs in most (6–7) brain regions had
moderate to high fold changes (≥ 1.2), while brain region-specific chang-
es (regulated in 1–2 brain regions) were smaller on the average. Ingenuity
Pathway Analysis revealed changes in glutamatergic and GABAergic
signaling pathways in the AcbSh (d) (see text for details). Solid/dashed
lines between molecules represent relationships between the molecules as
supported by the literature. PFC = prefrontal cortex, AcbC = nucleus
accumbens core, AcbSh = nucleus accumbens shell, BNST = bed nucleus
of the stria terminalis, BLA = basolateral amygdala, CeA = central nu-
cleus of the amygdala, VTA = ventral tegmental area, DEGs = differen-
tially expressed genes
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Online Resource 2, and Table S8 in Online Resource 3). Each
module was over-represented with one or more functional
groups or molecular pathways.

We used published cell type-specific databases to assign
cellular identity to selection-responsive modules. Cell type is
the main source of variability in brain gene expression data
[11–15]. Thus, modules often represent specific cell popula-
tions, which can, in part, be verified by the presence of cell
type-specific molecular markers. Twelve of the 25 modules

were considered cell type-specific, i.e., enriched with genes
preferentially expressed in neurons, astrocytes, oligodendro-
cytes, or brain endothelial cells at a strict false discovery rate
(FDR) of < 5% (Fig. 2b and Tables S5 and S6 in
Online Resource 2). Established markers of oligodendrocytes
(e.g.,Mag,Mog,Mobp,Mbp, Ugt8a, Cldn11, and Trf), astro-
cytes (e.g., Aldh1l1, Slc25a18, Pla2g7, Fgfr3, Slc39a12,
Cyp4f14, and Ppp1r3c), neurons (e.g., Mef2c, Gpr88, Myt1l,
Pcsk2, Stmn2, Syt1, and A130090K04Rik), and endothelial

Table 1 Differentially expressed genes between HDID-1 and HS/Npt mice

Gene
symbol

Gene name Fold change (HDID vs
HS/Npt controls)

Description

Tomm22 Translocase of outer
mitochondrial
membrane 22

2.27–2.71 The encoded protein is an integral membrane protein of the
mitochondrial outer membrane. It forms a complex with
several other proteins to import cytosolic preproteins into the
mitochondrion

Usp29 Ubiquitin specific
peptidase 29

1.52–2.14 The encoded protein is a protease that cleaves ubiquitin from
proteins and other molecules. Ubiquitination is involved in
protein degradation and trafficking

Hmgn2 High mobility group
nucleosomal binding
domain 2

1.53–1.83 The encoded protein binds nucleosomal DNA and is associated
with transcriptionally active chromatin. Along with a similar protein,
HMGN1, the encoded protein may help maintain an open chromatin
configuration
around transcribable genes. The protein has also been found to have
antimicrobial activity against bacteria, viruses, and fungi

Pnmal1 Paraneoplastic Ma antigen
family-like 1

1.20–1.39 An important paralog of this gene is Zinc Finger, CCHC Domain Containing
12 (ZCCHC12), which codes for a transcriptional coactivator in the bone
morphogenetic protein (BMP)-signaling pathway

Vsnl1 Visinin-like 1 1.23–1.49 A member of the visinin/recoverin subfamily of neuronal calcium sensor
proteins. The encoded protein associates with membranes in a
calcium-dependent manner and modulates intracellular signaling
pathways of the central nervous system by directly or indirectly
regulating the activity of adenylyl cyclase

Atf4 Activating transcription
factor 4

1.17–1.55 Encodes a transcription factor that belongs to a family of DNA-binding
proteins that includes the AP-1 family of transcription factors, cAMP
response element binding proteins (CREBs) and CREB-like proteins.
It binds to a Tax-responsive enhancer element in the long terminal
repeat of HTLV-I. Regulates the induction of DDIT3/CHOP and
asparagine synthetase (ASNS) in response to endoplasmic reticulum
(ER) stress. In concert with DDIT3/CHOP, activates the transcription
of TRIB3 and promotes ER stress-induced neuronal apoptosis by
regulating the transcriptional induction of BBC3/PUMA. Activates
transcription of SIRT4. Regulates the circadian expression of the core
clock component PER2 and the serotonin transporter SLC6A4.
Binds in a circadian time-dependent manner to the cAMP response
elements (CRE) in the SLC6A4 and PER2 promoters and periodically
activates the transcription of these genes. During ER stress response,
activates the transcription of NLRP1, possibly in concert with other
factors (PubMed: 26086088)

Arhgap35 Rho GTPase activating
protein 35

− 1.45 to − 1.85 The encoded protein inhibits glucocorticoid receptor transcription

Trappc13 Trafficking protein particle
complex 13

− 1.29 to − 1.45 May play a role in vesicular transport from ER to Golgi

Differential expression analysis was conducted within each brain region using empirical Bayes moderated t statistics in the Bioconductor limma package
version 3.24.15 in R to compare male, ethanol-naïve HDID-1 with HS/Npt mice (N = 11-12 mice/genotype). Eight genes were differentially expressed
between genotypes across all seven brain regions after correction for multiple tests. Based on the literature, four of the genes (Atf4, Hmgn2, Vsnl1, and
Usp29) were alcohol-related
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cells (e.g., Pecam1, Flt1, and Vwf) were present in the cell
type-specific modules. The majority of modules were over-
represented with biological categories characteristic of the as-
sociated cell type, e.g., Bsynaptic transmission^ for neurons or
Baxon ensheathment^ for oligodendrocytes, further validating
our systems approach (Table S8 in Online Resource 3).

The selection-responsive modules not associated with a
cell type were enriched with terms associated with cell organ-
elles (e.g., nucleus, mitochondrial function, ribosome/protein
translation, and primary cilium as well as RNA processing,
fatty acid metabolism, immune response, and histone methyl-
transferase activity). Modules related to housekeeping

Fig. 2 Network analysis of the HDID-1 and HS/Npt transcriptome and
functional annotation of gene modules. The dendrogram of the gene
network was constructed using all brain regional data from HDID-1 and
HS/Npt mice (N = 12 mice/genotype/brain region; 12 mice × 2 geno-
types × 7 brain regions − 2 outlier samples = 166 samples total) (a). The
x-axis corresponds to genes detected across all regions, and the y-axis
represents the coexpression distance in arbitrary units (a.u.) between
genes, determined by the extent of topological overlap. Dynamic tree
cutting identified modules, generally dividing them at significant branch
points in the dendrogram. Genes in the 44 modules are color-coded, and
those not assigned to a module are labeled gray. Heatmap plots of the false

discovery rate (FDR)-corrected hypergeometric p values from the over-
representation (enrichment) analysis for the differentially expressed genes
(DEGs) and cell type-specific genes (b). Each row in the heatmap corre-
sponds to one module (labeled by color on the left), and each column
corresponds to the category being tested for over-representation. The
scale bar on the right represents hypergeometric p values used to assess
statistical significance of over-representation (red = high statistical signif-
icance). P values were adjusted using FDR correction. Rows for the
DEGs were arranged by hierarchical clustering, and the same row order
was maintained for the cell type panel. R was used for analyses and
graphical representations
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function had lower variability across brain areas as reflected
by their eigengene average expression pattern, whereas
neuron-specific modules had higher variability across brain
areas, highlighting functional differences among neuronal
populations (Tables S5 and S9 in Online Resource 2).

A neuroimmune component was especially prominent,
as 12 out of 25 modules had an immune-related function in
their top three enriched pathways or biological terms,

including Engulfment of Antigen Presenting Cells, IL-1
Signaling, Complement System, IL-17 Signaling, and B
Cell Receptor Signaling (Table S5 in Online Resource 2
and S8 in Online Resource 3). Furthermore, lipopolysac-
charide (LPS), a component of gram-negative bacteria that
activates the innate immune response via activation of toll-
like 4 receptors, was predicted by IPA to be an upstream
regulator of the turquoise, red, magenta, and darkred

Table 2 Functional overrepresentation analysis for selection-responsive modules

Upstream regulators Canonical pathways

Upstream regulator No.
modules

Module names Canonical pathway No.
modules

Module names

L-dopa 7 Darkred, Greenyellow, Lightcyan1,
Lightsteelblue1, Plum1, Darkgrey,
Salmon

Axonal guidance
signaling

6 Darkred, Greenyellow,
Darkturquoise, Lightcyan1,
Magenta, Grey60

WNT3A 5 Darkred, Turquoise, Purple, Grey60,
Lightsteelblue1

AMPK signaling 5 Darkred, Royalblue, Darkgrey,
Magenta, Purple

Calmodulin 5 Magenta, Darkred, Lightcyan1,
Lightsteelblue1, Darkgrey

cAMP-mediated
signaling

5 Darkred, Greenyellow,
Darkturquoise, Lightcyan1,
Plum1

CREB1 5 Magenta, Greenyellow, Lightcyan1,
Lightsteelblue1, Darkgrey

CREB signaling in
neurons

4 Darkred, Greenyellow,
Darkturquoise, Lightcyan1

BDNF 5 Magenta, Darkred, Greenyellow,
Grey60, Plum1

Androgen signaling 4 Darkred, Greenyellow,
Darkturquoise, Lightcyan1

HDAC4 5 Darkred, Greenyellow, Lightsteelblue1,
Plum1, Royalblue

Ceramide signaling 4 Darkred, Royalblue, Darkturquoise,
Darkgrey

PPARA 4 Turquoise, Red, Green, Darkturquoise Gαs signaling 4 Darkred, Royalblue, Darkturquoise,
Lightcyan1

Lipopolysaccharide 4 Magenta, Darkred, Turquoise, Red Dopamine receptor
signaling

4 Darkturquoise, Lightcyan1,
Darkgrey, Darkgreen

Tretinoin 4 Darkred, Turquoise, Lightsteelblue1,
Red

G protein-coupled
receptor signaling

4 Darkred, Greenyellow,
Darkturquoise, Lightcyan1

Cg 4 Darkred, Turquoise, Purple, Orange

MYC 4 Magenta, Turquoise, Darkgreen, Green

CTNNB1 4 Magenta, Darkred, Turquoise, Grey60

XBP1 4 Turquoise, Darkgreen, Lightgreen,
Skyblue

STAT5A 4 Magenta, Purple, Grey60, Red

5-Fluorouracil 4 Midnightblue, Darkgreen,
Lightgreen, Green

CD28 4 Purple, Midnightblue, Grey60,
Darkgreen

3-Nitropropionic
acid

4 Midnightblue, Grey60, Darkgreen,
green

Ca2+ 4 Magenta, Greenyellow, Lightsteelblue1,
Plum1

GATA6 4 Magenta, Purple, Grey60, Green

KMT2A 4 Magenta, Purple, Greenyellow,
Lightsteelblue1

We identified the functional enrichment of the modules using Ingenuity Pathway Analysis (IPA, see BMaterials andMethods^). The reference set for the
Fischer’s Exact Test (FET) calculation in IPAwas comprised of the transcripts used to construct the coexpression network. We calculated Benjamini-
Hochberg’s FDR q values to correct for multiple tests, and those with q value < 0.05were considered significant. Eachmodule was over-represented with
one or more functional groups or molecular pathways, pointing to underlying biological causes of gene coexpression (N = 11-12 mice/genotype)
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selection-responsive modules, suggesting that basal gene
expression patterns in HDID-1 brain may mimic an im-
mune response (Table 2 and Table S7 in Online Resource
2). Using our gene expression dataset from C57BL/6J
mouse brain after systemic delivery of LPS [16], we found
that LPS-regulated genes were enriched in the red, magen-
ta, and darkred modules, confirming the IPA results (Table
S10 in Online Resource 2).

From Gene Networks to Neural Networks: a Systems
Approach to Generate Circuit-Level Hypotheses Based
on Gene Coexpression

A systems approach was used to predict functional
neurocircuit changes in the genetically selected HDID-1 mice.
Our investigation focused on the eight selection-responsive
modules that were highly enriched with neuron-specific genes
(neuronal modules). Strikingly, all eight modules showed en-
richment with DEGs in at least one region of the extended
amygdala (seven in CeA, five in AcbSh, and three in BNST),
which suggested a critical role for this structure in the regu-
lation of binge drinking (Table S5 in Online Resource 2).
Network analysis separated neuronal modules into two gen-
eral groups with distinct patterns of gene expression and reg-
ulation (Fig. 3). Group 1 contained four modules with higher
expression in PFC and BLA and consistent up-regulation in at
least one of the regions of the extended amygdala and/or
BLA (Fig. 3a). Group 2 contained three modules with higher
expression in the nucleus accumbens and regulation in the
extended amygdala (i.e., down-regulation in the nucleus ac-
cumbens and CeA as well as up-regulation in BNST
(Fig. 3b). The eighth module (darkturquoise) showed highest
expression in the VTA and up-regulation in the nucleus ac-
cumbens and CeA (Table S5 in Online Resource 2).

Several criteria were used to generate a circuit-level view of
responses to genetic selection for ethanol binge drinking.
First, we hypothesized that gene coregulation in two or more
brain regions within a neuron-specific module/group suggests
the involvement of either direct neural connections between
these brain regions or a third region upstream of the
coregulated areas. Second, neuronal molecular markers were
used to identify specific populations in local or inter-regional
neurocircuits. Third, knowledgebases (e.g., IPA) were used to
predict Bupstream regulators^ of selection-responsive,
neuron-specific modules (e.g., neurotransmitters, such as do-
pamine and GABA). Finally, we used published findings to
establish inter-regional connectivity among the seven brain
regions and to identify neural connections potentially in-
volved in the regulation of drinking in HDID-1 mice based
on the first three criteria. Results of these analyses are sum-
marized in Fig. 3c.

Group 1 modules were enriched with genes expressed in
glutamatergic projection neurons, e.g., calcium/calmodulin

dependent protein kinase II alpha, module plum1 [17]
(Camk2a) and syntaxin 1A, module lightsteelblue1 [18]
(Stx1a) (Fig. 3a). These genes also had consistently higher
expression in PFC and BLA, brain areas with a large number
of glutamatergic projection neurons. This suggested that these
neurons are a main source of gene regulation in group 1 mod-
ules. Genes within grey60 and lightsteelblue1 modules were
up-regulated in BLA, CeA, and AcbSh, which suggested that
selection for binge drinking increased glutamatergic signaling
from the BLA to the extended amygdala of HDID-1 mice.
Additionally, up-regulation of neuropeptide Y, module plum1
(Npy) and corticotropin releasing hormone binding protein,
module magenta (Crhbp) in the extended amygdala suggested
the involvement of GABAergic interneurons that may be ac-
tivated by glutamatergic input [19, 20].

Group 2 modules may, at least in part, represent molecular
signaling in medium spiny GABAergic projection neurons
(MSNs) in the nucleus accumbens. This is based on high ex-
pression values in this region in all three modules and the pres-
ence of salient MSNmarkers, such as the sodium voltage-gated
channel beta subunit 4 (Scn4b), dopamine- and cAMP-
regulated neuronal phosphoprotein, DARPP-32 (Ppp1r1b)
[21, 22], and the dopamine D1 receptor (Drd1) in the
lightcyan1 module. Bioinformatics analysis using IPA predict-
ed that both L-DOPA and dopamine were upstream regulators
of gene expression in all group 2 modules (Tables 2 and S7 in
Online Resource 2), which implicated the dopaminergic system
in regulating gene expression in the extended amygdala of
HDID-1 mice. Corroborating this finding, all three modules
were associated with functional terms related to dopamine func-
tion and neuronal plasticity (e.g., dopaminergic synapse, dopa-
mine receptor signaling, long-term potentiation, dendritic spine,
and response to amphetamine; Table S7 in Online Resource 2
and S8 in Online Resource 3). Overall, these data suggest that
the interplay between glutamatergic and dopaminergic signal-
ing in the extended amygdala (AcbSh in particular) plays a
central role in regulating ethanol binge-like drinking in
HDID-1 mice. Neural connections shown as red arrows in
Fig. 3c help depict the different hypotheses implicating projec-
tion neurons between different brain areas in the regulation of
ethanol drinking. We tested one of these hypotheses derived
from our systems approach as described below.

HDID-1 Mice Exhibit Altered Neuronal Plasticity
to Alcohol Exposure

Based on our analysis and reports from the literature, we hy-
pothesized that HDID-1 and HS/Npt mice differ in functional
properties of MSNs in the nucleus accumbens shell projecting
to the VTA. For example, the selection-responsive, neuron-
specific lightcyan1 module (Fig. 3b) contained MSN markers
(Drd1 and Ppp1r1b) and showed overall down-regulation of
gene expression in the AcbSh. A large portion of Drd1-
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containing, but not Drd2-containing AcbSh MSNs, send pro-
jections to the VTA as part of the Bdirect^ striato-tegmental
pathway implicated in the regulation of goal-directed behav-
iors [23, 24]. Dopamine regulation, putatively originating
from VTA neurons, was also predicted based on gene expres-
sion in the lightcyan1 module (Table S7 in Online Resource
2). In addition, the lightcyan1 module represented the Bhub
module,^ i.e., genes in this module had the highest number of
connections with genes in other modules (Table S11 in
Online Resource 2). The other two modules in group 2 were
in the top four hub modules (Table S11 in Online Resource 2).
Like hub genes, hub modules may be particularly essential to
the function of the network. These findings suggest the in-
volvement of Drd1-containing AcbSh MSNs projecting to
the VTA in the regulation of binge drinking in HDID-1 mice.
Down-regulation of Scn4b, which is known to modulate
accumbal long-term depression (LTD) [25], provides addi-
tional support for our hypothesis and eludes to differences in
synaptic plasticity between HDID-1 and control mice. Our
group has previously shown that chronic intermittent ethanol
(CIE) vapor exposure attenuates LTD in AcbSh Drd1-
containing MSNs in genetically modified mice, suggesting
that this ethanol-mediated neuronal adaptability may contrib-
ute to the neuroadaptations underlying the development of
ethanol dependence [26].

To test this circuit-level hypothesis, we conducted whole-
cell, patch clamp recordings in AcbSh MSNs (labeled with a
retrograde tracer injected into the VTA) of ethanol-naïve and
ethanol-exposed mice. No differences in LTD induction were
found between ethanol-naïve HDID-1 and HS/Npt mice
(Fig. 4a–c), whereas 4 days of CIE vapor exposure produced

a loss of LTD expression in MSNs isolated from HDID-1 but
not HS/Npt mice (Fig. 4d–f), suggesting ethanol-induced dif-
ferences in synaptic plasticity between the genotypes.

HDID-1 Mice Share Coexpression Patterns
with Human Alcoholics

Integration of large-scale Bomics^ data across species and an-
imal models is critical for our understanding of normal behav-
ior and brain disorders. To identify common molecular net-
works associated with high alcohol consumption, we conduct-
ed an interspecies comparison of gene coexpression patterns
between HDID-1 mice and human alcoholics [10]. Similar to
previous studies [10, 11, 13, 27–32], there was considerable
conservation of gene coexpression between mice and humans
(i.e., the modules were largely comprised of the same genes)
(Figs. 5 and S3 in Online Resource 1). Highly overlapping, or
conserved, networks were identified between species (29/44
modules in the mouse network and 55/72 modules in the hu-
man network; hypergeometric p value < 0.001). Importantly,
17/25 mouse selection-responsive modules overlapped with
29/46 human alcohol-related modules (Fig. 5, hypergeometric
p value < 0.001), suggesting that the HDID-1 mouse model
partially reproduced the transcriptomic dysregulation ob-
served in human alcoholics.

There was significant preservation of glial and neuronal
modules between mouse and human networks, revealing sep-
arate neuronal and glial sub-networks (Fig. 5). Modules relat-
ed to cellular organelles (such as nuclear, mitochondrial, and
ribosomal functions) were also conserved, consistent with pre-
vious studies [30]. To highlight cell types and biological func-
tions relevant to AUD in humans, we focused on mouse mod-
ules that were (1) selection-responsive, (2) conserved between
species, (3) cell type-specific, and (4) connected to alcohol-
related, cell type-specific human modules. Five neuronal and
two glial selection-responsive modules met these criteria
(Fig. 5).

As expected, mouse modules that were enriched with
glial markers overlapped with astrocyte, microglial, and
oligodendrocyte modules in the human network. IPA of
the overlapping genes between the human alcohol-related
modules and mouse selection-responsive modules in the
glial sub-network showed over-representation with many
biological categories indicative of glial functions (e.g., NF-
kB Signaling, Th1 and Th2 Pathways, LPS-IL-1 Inhibition
of Retinoic X Receptor Function, Granulocyte Adhesion,
and Diapedesis) as well as typical endothelial functions
(e.g., eNOS Signaling). Other enriched pathways included
Estrogen Biosynthesis, Fatty Acid β-oxidation, Dopamine
Degradation, and p53 Signaling (see Table S12 in
Online Resource 2).

The overlapping human and mouse genes in the neuronal
sub-network were predictably enriched with molecular

�Fig. 3 Neuron-specific selection-responsive modules. Shown are the cu-
mulative results for seven modules (networks) highly enriched with neu-
ronal genes. Modules enriched with genes highly expressed in the PFC
and BLA and mainly up-regulated in BLA and the extended amygdala
(BNST, CeA, AcbSh) (a, Group 1). Modules enriched with genes highly
expressed in the nucleus accumbens and mainly down-regulated in the
AcbSh and CeA (b, Group 2). The gene symbols shown under the mod-
ule name are examples of known neuronal genes that are in the top 20%
of the intramodular connectivity values (i.e., hub genes). Genes in bold
are differentially expressed between HDID-1 and HS/Npt mice. The plots
under BRelative Gene Expression^ show the eigengene expression for
each module, i.e., average gene expression levels across all genes in a
given module. The y-axis shows arbitrary expression values, and the x-
axis shows samples (brain areas are labeled on axis). AcbC, nucleus
accumbens core; AcbSh, nucleus accumbens shell; BLA, basolateral
amygdala; BNST, bed nucleus of the stria terminalis; CeA, central nucle-
us of the amygdala; PFC, prefrontal cortex; VTA, ventral tegmental.
Direction of regulation in each brain region for each module is shown
in color on the schematized brain on the right under BEffect of Selection.^
Based on gene coexpression/coregulation results and neurocircuitry liter-
ature, we identified neural networks potentially involved in regulation of
binge drinking in HDID-1 mice, indicated as red arrows. All of the pos-
sible inter-regional connections are not shown (c).
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pathways involved in synaptic plasticity, including glutamate
receptor signaling, axonal guidance signaling, long-term de-
pression, CREB signaling in neurons, and RhoGDI signaling
(e.g., Gria1, Gria2, Homer1, Homer2, Itpr, Grik5, Arhgdig,
Arhgef11, Arhgap1; Table S12 in Online Resource 2).
Additionally, the overlapping genes in the neuronal sub-
network were predicted to be downstream of L-DOPA, and
13/38 of these genes were differentially expressed in both
human alcoholic brain and HDID-1 mouse brain (Aspscr1,
Ctnnbip1, Egfl7, Gabrg2, Hpca, Lmtk2, Nuak1, Palm,
Rasgrp1, Slc6a7, Sncb, Tiam2, and Tpd52; Table S12 in
Online Resource 2). Although the accumbens was not part
of the human study, the alcohol-related CeA modules (part
of the extended amygdala) were integrated in the conserved
network. Overall, this analysis suggested that patterns of ex-
cessive drinking in the genetic mouse model and human alco-
holics have some common underlying mechanisms and that

glutamatergic and dopaminergic signaling within the extended
amygdala are points of interspecies convergence (Fig. 6).

Discussion

Binge drinking is an important risk factor in the development
of AUD, and HDID-1 mice effectively model this pattern of
drinking. In fact, HDID-1 mice fulfill many of the criteria
proposed for a model of excessive alcohol consumption [33]
(reviewed in [34]). Here we characterized gene expression, a
molecular phenotype, across seven brain regions in ethanol-
naïve HDID-1 mice. Our results confirm and extend findings
from a previous gene expression study in the ventral striatum
from ethanol-naïve HDID-1 mice [10]. However, unlike this
study, we used a neurocircuit-specific approach to generate
and test circuit-level hypotheses. There was a clear

Fig. 4 Accumbal plasticity inD1+medium spiny neurons (MSNs) before
and after the chronic intermittent ethanol (CIE) procedure in HDID-1 and
HS/Npt mice. The pairing protocol (1 Hz stimulation paired with depo-
larization to − 50mV) induced LTD inDrd1-MSNs in air-treated HDID-1
and HS/Npt mice (a). Bar graphs representing the percentage change ±
SEM for average EPSC amplitude post-pairing (40–50 min) as a percent-
age of baseline (0–10 min) in Drd1-MSNs for HDID-1 (61.89 ± 1.6, N =
7) and HS/Npt (48.61 ± 2.52, N = 7) mice (b). Sample EPSCs during
baseline and post-pairing (40–50 min) in Drd1-MSNs of HDID-1 and

HS/Npt mice (c). Twenty-four hours after 4 days of CIE (16 h/day),
the pairing protocol produced occlusion of LTD in Drd1-MSNs of HDID-
1 mice but not in HS/Npt mice (d). Bar graphs representing the percent-
age change ± SEM for average EPSC amplitude post-pairing (40–50min)
as a percentage of baseline (0–10 min) in Drd1-MSNs of HDID-1 (92.11
± 0.84, N = 6) and HS/Npt (41.75 ± 2.02, N = 6) mice 24 h after CIE (e).
Sample EPSCs during baseline and post-pairing (40–50 min) of Drd1-
MSNs of CIE-treated HDID-1 and HS/Npt mice (f). Scale bars represent
25 pA (vertical) and 20 ms (horizontal). **p < 0.01 versus baseline
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convergence of molecular phenotypes in HDID-1 mice and
human alcoholics, and the identified genes provide potential
targets for modifying binge-like alcohol consumption. The
mice were ethanol-naïve, suggesting that the convergent mo-
lecular functions between the mouse and human networks are
important for driving AUD risk, rather than a consequence of
chronic alcohol use, and represent potential therapeutic targets
for AUD. Selective breeding for attaining high BALs fixed the
genetic alleles related to the DID phenotype in HDID-1 mice.
However, due to genetic drift some alleles that are unrelated to
binge drinking could also be driven to fixation, potentially
affecting gene expression. This possibility could be addressed
by testing the second replicate line, HDID-2, which may pro-
vide further validation for convergent molecular functions be-
tween species.

A novel component of our systems genomic approach was
to use correlated patterns of gene expression in multiple brain
regions to define neural networks that potentially regulate

alcohol drinking in HDID-1 mice. This approach was based
on the concept that brain regions with correlated patterns of
gene expression and regulation also have synchronized pat-
terns of neuronal activity. A recent test of this hypothesis
showed that functional brain networks, represented by
resting-state fMRI, are recapitulated using measures of corre-
lated gene expression in a postmortem brain tissue dataset
[35]. Our analysis provided additional support for this con-
cept, as we were able to formulate circuit-level hypotheses
based on gene expression and validate one of the predicted
neural connections experimentally. There are different
methods to generate neurocircuit hypotheses based on gene
expression, including direct gene correlations across brain re-
gions as well as constructing and overlapping gene networks
from individual brain areas; future studies are needed to de-
termine the predictive validity of each approach.

Our initial hypothesis focused on the reciprocal connec-
tions among regions of the extended amygdala and the VTA

Fig. 5 Comparison of HDID-1 and human alcoholic gene networks. A
visualization of the interspecies network comparison of human and
mouse created with Cytoscape 3.2.1. The nodes are modules from the
mouse (circles) or human (squares) networks. The edges are the –log10
values of the hypergeometric p values of the number of overlapping
probes between two nodes (modules). Edge thickness is proportional to
the statistical significance of the overlap between the nodes. Only highly
overlapping modules are shown (hypergeometric p < 0.001). There is a

strong separation of nodes based on their enrichment with cell type-
specific genes (see BMaterials and Methods^), with neuronal (blue) and
glial (orange) modules clustering together, independent of species. Most
of the highly overlapping modules in these clusters are alcohol-related
(i.e., enriched with genes differentially expressed between human alco-
holics and controls or HDID-1 mice and controls), denoted by the inten-
sity of the color (more intense color indicates alcohol-related).
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given that optogenetic and chemogenetic studies showed ac-
tivation or inhibition of some of these neural pathways altered
ethanol consumption [19, 36, 37]. We found that accumbal
MSNs projecting to the VTA showed differential synaptic
plasticity in HDID-1 and control mice after dependence and
withdrawal from ethanol. We expected to find genotypic dif-
ferences in VTA-projecting Drd1-containing AcbSh MSNs in
both ethanol-naïve and ethanol-exposed mice. The lack of
changes in synaptic plasticity in naïve animals and the diver-
gent responses after ethanol suggest that genotype differences
in expression translate into functional differences only after
Bpriming^with ethanol. The Bpriming^ hypothesis is support-
ed by a study showing that activation of Drd1-expressing
MSNs in the nucleus accumbens altered basal locomotor ac-
tivity and conditioned place preference only after Bpriming^
with cocaine [38]. We hypothesize that ethanol differentially
alters the functional activity of accumbal Drd1-expressing
MSNs in HDID-1 and HS/Npt mice, and the transcriptional
effects of genetic selection become evident after repeated drug
exposure. CIE exposure in HDID-1 mice increases binge-like
drinking [39], and ethanol-induced changes inMSN LTDmay
contribute to this behavior.

Altered neuronal synaptic plasticity in response to environ-
mental challenges, such as ethanol, is referred to as
metaplasticity, which may be defined as the Bplasticity of syn-
aptic plasticity^ [40]. Metaplasticity allows synapses to

integrate synaptic signals across time. In terms of long-term
potentiation (LTP) or LTD, metaplasticity may involve chang-
es in induction thresholds as a means to regulate synaptic
signaling strength. Unlike control mice, HDID-1 mice exhib-
ited a loss of LTD after ethanol exposure. Alterations in basal
metaplastic responses of AcbSh MSNs in HDID-1 mice may
confer sensitivity to ethanol-induced plasticity. This is consis-
tent with work showing that ethanol decreased LTD in
C57BL/6J mice, a line exhibiting high preference for ethanol
[26], and this was associated with increased ethanol intake
during withdrawal. Altered metaplasticity in HDID-1 mice
may partially underlie dependence-induced increases in
binge-like drinking or may increase ethanol withdrawal symp-
toms and promote drinking relapse.

Glutamate signaling is involved in metaplasticity, and the
differential expression of mGluR1 and Homer2 in HDID-1
versus HS/Npt mice could thus contribute to genotype differ-
ences in metaplasticity. HDID-1 mice express higher basal
protein levels of mGluR1 and Homer2 in the AcbSh [41],
and the activity of mGluR1 and Homer2 within this region
is critical for binge-like ethanol consumption [42]. Our study
did not reveal basal differences in mRNA levels of these pro-
teins; however,Homer2,mGlur1,Homer1, and PKCε (a mol-
ecule downstream of the mGluR/Homer pathway) were local-
ized in the neuron sub-network that was conserved between
HDID-1 mice and human alcoholics. Moreover, PKCε and

Fig. 6 A hypothetical diagram
based on comparative
transcriptome analysis of a mouse
model of binge drinking and
people diagnosed with alcohol
dependence. Our systems-level
analyses revealed gene expression
patterns that are Bconserved^ be-
tween alcoholics and HDID-1
mice, implicating several molec-
ular functions in specific cell
types in driving AUD risk
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Homer1 are DEGs in HDID-1 mice and alcoholics. The ratio
of p(Ser729)-PKCε to total PKCε at baseline (but not the total
PKCε) was higher in HDID-1 compared with HS/Npt mouse
CeA. Evidence thus suggests that the mGluR1/Homer/PKCε
pathway in the extended amygdala of HDID-1 mice likely
contributes to an ethanol-sensitive metaplastic state. Down-
regulation of Scn4b in the AcbSh of HDID-1 mice may also
be a contributing factor. For example, Scn4b selectively regu-
lated LTD and removal or down-regulation of this subunit was
associated with decreased LTD [25]. Although we did not
measure gene expression after ethanol exposure, based on
our results showing Scn4b down-regulation in ethanol-naïve
mice and its role in LTD, ethanol-induced changes in LTD
would also be expected.

The conserved patterns of gene expression between
HDID mice and human alcoholics revealed a clear sepa-
ration of neuronal and glial signaling and highlighted
three broad functional categories: glutamatergic neuro-
transmission, genes potentially regulated by L-DOPA/do-
pamine signaling, and immune-related processes, all of
which are implicated in ethanol-related behaviors. Our
results suggested a role for GABAergic MSNs in the ex-
tended amygdala and glutamatergic neurons in the BLA in
the regulation of drinking in HDID-1 mice. There is am-
ple evidence that glutamatergic signaling in the nucleus
accumbens is important for ethanol consumption [43, 44].
Changes in the GABA/glutamate-glutamine cycle genes
were strongest in the AcbSh and suggest genetic selection
for high drinking might augment excitatory neurotrans-
mission in this region. Our systems approach also sug-
gested that transcriptional activation in the BLA may in-
crease glutamatergic signaling in the extended amygdala
of HDID-1 mice. Hypothetically, neuroadaptations in
HDID-1 mice may confer the ability to consume high
amounts of ethanol without experiencing negative effects.
This hypothesis is supported by evidence of blunted re-
sponses to ethanol’s aversive properties in HDID-1 mice
[45]. Aversive stimuli trigger increased glutamatergic sig-
naling from the extended amygdala (specifically the
BNST) to VTA [46], and the increased glutamatergic sig-
naling in HDID-1 mice might render them less sensitive
to aversive stimuli like ethanol [47]. It is important for
future studies to test the effects of genetic or pharmaco-
logical manipulation of the glutamatergic signaling genes
implicated here (e.g., Gria1, Grm5, Grik5, or Homer1) on
ethanol-induced aversive behaviors in HDID-1 mice.

Our results also support a neuroimmune mechanism in
ethanol-related behavior, as has been observed in many
species, including humans, rodents, and flies (for review,
see [48, 49]). Dysregulation of neuroimmune genes was
found in both HDID-1 mice and alcoholics, and glial, neu-
ronal, and non-cell type-associated modules were enriched
with neuroimmune pathways. Genetic selection for DID

perturbed many of the same genes that were affected by
LPS (as predicted by IPA and enrichment with published
datasets of brain gene expression changes 1 week after
systemic LPS delivery), which could contribute to dopami-
nergic changes and a high drinking phenotype. These find-
ings do not necessarily imply that HDID-1 mice have a
more active immune system than control mice, as there is
not a direct relationship between peripheral and central
immune responses. Changes in brain gene expression
1 week after LPS most likely represent downstream effects
rather than an acute immune response. We, however, did
not sample peripheral tissue or measure serum cytokine
levels and cannot exclude the possibility of increased im-
mune activity in HDID-1 mice.

We note that microarray technology is prone to
Bmisreads^ due to genetic polymorphisms, such as SNPs,
making it possible that some DEGs were due to genotype
variations in microarray performance rather than expres-
sion levels of mRNA [50, 51]. Therefore, the results for
individual probes should be interpreted with caution, espe-
cially for those probes that map to areas of the genome that
contain known SNPs (see Table S1). This inherent weak-
ness of microarrays could be addressed by validating indi-
vidual genes using a different platform, including RNA
sequencing and quantitative PCR. Our main findings, how-
ever, are based on gene networks and the probability of
many probes in a given network being affected by genetic
polymorphisms is low. We want to highlight the impor-
tance of taking a multifaceted approach that incorporates
multiple levels of evidence to improve the biological in-
sights compared to single gene approaches. Another poten-
tial concern is that the mice used in the gene expression
and electrophysiological experiments were from different
selection generations and were maintained in different fa-
cilities. However, the gene expression data from selection
generation S16 predicted circuit-level function in mice
from S33, suggesting that the transcriptional signature
was still prevalent after 17 additional generations of
selection.

In summary, our results support the hypothesis that
genetic differences in HDID-1 and HS/Npt mice resemble
those between alcoholics and non-alcoholics, particularly
in genes related to neuroimmune, dopaminergic, and glu-
tamatergic signaling. We also demonstrated functional dif-
ferences in neuronal plasticity between HDID-1 and HS/
Npt mice following ethanol exposure, supporting the idea
that ethanol-induced neural adaptations within the nucleus
accumbens are critical for the expression of ethanol-
related behaviors [52]. Our systems approach demonstrat-
ed how the HDID-1 model can be used to probe mecha-
nisms of binge drinking and how molecular profiling may
be extended to the circuit level to identify potential targets
for treating AUD.

Mol Neurobiol (2019) 56:2791–2810 2803



Materials and Methods

Animals

HS/Npt mice are the non-selected and genetically diverse pop-
ulation from which the HDID-1 mice were selected as previ-
ously described [6, 53]. Adult (euthanized at age 8–12 and
10 weeks for the gene expression and electrophysiological
studies, respectively), experimentally naïve, male HDID-1
(Selected Generation S16 and S33 for the gene expression
and electrophysiological studies, respectively) and HS/Npt
(Generation G68 and G84 for the gene expression and elec-
trophysiological studies, respectively) mice were bred and
housed in the Veterinary Medical Unit at the Veterans
Affairs Medical Center (Portland, OR, USA) (N = 12 and 18
mice/genotype for the gene expression and electrophysiolog-
ical studies, respectively). Mice used for functional experi-
ments were shipped from Oregon Health & Science
University and acclimated at the College of Pharmacy at The
University of Texas at Austin (Austin, TX, USA) for approx-
imately 4 weeks before beginning the ethanol vapor experi-
ments. Mice received ad libitum access to food (Purina 5001
and RMH1800 chow for the gene expression and electrophys-
iological studies, respectively; LabDiet, St. Louis, MO, USA)
and water. Mice were kept on a reverse 12 h/12 h light/dark
cycle with lights on at 2130 h for all experiments. All proce-
dures were approved by the local Institutional Animal Care
and Use Committee and conducted in accordance with the
NIH Guidelines for the Care and Use of Laboratory Animals.

Tissue Preparation for Gene Expression Analysis

Mice were decapitated and their brains were quickly removed,
flash frozen in liquid nitrogen, and stored at − 80 °C then
shipped on dry ice to The University of Texas at Austin.
Twenty-micron coronal sections were prepared using a
Microm HM550 cryostat (Thermo Fisher Scientific,
Walldorf, Germany). Serial sections were collected and
mounted on UV-treated nuclease-free PEN membrane slides
(Zeiss, Bernried, Germany). Slides were kept inside the
cryochamber during the procedure and stored at − 80 °C until
ready to use.

Staining Procedures

Sections were quickly transferred from − 80 °C to pre-cooled
(4 °C) 95% ethanol and incubated for 1 min, followed by
rehydration in pre-cooled (4 °C) 70% ethanol for 20 s. The
slides were stained in 1% cresyl violet acetate (Sigma, St.
Louis, MO, USA) in absolute ethanol for 40 s and dehydrated
for 5 s each in 70 and 95% ethanol and then for 15 s in 100%
ethanol at room temperature. After air-drying for 2 min, slides

were stored in a slide box with desiccant on ice and immedi-
ately used for microdissection.

Laser Capture Microdissection

Seven brain regions (PFC, AcbC, AcbSh, BNST, BLA, CeA,
and VTA) were dissected in accordance with coordinates from
the mouse brain atlas (Franklin and Paxinos, 2007) using the
PALM MicroBeam system (Carl Zeiss MicroImaging,
Bernried, Germany): PFC (bregma = 1.6–2.1 mm, lateral =
0.1–0.4 mm, ventral = 1.5–3.5 mm); AcbC (bregma = 1.0–
1.6 mm, lateral = 0.7–1.5 mm, ventral = 4.0–4.7 mm);
AcbSh (bregma = 1.0–1.6 mm, lateral = 0.5–1.5 mm, ven-
tral = 4.2–5.2 mm); BNST (bregma = 0.0–0.3 mm, lateral =
0.3–1.1 mm, ventral: 3.8–4.7 mm); BLA (bregma = − 1.8 to
− 0.9 mm, lateral = 2.5–3.0 mm, ventral = 4.5–5.0 mm); CeA
(bregma = − 1.7 to − 0.8 mm, lateral = 2.0–2.5 mm, ventral =
4.3–4.8 mm); VTA (bregma = − 3.8 to − 3.0 mm, lateral =
0.1–0.9 mm, ventral = 4.0–4.8 mm). Sections containing these
brain regions were cut under ×10 magnification and manually
transferred using ultrafine forceps into non-stick, nuclease-
free 1.5-ml tubes on ice. Several sections were pooled.

RNA Extraction

Lysis solution from RNAqueous-Micro Kit (Ambion, Austin,
TX, USA) was added to the microdissected samples, and sam-
ples were incubated at 42 °C for 30 min and stored at − 80 °C
until processed. RNA was isolated following the manufac-
turer’s instructions for laser capture microdissection (LCM)
samples and quantified using the Quant-iT RiboGreen RNA
Assay Kit (Invitrogen, Carlsbad, CA, USA), and then quality
was assessed using the Agilent RNA 6000 Pico Kit (Agilent
Technologies, Santa Clara, CA, USA). The average RNA in-
tegrity number was 6.77 ± 0.58, indicating that the samples
were of good quality. Samples from both genotypes were
processed in parallel to avoid potential batch effects.

RNA Amplification and Hybridization

Total RNA was amplified using the Illumina TotalPrep-96
RNA Amplification Kit (Ambion, Austin, TX, USA). The
cRNA was quantified using a NanoDrop ND-1000 spectro-
photometer (NanoDrop Technologies, Wilmington, DE,
USA) and analyzed using the Agilent RNA 6000 Nano Kit
(Agilent Technologies, Santa Clara, CA, USA). Input of 30 ng
of RNAyielded at least 4 μg of amplified biotinylated cRNA,
with most samples distributing between 800 and 1500 nt, in-
dicating the expected yield and size. We sent 1.5 μg cRNA to
The Microarray Resource at Yale University where it was
hybridized to Illumina Mouse WG-6 v2.0 Expression
BeadChips (Illumina, San Diego, CA, USA). Samples from
different genotypes and brain regions were counterbalanced
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on each chip to avoid potential batch effects. All chips were
processed simultaneously.

Data Preprocessing

The data are publicly available on Gene Expression
Omnibus under the accession number GSE9331. We
preprocessed the data using the Bioconductor lumi pack-
age version 2.20.2 in the R programming environment
[54]. A total of 168 samples across seven brain regions
were used for data analysis. Variance-stabilizing transfor-
mation and quantile normalization were applied [55].
Outlier detection was performed within each brain region,
and samples were considered to be outliers when their
distances to the sample average were larger than the
threshold (2*median distances to the center). Two control
samples (from AcbC and BNST) were removed. Variance-
stabilizing transformation and quantile normalization were
then reapplied to the raw data of the remaining 166 sam-
ples. For each brain region, only those genes that were
significantly expressed (detection threshold p < 0.05) in at
least 75% of samples were selected. Grubb’s test (p <
0.05) was performed within groups to remove outliers
for each gene.

Differential Expression Analysis

Differential expression analysis was conducted for each
brain region by empirical Bayes- moderated t statistics
using the Bioconductor limma package version 3.24.15
in R [56]. DEGs (p < 0.05) in HDID-1 and HS/Npt mice
were identified. The number of DEGs in each brain region
was compared to chance using a chi-square test to esti-
mate effects of genetic selection on global gene expres-
sion. We then compared our DEGs with those of a previ-
ous study in ventral striatum of ethanol-naïve, male HDID
and HS/Npt mice [10]. We identified Illumina probes that
map to areas of the genome containing known single nu-
cleotide polymorphisms (SNPs) using the Bioconductor
illuminaMousev2.db package version 1.26.0 in R.

Enriched molecular pathways of the DEGs were iden-
tified using two web-based software applications
(knowledgebases): IPA (Ingenuity Systems, www.
ingenuity.com) and ToppFun (https://toppgene.cchmc.
org/enrichment.jsp) [57]. We performed a core analysis
for each brain region in IPA using default settings,
except that expressed transcripts were used as the
background population for the right-tailed Fischer exact
test (FET) calculations. Terms with FET p < 0.05 were
considered significantly enriched within the dataset. For
the ToppFun analysis, terms with Benjamini-Hochberg’s
FDR q < 0.05 were considered significant.

Gene Network Analysis

We used the WGCNA R package version 1.48 developed by
Langfelder and Horvath to perform weighted gene
coexpression network analysis on all samples [58] (https://
labs.genetics.ucla.edu/horvath/CoexpressionNetwork/
Rpackages/WGCNA/). Transcripts detected in all seven brain
regions were included in the analysis. The Pearson correlation
coefficient between all pairs of probes across all samples was
calculated, and a signed gene coexpression similarity matrix
between genes was generated: Sij = (1 + cor(xi,xj)) / 2. Then,
an adjacency matrix, aij = Sij

β, was used to assess gene
connections. Power (β) was chosen so that the resulting
network exhibited approximate scale-free topology (β = 12).
Next, the topological overlap measure (TOM) was used to
calculate the relative interconnectedness of a gene pair.
Average linkage hierarchical clustering was applied to pro-
duce a dendrogram based on the topological overlap dissimi-
larity (1 − TOM). Branches of the tree were cut using a dy-
namic tree cut algorithm to detect modules (deepSplit = T,
minimum module size = 80, cut height = 0.995). The terms
Bmodules,^ Bclusters,^ and Bgene networks^ are used inter-
changeably in the manuscript and refer to groups of genes
with highly correlated (positively or negatively) expression
levels across samples. A hub gene is a highly interconnected
gene within a module. It can be determined by calculating the
intramodular connectivity Kin for each gene by summing the
adjacencies of that gene with other genes in that particular
module. It measures how correlated a gene is with the others
in that module. For each module, we identified hub genes (top
20%).

To determine the network Bhub modules,^ we labeled each
node (i.e., gene) in the network with its module color assign-
ment and calculated the number of connections each module
had with a node in a different module normalized by module
size. We performed this calculation for all connections and
also for the connections in the top quartile.

Identification of Gene Modules Related to HDID-1
Selection

To identify gene coexpression modules that may drive exces-
sive ethanol consumption in HDID-1 mice (selection-respon-
sive modules), we performed an over-representation analysis
of DEGs for eachmodule. Hypergeometric testing was used to
assess the significance of module enrichment with up-
regulated and down-regulated DEGs from each brain region.
Benjamini-Hochberg’s FDR q values were calculated to cor-
rect for multiple tests (q < 0.05 were considered significant).

We also used the module eigengene to identify modules
that are related to brain region, i.e., those containing genes
enriched or depleted in specific brain regions. One-way
ANOVAs of the module eigengene were performed for each
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module to assess variation between brain regions. A graphic
representation of a module eigengene reflects relative gene
expression among brain regions (e.g., see Fig. 3).

Functional Enrichment Analysis

Several complementary approaches were used to character-
ize the selection-responsive modules. First, we identified
modules enriched with established cell type-specific
markers using the hypergeometric test. Expressions of
genes with ≥fourfold enrichment in astrocytes, oligoden-
drocytes, and neurons [59] were considered to be cell type
markers. We used the top 500 DEGs in the following cell
types (relative to the other cell types in the study) as addi-
tional cell type markers (neurons, microglia, astrocytes,
and oligodendrocytes at different maturation states as well
as endothelial cells) using a minimum Fragments Per
Kilobase of transcript per Million mapped reads (FPKM)
threshold of 20 (http://web.stanford.edu/group/barres_lab/
brain_rnaseq.html) [60]. Gene datasets preferentially
expressing glutamatergic and GABAergic neuronal
subpopulations were used to further characterize the
neuronal modules [61]. Second, we identified the
functional enrichment of the modules using IPA and
ToppFun as described above. The reference set for the
FET calculation in IPA was comprised of the transcripts
used to construct the coexpression network. Benjamini-
Hochberg’s FDR q values were calculated to correct for
multiple tests, and those with q value < 0.05 were
considered significant [62].

We used two publicly available databases to link DEGs and
selection-responsive modules with alcohol consumption: (1)
INIA Texas Gene Expression Database (IT-GED, http://inia.
icmb.utexas.edu) containing curated lists of significantly
regulated genes from microarray studies focusing on models
of excessive alcohol consumption and (2) Ethanol-Related
Gene Resource (ERGR; https://bioinfo.uth.edu/ERGR/)
containing more than 30 datasets, including linkage,
association, and microarray gene expression from the
literature and 21 mouse QTLs from public databases [63].

Mouse-to-Human Network Comparisons

We compared the HDID-1-HS/Npt mouse gene networks
with those constructed from human alcoholics/controls
[10]. The illuminaHumanv3.db R package version 1.26.0
was used to update the annotations to the human genome
release, hg19, from the UCSC genome browser. We con-
verted mouse gene symbols to their corresponding human
orthologues by cross-species mapping using BioMart
(ht tp: / /www.ensembl.org/biomart /martview). The
numbers of genes shared among human BLA, central
nucleus of the amygdala (CNA), and superior frontal

cortex (CTX) and the mouse network are 6290, 6330,
and 6436, respectively. The hypergeometric distribution
was used to assess the significance of internetwork module
overlap. We used Cytoscape to visualize the network com-
parisons with meta-network graphics and showed highly
significant connections (hypergeometric p < 0.001) [64].

Labeling of Drd1-MSNs

A subset of HDID-1 and HS/Npt mice (5 weeks old) used for
behavioral and electrophysiological experiments underwent
stereotaxic injection of the retrograde tracer, Alexa Fluor
555 labeled recombinant cholera toxin subunit B (CTB;
Molecular Probes) into the VTA. Anesthesia was induced at
3% and maintained at 1.5% isoflurane (w/v) (Baxter AG) dur-
ing surgery. Animals were placed in a stereotaxic frame
(Kopf) and bilateral craniotomies were performed using ste-
reotaxic coordinates adapted from the Paxinos & Watson
mouse brain atlas (for VTA: anterior–posterior = − 3.1; medi-
al–lateral = ± 0.38; dorsal– ventral = − 4.8). Injections of CTB
(0.5 μl per injection site) were made using graduated pipettes
(Drummond Scientific), broken back to a tip diameter of 10–
15 μm, at an infusion rate of ≈ 0.05 μl/min. CTB injections
were performed a minimum of 4 weeks before ethanol
exposure.

Chronic Intermittent Ethanol Exposure

Mice were exposed to ethanol vapor using the CIE model [26,
65, 66]. A flask containing 95% ethanol was perfused with air
at a rate of 0.2 to 0.3 l/min to generate ethanol vapor. Ethanol
vapor was then combined with a different air stream to give a
total flow rate of approximately 4 l/min and delivered to mice
in chambers comprised of an airtight top, a vapor inlet, and an
exhaust outlet (Allentown Inc., Allentown, NJ). A bout of
ethanol vapor exposure consisted of 16 h of ethanol exposure
followed by 8 h of withdrawal. This cycle was repeated for
four consecutive days. Prior to placement in chambers, mice
received intraperitoneal injections of a loading dose of ethanol
(20% v/v, 1.5 g/kg) and pyrazole (68.1 mg/kg for HDID-1 and
34 mg/kg for HS/Npt) in order to achieve BALs of 150–
200 mg/dl. Ethanol-naïve mice were handled similarly but
were injected with a solution of only pyrazole and placed in
a chamber that received only air. Brains were dissected for
electrophysiological experiments 24 h after the last ethanol
exposure.

Blood Alcohol Levels

Following each day of vapor or air exposure, tail blood
samples were collected immediately upon removal from
the vapor chambers and BALs were measured by gas
chromatography using a Bruker 430-GC (Bruker
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Corporation, Fremont, CA) equipped with a flame ioniza-
tion detector and Combi PAL autosampler. Two, 5-μl
samples of blood were collected and added to 10-ml vials
containing 45 μl of saturated sodium chloride solution.
Samples were warmed to 65 °C, and the solid-phase mi-
cro-extraction fiber (SPME; 75 μm CAR/PDMS, fused
silica; Supelco, Bellefonte, PA) was used to absorb etha-
nol vapor from the samples. The stationary phase was a
capillary column (30 m × 0.53 mm × 1 μm film thickness;
Agilent Technologies, Santa Clara, CA) and helium, at a
flow rate of 8.5 ml/min was used in the mobile phase.
Ethanol peaks were analyzed using CompassCDS
Workstation software (Bruker Corporation, Fremont,
CA), and calibration was performed using ethanol stan-
dards. Only animals that achieved target BALs of 150–
200 mg/dl for the last three consecutive days in the cham-
ber were used for electrophysiological recordings.

Patch Clamp Electrophysiology

Mice were approximately 10 weeks old at the time of
slice preparation [67]. Whole-cell voltage-clamp record-
ings were made from putative Drd1-MSNs in the
AcbSh, and cells expressing CTB were identified by fluo-
rescence microscopy using a BX50 microscope
(Olympus) mounted on a vibration isolation table.
Recordings were made following previously established
procedures [26, 66].

Glutamatergic afferents were stimulated with a stain-
less steel bipolar stimulating electrode (FHC, Inc.,
Bowdoin, ME) placed about 150–300 μm from the cell
body. Excitatory postsynaptic currents (EPSCs) were ac-
quired using a PC-One amplifier (Dagan Corporation,
Minneapolis, MN), filtered at 1 kHz, and digitized at
10–20 kHz with a Digidata 1440A interface board using
pClamp 10.2 (Axon Instruments, Union City, CA). Cells
were first current clamped to assess resting membrane
potential (RMP). Cells with an RMP > − 70 mV were
excluded from further analysis as they were not likely
representative of an MSN. Cells were then voltage
clamped, and EPSCs were evoked by local stimulation
every 15 s for at least 10 min. LTD was induced with
conditioning stimuli of 500 pulses at 1 Hz, paired with
continuous postsynaptic depolarization to − 50 mV.
EPSCs were then monitored for 30 min after pairing every
15 s. The magnitude of LTD was calculated by averaging
normalized EPSC values from 20 to 30 min after the
pairing protocol and comparing to the average normalized
EPSCs during the 10-min baseline. Plasticity was deter-
mined if the average EPSCs between 20 and 30 min post-
pairing was greater than 2 standard deviations away from
the 10-min baseline. Data from each neuron within a

treatment group were combined and shown as percent
baseline values.

Experimental Design and Statistical Analysis

For the electrophysiological experiments, summary data
are shown as mean ± SEM. Statistical significance from
baseline within each treatment group was defined as p <
0.05 and calculated using a two-tailed Student’s t test
(assuming equal variance). Group comparisons were cal-
culated using two-way ANOVA and Bonferroni post hoc
tests (significance was defined as p < 0.05). For gene ex-
pression experiments, an empirical Bayes-moderated t sta-
tistic was used, and statistical significance was defined as
p < 0.05. Data tables reporting the fold regulation include
separa te columns for both raw and adjus ted p
values (Table S1 in Online Resource 2). All analyses were
conducted in R Studio Version 0.99.903 (running R ver-
sion 3.2.2) and IPA version number 36601845. Additional
information regarding statistical analyses, experimental
design and sample sizes (N) are provided in the
BMaterials and Methods^ and in the figure and table
legends.
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