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A Physarum Centrality Measure of 
the Human Brain Network
Hunki Kwon1,2, Yong-Ho Choi1 & Jong-Min Lee1

The most important goals of brain network analyses are to (a) detect pivotal regions and connections 
that contribute to disproportionate communication flow, (b) integrate global information, and (c) 
increase the brain network efficiency. Most centrality measures assume that information propagates 
in networks with the shortest connection paths, but this assumption is not true for most real networks 
given that information in the brain propagates through all possible paths. This study presents a 
methodological pipeline for identifying influential nodes and edges in human brain networks based 
on the self-regulating biological concept adopted from the Physarum model, thereby allowing the 
identification of optimal paths that are independent of the stated assumption. Network hubs and 
bridges were investigated in structural brain networks using the Physarum model. The optimal paths 
and fluid flow were used to formulate the Physarum centrality measure. Most network hubs and bridges 
are overlapped to some extent, but those based on Physarum centrality contain local and global 
information in the superior frontal, anterior cingulate, middle temporal gyrus, and precuneus regions. 
This approach also reduced individual variation. Our results suggest that the Physarum centrality 
presents a trade-off between the degree and betweenness centrality measures.

The human brain is considered as a complex network that integrates structural and functional information1. A 
graph theoretical approach allows the quantitative analysis of the human brain based on in vivo brain imaging 
data, and can be used to increase our understanding of how brain regions are interconnected in networks1–3.

One of the most important goals of the brain network analysis is to detect pivotal regions and connections 
that strongly contribute to disproportionate communication flow to integrate global information and make the 
brain network more efficient4,5. These pivotal regions and connections are usually defined as network “hubs” at 
the nodal level, and network “bridges” at the edge level, that can efficiently translate signals from other brain 
regions along short communication paths4–8. Several human brain lesion studies have provided evidence that spe-
cific brain regions or bridges related to vital neurocognitive functions could be considered as candidate hubs or 
bridges9–11. These properties have been also described in several other mammalian species, such as macaques12,13 
and cats14, thereby suggesting that common patterns of construction are shared across various species. Many 
studies have focused on brain network hubs and bridges to investigate how a disease spreads in a network and 
how these relate to clinical brain disorders3,5,15,16. It is known that the loss of hubs or bridges could reduce the 
effective information flow through the brain network17–20.

Many previous studies have identified brain network hubs and bridges using various local measures, such as 
the degree and betweenness centralities8,9,21–27. Therefore, it is important to interpret their roles in the network 
according to the measures used in the study3,5. The degree centrality (CD) is defined as the number of edges 
connected to a node, is an extensively adopted measure used to quantify the local centrality of each node, and 
has a direct neurobiological interpretation3,28. Unlike the degree of a node, which is regarded as a local part of 
centrality, some centrality measures represent the importance of a node based on the concept of the shortest path 
between any two nodes in the brain network28–30. Betweenness centrality (CB) is calculated as the fraction of the 
number of the shortest paths that pass through a given node or edge to the total number of shortest paths, and has 
been extensively used30,31. A node or an edge with an increased CB value indicates a large influence on the transfer 
of information across brain regions.

It is noted that most centrality measures commonly used in brain network analyses assume that the informa-
tion flow in a network propagates only through the single shortest path. However, this assumption is not true for 
most real networks32–34. For example, traffic will likely follow alternative paths if the shortest path is congested, 
and information about computer viruses, news, rumors, or infections, will likely propagate through random paths 
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in a network, rather than through the single shortest path35. The mechanisms of how the network communication 
flows in the brain remain unclear, but it has been suggested that the information in the brain naturally propagates 
along all possible paths, and not only through the shortest paths36–38. Recently, some brain network studies have 
attempted to address the shortest path assumption. These studies have used a maximum-flow-inspired algorithm 
(which constrains paths between regions using a flow-connectivity matrix), instead of the shortest paths between 
two regions, to measure the flow between network regions39,40. These studies did not investigate changes of net-
work hubs or bridges in accordance with the shortest path assumption, but focused instead on the understanding 
of the information flow between network regions as new properties.

Nakagaki et al. suggested a self-regulating biological model using the amoeboid organism “Physarum 
polycephalum,” to identify (a) optimal paths to connect two food sources by controlling the amount of fluid flow, 
and (b) competing paths in a tubular network41,42. This model has been successfully applied in various fields to 
solve the optimization, shortest path, and the 0–1 knapsack problems43–47. In particular, a bio-inspired network 
local measure called “Physarum centrality (CP)” has been suggested to identify the centrality of brain regions over 
the network by combining the fluxes of the edges linked to specific nodes32,45. Because the information flow in the 
brain has been transmitted not only through the shortest paths but also through many connected paths, CP could 
be suitable for extracting the important regions and for identifying the connections in a brain network. However, 
to the best of our knowledge, CP has not been previously applied in brain network analyses.

This study aimed to identify the influential nodes and edges of human brain networks based on CP. In addi-
tion, we compared the CP results with those based on commonly used network centrality measurements, such as 
CD and CB, to examine the effect of the shortest path assumption.

Results
Spatial distribution of hub nodes and bridge edges.  The network hubs of three centrality measures 
(one standard deviation above the mean), i.e., H(CD,node), H(CB,node), and H(CP,node), were identified according to 
each centrality map, i.e., CD,node, CB,node, and CP,node. It is noted that the anatomical locations of the obtained hubs 
were adopted from the predefined template48 (Table S1). Accordingly, the H(CD,node) measure appeared in four 
cortical regions (the precuneus, middle temporal gyrus, superior frontal gyrus [dorsolateral], and postcentral 
gyrus) in a bilaterally symmetric fashion, and in three other regions (the right precentral gyrus, right calcarine 
fissure, and left middle occipital gyrus) (Fig. 1A). Furthermore, H(CB,node) appeared in four cortical regions (the 
precuneus, superior frontal gyrus [dorsolateral], precentral gyrus, and postcentral gyrus) in a bilaterally symmet-
ric fashion, as well as in three other regions (the left superior frontal gyrus [medial], left anterior cingulate and 
paracingulate gyrus, and left middle occipital gyrus) (Fig. 1B). Equivalently, H(CP,node) appeared in nine cortical 
regions (the precuneus, superior frontal gyrus [dorsolateral], precentral gyrus, postcentral gyrus, left superior 
frontal gyrus [medial], right calcarine fissure, left middle temporal gyrus, left middle occipital gyrus, and in the 
left anterior cingulate and paracingulate gyri) (Fig. 1C). Figure 2 shows the cumulative distributions of CB,node and 
CP,node with a degree distribution in a continuous manner. Accordingly, CB,node and CP,node accounted for 83.47% 
and 63.67% of the top 50% most connected nodes, respectively. The results indicate that CP,node is homogenously 

Figure 1.  Distribution of network hub nodes based on CD,node, CB,node and CP,node. (A) Network hub nodes based 
on CD,node are highlighted by the red circles. (B) Network hub nodes based on CB,node are highlighted by the red 
circles. (C) Network hub nodes based on CP,node are highlighted by the red circles. The network hub nodes were 
identified when the network nodes were greater than one standard deviation (SD) above the mean of each nodal 
centrality measure map. The size of each circle indicates the strength of each centrality measure.
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distributed compared to CB,node, and the extensive diversity in the paths from the Physarum model can improve 
efficiency, robustness, and the resilience of the brain network49,50. We also investigated how the network bridges 
(one standard deviation above the mean), i.e., B(CB,edge) and B(CP,edge), according to the edge betweenness cen-
trality (CB,edge) and edge Physarum centrality (CP,edge) distribute (Fig. 3). Additionally, CB,edge was calculated as the 
number of the shortest paths that pass through a given edge, and CP,edge was calculated by the sum of the flux that 
passes through a given edge from the Physarum model (see Methods).

Overlap of hub nodes and bridge edges.  The Jaccard indices (J) for each pair of network hub sets 
(H(CD,node) vs. H(CB,node), H(CP,node) vs. H(CD,node), and H(CP,node) vs. H(CB,node)) were estimated (Table 1). 
J(H(CP,node), H(CB,node)) had the highest value (0.846), and J(H(CD,node), H(CB,node)) had the lowest value (0.571). 
Linear regression analyses were performed for three pairs of centrality measures (Fig. 4). We found that CP,node 

Figure 2.  Cumulative distributions of CB,node and CP,nodewith degree. Nodes were sorted so that the node with 
the highest value moved to one, and the node with the lowest centrality value moved to the last index (x–axis). 
The cumulative distribution of CB,node is shown in blue, the cumulative distribution of CP,node is shown in red, and 
the degree distribution is shown in green.

Figure 3.  Distribution of network bridge edges based on CB,edge and CP,edge. (A) Network bridge edges based on 
CB,edge are shown in green. (B) Network bridge edges based on CP,edge are shown in blue lines. (C) Overlapped 
bridge edges between CB,edge and CP,edge are shown in light blue lines. The network bridge edges are identified 
when the network edges are greater than one standard deviation (SD) above the mean of each edge centrality 
measure map. Their Jaccard index is also shown with overlapped bridge edges.
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was positively correlated with CB,node (R2 = 0.939, P = 1.8606e−48), and CD,node was positively correlated with CB,node 
(R2 = 0.687, P = 2.6774e−21). It was noted that the Jaccard index and regression analysis, including CP,node, exhib-
ited a strong tendency to acquire higher values compared to the values of other models. Notably, most of the 
network hub regions overlapped to some extent. In all three centrality measures, three cortical regions (the pre-
cuneus, superior frontal gyrus, and postcentral gyrus) appeared in a bilaterally symmetric fashion, while two 
regions (the left middle occipital gyrus and right precentral gyrus) appeared in a lateralized manner. We also cal-
culated J(B(CB,edge), B(CP,edge)) on the edge level to discover common efficient communication paths between two 
different measures. Its value was estimated to equal 0.791. Notably, the results suggest that the overlapped paths 
may be core paths, and they may have an important role in the efficient information flow across brain regions.

Differences of hub nodes and bridge edges.  A post-hoc analysis was performed after the analysis of 
variance (ANOVA) test on the network hub regions based on three Z-transformed centrality measures (CD,node vs. 
CB,node vs. CP,node). Table 2 shows the details of the ANOVA and post-hoc analyses. In the five cortical hub regions 
(the left precentral gyrus, right superior frontal gyrus [dorsolateral part], left anterior cingulate, and left and right 
postcentral gyri), CD,node was significantly lower than CB,node a CP,node, but CB,node and CP,node were not significantly 
different. In the three cortical hub regions (the right precentral gyrus and left superior frontal gyrus [dorsolateral 
and medial part]), only CP,node was significantly higher than CD,node. In the four cortical hub regions (the calcarine 
fissure, right precuneus, and left and right middle temporal gyri), CD,node was significantly higher than CB,nodeand 
CP,node, and CP,nodewas significantly higher than CB,node (CD,node > CP,node > CB,node). A similar tendency was observed 
in the left precuneus. Table 3 shows the differences of the bridge edges based on the CB,edge and CP,edge values. 
B(CP,edge) contained 46 additional bridge edges which B(CB,edge) did not have. The additional B(CP,edge) mainly 
connected with hub nodes, such as the calcarine fissure and the middle temporal gyrus, rather than B(CB,edge). 
However, B(CB,edge) had only 18 additional bridge edges which B(CP,edge) did not have (Table 4).

Individual variability of hub nodes.  The coefficient of variation (CV) was calculated in network hub 
regions, including the left and right precentral gyri, left and right superior frontal gyri (dorsolateral part), left 
superior frontal gyrus (medial part), left anterior cingulate, left calcarine fissure, left middle occipital gyrus, left 
and right postcentral gyri, left and right precuneus, and left and right middle temporal gyri (Table 5). A two-tailed 
t-test was performed to determine the statistical significance of the differences in CV values among the three 
centrality measures (CD,node, CB,node and CP,node). Accordingly, it was found that CV (CD,node) was significantly lower 
than CV (CB,node) (P = 2.5610e−19, t-test) and CV(CP,node) (P = 1.2673e−12, t-test). Additionally, CV(CP,node) was also 
significantly lower than CV(CB,node) (P = 8.2899e−18, t-test). Furthermore, the values of CV(CB,node), CV(CD,node), 
and CV(CP,node) were found to lie in the ranges of 0.5777–0.6776, 0.1478–0.1778, and 0.2378–0.3138, respectively.

Discussion
In this study, we proposed a novel methodological framework for defining the importance of network nodes and 
edges using the Physarum model. Other centrality measures, such as CD and CB, assume that information flows in 
a network only through the paths that are associated with the shortest connections, but CP considers all possible 
information flows between brain regions.

Many previous studies have detected brain network hubs and bridges using various measures, such as CD and 
CB

8,9,21–27,51. These measures of centrality helped the interpretation of the meaning of nodes and edges in the net-
work3,5. Accordingly, CD,node, usually defined as the number of connections of the target node, quantified the local 
properties without global information flow. Furthermore, CB,node identified the node that played an important role 
with the use of information based on the global flow patterns and on the shortest path concept, while CB,edge used 
a similar approach to that used by CB,node at the edge level. Equivalently, CP and CB used the global information 
flow. However, CP used all the possible paths from the Physarum model instead of the shortest path concept and 
was shown to be affected by local characteristics, such as CD.

As shown in Fig. 2, the CP,node was homogenously distributed among all network nodes compared to CB,node. 
However, the CP,node considered the optimal paths from the Physarum model independent of the assumption 
used by other centralities according to which the information flow of a network only spread through the shortest 
connecting paths. Previous studies have shown the existence of a communication scheme that contradicted the 
assumption that only the shortest connections are used37,52. These studies have shown that CP can be uniformly 
distributed compared to CB.

The Jaccard index was used to examine the overlap ratio between the sets of each centrality measure. As shown 
in Table 1, the Jaccard indices between hub sets based on CP,node and CB,node had higher values than those associ-
ated with other combinations. As shown in Fig. 4, similar Jaccard index patterns were observed between CP,node 
and other measures in a continuous manner. The Jaccard index value estimated between bridge sets based on 
CP,edge and CB,edge also yielded higher values. Thus, the network hub regions determined based on CP,node possessed 

H (CD,node) H (CB,node) H (CP,node)

H (CD,node) 1 0.571 0.714

H (CB,node) 0.571 1 0.846

H (CP,node) 0.714 0.846 1

Table 1.  Jaccard indices between network hubs from three centrality measures. The Jaccard index of the hub 
regions is the ratio of the number of overlapping hub nodes to the total number of hub nodes based on any two 
centrality measures. The value of the Jaccard index varies from zero (no overlap) to one (perfect overlap).
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local and global network properties. Based on global information, some regions of the precentral gyrus and supe-
rior frontal and anterior cingulate gyri were defined as network hubs. However, these regions were not considered 
as network hubs based on local information, such as CD,node. In previous studies, these regions were classified as 
multimodal and functional hubs that are parts of cognitive resting-state networks, such as the default mode5,25. 
In addition, these regions were also defined as network hubs in other species, like in macaques and cats14,22,53. 
Some studies have found that the high FA values in the superior frontal gyrus were associated with post-traumatic 
stress disorder54, and exhibited decreased blood oxygen level-dependent activation of the superior frontal gyrus 
during a working memory task in individuals with schizotypal personality disorders55. FA plays an important role 
in the detection of network hub regions in global communication processes in the superior frontal and anterior 
cingulate regions21. As shown in Table 2, CD,node has lower values than CB,node and CP,node in the superior frontal and 
anterior cingulate regions.

Although similar patterns were observed in network hubs (Table 1 and Fig. 1) and bridges (Fig. 3) based on CB 
and CP because they both used global information, and because their core paths exhibited similar patterns, some 
regions, such as the calcarine fissure and the middle temporal gyrus, could not be detected based on CB,node, which 
measures only the shortest path between network regions. Notably, the middle temporal gyrus is a meaningful 
network hub25,56. The association of the middle temporal gyrus is reduced on voxel-based DTI measures57, and 
network efficiency and centrality in the middle temporal gyrus have been shown to be disrupted in individuals 
with Alzheimer’s disease58,59. The grey matter volume is reduced in the middle temporal gyrus in individuals with 
schizotypal personality disorders60,61. The bridges based on CP,edge (Table 3) also yielded more connections with 
the calcarine fissure and the middle temporal gyrus compared to the bridges based on CB,edge (Table 4). The pre-
cuneus plays an important role in the brain network, thus suggesting that it has mutual connections with other 
areas56,62. Specifically, the precuneus was connected with parietal regions that were related to visuo–spatial infor-
mation processing63. Both CB,node and CP,node could detect the precuneus as a network hub (Fig. 1B,C). However, 

Figure 4.  Scatter plots of centrality measures with correlation lines. Each centrality is normalized by 
subtracting the mean and then dividing the standard deviation to allow unbiased comparisons. There are 
significant positive correlations for three different pairs: (A) CD,node vs. CB,node, (B) CP,node vs. CD,node, and (C) 
CP,node vs. CB,node. Each circle represents a node, and the black line represents a correlation line.

Hub regions F–value P–value
CD,node 
(Mean ± SD)

CB,node 
(Mean ± SD)

CP,node 
(Mean ± SD) Post-hoc test

PreCG.L 18.335 <0.0001† 0.746 ± 0.027 1.148 ± 0.063 1.021 ± 0.047 CD,node < CB,node, CD,node < CP,node

PreCG.R 4.421 0.012† 0.977 ± 0.026 1.085 ± 0.061 1.172 ± 0.045 CD,node < CP,node

SFGdor.L 5.04 0.007† 0.88 ± 0.026 1.009 ± 0.057 1.075 ± 0.044 CD,node < CP,node

SFGdor.R 27.296 <0.0001† 1.308 ± 0.028 1.845 ± 0.073 1.733 ± 0.053 CD,node < CB,node, CD,node < CP,node

SFGmed.L 5.25 0.005† 0.869 ± 0.029 1.009 ± 0.061 1.083 ± 0.047 CD,node < CP,node

ACG.L 30.478 <0.0001† 0.625 ± 0.027 1.17 ± 0.069 1.057 ± 0.052 CD,node < CB,node, CD,node < CP,node

CAL.R 84.506 <0.0001† 1.242 ± 0.027 0.528 ± 0.048 0.885 ± 0.039 CD,node > CP,node > CB,node

MOG.L 0.653 0.521 1.297 ± 0.031 1.25 ± 0.07 1.337 ± 0.053

PoCG.L 32.036 <0.0001† 1.098 ± 0.029 1.701 ± 0.079 1.673 ± 0.061 CD,node < CB,node, CD,node < CP,node

PoCG.R 18.087 <0.0001† 1.238 ± 0.027 1.606 ± 0.071 1.653 ± 0.053 CD,node < CB,node, CD,node < CP,node

PCUN.L 8.408 <0.0001† 2.083 ± 0.024 1.776 ± 0.078 2.028 ± 0.055 CD,node > CB,node, CB,node < CP,node

PCUN.R 19.892 <0.0001† 2.074 ± 0.025 1.626 ± 0.068 1.842 ± 0.048 CD,node > CP,node > CB,node

MTG.L 48.873 <0.0001† 1.217 ± 0.029 0.544 ± 0.06 0.948 ± 0.051 CD,node > CP,node > CB,node

MTG.R 156.231 <0.0001† 1.113 ± 0.024 0.191 ± 0.045 0.622 ± 0.038 CD,node > CP,node > CB,node

Table 2.  Comparison of three centrality measures of all hub regions. An ANOVA test was performed to 
determine significant differences among Z-transformed centrality measures (CD,node, CB,node, and CP,node) at all 
78 network nodes. Values of P < 0.05 were accepted as significant with Bonferroni post-hoc correction. †FDR 
corrected P < 0.05.
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network hubs based on CP,node reflected the important network properties of the precuneus in a better manner 
compared to CB,node (Table 2). Additionally, network bridges based on CP,edge also included more connections with 
precuneus than CB,edge (Table 3).

The process of competition to find the optimal paths—instead of the shortest paths—from the Physarum 
model required increased information flow. Accordingly, it would be helpful to enhance the flow information 
efficiently across different brain regions. Centrality measures identified based on the shortest path assumption 

Region 1 Region 2 CP,edge CB,edge

SFGmed.L CUN.L 1.767 0.906

SOG.L MTG.L 1.587 0.880

SFGmed.L DCG.L 1.562 0.909

LING.L MTG.L 1.486 0.862

SFGdor.L INS.L 1.427 0.844

MOG.L IPL.L 1.396 0.975

MOG.L SPG.L 1.390 0.861

ANG.L MTG.L 1.381 0.722

CUN.L MOG.L 1.327 0.869

SFGdor.L FFG.L 1.312 0.929

PHG.L MTG.L 1.311 0.813

CAL.R STG.R 1.300 0.841

DCG.R PCUN.R 1.290 0.832

PCUN.L DCG.R 1.276 0.856

SFGdor.L SOG.L 1.269 0.844

SFGdor.L MOG.L 1.263 0.963

SMG.L MTG.L 1.258 0.709

PreCG.R PCUN.R 1.221 0.824

PoCG.L MTG.L 1.218 0.639

ACG.L SOG.L 1.216 0.809

PCUN.L SMA.R 1.205 0.666

PreCG.R MFG.R 1.201 0.910

PCUN.L PCUN.R 1.200 0.791

DCG.L PCUN.R 1.196 0.811

IFGtriang.L MTG.L 1.171 0.817

PCG.R PCUN.R 1.166 0.827

SFGdor.L ITG.L 1.163 0.782

SFGdor.R SFGmed.R 1.132 0.817

PreCG.L SOG.L 1.129 0.907

MOG.L MTG.L 1.117 0.480

PreCG.R MTG.R 1.087 0.670

SFGdor.R ITG.R 1.087 0.796

ACG.L LING.L 1.086 0.533

DCG.R CAL.R 1.081 0.546

PreCG.L IPL.L 1.064 0.660

SFGdor.R CUN.R 1.061 0.684

PreCG.R INS.R 1.059 0.937

SFGmed.L CAL.L 1.052 0.469

SOG.L PoCG.L 1.050 0.984

SFGdor.R PoCG.R 1.044 0.983

SFGdor.L SFGmed.L 1.036 0.491

SFGdor.L SMA.L 1.023 0.483

PreCG.L MFG.L 1.018 0.621

SOG.R PoCG.R 1.017 0.920

ACG.L FFG.L 1.013 0.660

SFGdor.L IOG.L 1.002 0.764

Table 3.  Network bridge edges based on Physarum centrality. Forty-six network bridges CP,edge are listed in 
a descending order of normalized CP,edge values based only on the edge Physarum centrality (CP,edge) values. 
Network bridges are defined as edges when CP,edge is greater by one standard deviation above the mean. 
Normalized edge betweenness centrality (CB,edge) is also listed on the same connection label.
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have been used in many brain network analyses, such as computer viruses, news, rumors, or infections32–35, but 
they have not been used in most real networks. In the brain network, there are some considerations against the 
shortest path assumption because it is difficult to elucidate the mechanism of an action potential that encodes the 
route and its destinations52. The shortest path assumption can also lead to nonresilient communication or loss 
of information52,64. Accordingly, the communication model with multiple connected paths is likely to be more 
appropriate, and can produce various alternative paths, which increase the efficiency, robustness, and resilience 
of the brain network50,65. The Physarum model has been suggested to combine the flux of tubular networks and 
competing edges through many possible paths. Therefore, we conclude that the Physarum model can improve the 
efficiency, robustness, and resilience of the brain network.

It is important to investigate the common features and variability of network centralities across subjects, and 
it is also critical to minimize the intrasubject variability66,67. The coefficient of variation (CV) is computed to 
describe the variation across subjects. As shown in Table 5, the CV of CP,node was significantly lower than that of 
CB,node. This indicated that the Physarum network hubs were more consistent throughout the dataset. Notably, 
network hubs based on CD,node yielded the lowest CV values compared to those based on centrality measures. This 

Region 1 Region 2 CB,edge CP,edge

PreCG.L SMG.R 1.535 0.903

MOG.L ANG.R 1.531 0.962

SFGmed.L INS.R 1.393 0.933

SFGdor.L PreCG.R 1.380 0.821

IFGoperc.L PCUN.L 1.370 0.866

CAL.R HES.R 1.365 0.735

PreCG.L DCG.R 1.253 0.957

ROL.L MOG.L 1.227 0.957

REC.L MOG.L 1.194 0.723

MOG.L MTG.R 1.136 0.821

SFGmed.L REC.L 1.082 0.768

PreCG.R HES.R 1.073 0.857

ORBinf.R PoCG.R 1.070 0.783

SFGdor.R OLF.R 1.036 0.393

ROL.R PCUN.R 1.029 0.559

SFGdor.R PCL.R 1.016 0.862

FFG.L PCUN.L 1.015 0.962

PCG.L PoCG.R 1.007 0.640

Table 4.  Network bridge edges based on betweenness centrality. Eighteen network bridges CB,edgeare listed in a 
descending order of normalized CB,edge values based only on the edge betweenness centrality (CB,edge). Network 
bridges are defined as edges when CB,edge is greater by one standard deviation above the mean. The normalized 
edge Physarum centrality (CP,edge) is also listed on the same connection label.

Hub regions CD,node CB,node CP,node

PreCG.L — 0.6394 0.2845

PreCG.R 0.1624 0.6424 0.2655

SFGdor.L 0.1578 0.6276 0.2693

SFGdor.R 0.1524 0.5777 0.2828

SFGmed.L — 0.6600 0.2831

ACG.L — 0.6776 0.3068

CAL.R 0.1588 — 0.2462

MOG.L 0.1690 0.6766 0.2981

PoCG.L 0.1778 0.6195 0.3059

PoCG.R 0.1568 0.5830 0.2715

PCUN.L 0.1231 0.5839 0.2538

PCUN.R 0.1208 0.5595 0.2378

MTG.L 0.1635 — 0.3138

MTG.R 0.1478 — —

Table 5.  Coefficients of variation (CV) in the network hub regions of three centrality measures. The coefficient 
of variation was quantified as a measure of intersubject variability. A lower CV value indicates lower intersubject 
variability and a higher consistency across subjects in the group.

https://doi.org/10.1038/s41598-019-42322-7
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is because CD,node is a relatively simple method, and local information is less variable than global information. 
Therefore, CP,node may capture the characteristics of local information to detect network hubs.

Many previous studies on brain network analyses have used various predefined atlases to define network 
nodes. The choice of the atlas defining the network nodes affects the network measures66. The spatial location of 
highly connected brain regions can be different depending on which atlas is used66,68. While the automated ana-
tomical labeling (AAL) atlas was used in this study to compare and interpret the existing network hub and bridge 
results obtained in the previous studies8,25,69, some rigorous experiments with different atlases will be needed in 
future studies to compare the effects of atlas selection.

In this study, we illustrated a novel methodological framework for the identification of influential nodes and 
connections of the human brain network based on CP. This model has not been previously employed in a brain 
network. Comparison of the validation results between CP and other network centrality measurements indicated 
that CP contained local and global information. Additionally, this measure was not based on the assumption that 
the information flow of a network spread only through the shortest connections. Accordingly, CP could reduce 
the within-individual variation and detect some regions and connections that are related to post-traumatic stress 
disorder, schizotypal personality disorder, and Alzheimer’s disease. Therefore, it would be helpful to apply this 
measure to individuals with neurological disorders that could provide biologically meaningful network results.

Methods
Subjects and data acquisition.  This study used the Human Connectome Project (HCP, https://www.
humanconnectome.org/) dataset and included 339 healthy participants (age: 28.2 ± 3.9 years, female: 159, male: 
180). Their scans and data were released after they passed the HCP quality control and assurance standards70. 
Table 6 shows the details of these datasets.

Data preprocessing.  An automated processing-pipeline (CIVET) was used to process T1-weighted mag-
netic resonance (MR) images (http://mcin-cnim.ca/neuroimagingtechnologies/civet/)71. The T1-weighted MR 
images were first registered to ICBM152 T1 template in the Montreal Neurological Institute (MNI) space using 
an affine linear transformation72, and were then corrected for intensity nonuniformities owing to magnetic field 
inhomogeneities using an N3 algorithm73. After the removal of tissues unrelated to the brain matter, registered 
and corrected images were segmented into the white matter, grey matter, cerebrospinal fluid, and background, 
using an advanced neural-net classifier71.

Diffusion Tensor Imaging (DTI) datasets were managed using the FMRIB’s software library (http://www.fmrib.
ox.ac.uk/fsl). Motion artifacts and eddy current distortions were corrected by normalizing diffusion-weighted 
images to the baseline image using the affine registration in the FMRIB’s linear image registration tool (FLIRT). 
A diffusion tensor matrix from the corrected diffusion-weighted images was generated based on a simple linear 
fitting algorithm, and the FA of each voxel was then calculated. DTI tractography was performed in the diffusion 
MR space using the FACT algorithm74, and was implemented using the Diffusion Toolkit (http://trackvis.org/) for 
the extraction of approximately 100,000 fibers from each subject. An angle of <45° between each fiber tracking 
step and a minimum/maximum path length of 20/200 mm were set as the terminating conditions. The classified 
white matter map masked the tractography results to eliminate false positives.

Construction of structural connectivity matrices.  It is important to define the basic elements of net-
works as edges. Because definitions and processes of constructing network nodes and edges have been described 
in detail previously, we explained them briefly as follows69,75,76 (Fig. 5A).

Node definition.  We used the AAL atlas48 with the exception of the cerebellum and subcortical regions to seg-
ment the cortical regions into 78 areas, which represent the nodes of the network. Individual T1-weighted images 
were nonlinearly transformed to the ICBM 152 template, and the AAL atlas in the MNI space was then trans-
formed to the T1 native space using the inverse transformation parameters. Therefore, the individual AAL atlas 
was defined in the T1 native space.

Edge definition.  Tractography results were used to quantify edges between different AAL regions for individ-
ual networks. Individual T1-weighted images were coregistered to the baseline image using the affine registra-
tion in the FMRIB’s FLIRT. Tractography results were transformed into the T1 native space using the inverse 
transformation parameters. Fiber tractography results and the AAL atlas thus represented the same individual 
T1 native space. Two nodes were considered to be structurally connected when at least three fiber tracts were 
present between these two nodes69,75,77,78. Accordingly, the edge was defined as the mean FA value along the fiber 
tracts69,75. Structural connectivity matrices were then constructed for each individual.

Total Male Female

Number of subjects 307 146 161

Age (mean ± SD) (years) 28.45 ± 3.65 28.23 ± 3.58 28.65 ± 3.70

Table 6.  Demographic information of participants.

https://doi.org/10.1038/s41598-019-42322-7
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Physarum centrality.  CP was calculated in two steps using an in-house software implemented in MATLAB 
(Version R2012b, Mathworks, Natick, MA, USA) (Fig. 5B). Based on the Physarum model, the optimal path was 
obtained within all pairs of network nodes, and CP was then calculated at each node43,45.

Physarum model for path finding.  The basic concept underlying the Physarum model is that long and narrow 
tubes tend to weaken, and short and wide tubes strengthen with the positive feedback of flux in tubes during the 
competition process in the effort expended to identify the optimal paths. This concept assumes that short and 
wide tubes are the most effective for fluid transmission of information.

In a Physarum tubular network, each tube segment is denoted as the edge eij, and its two ends are linked nodes 
i and j. If the flow along the tube is a Hagen−Poiseuille flow, the flux Q of each edge eij can be defined as

Q
D
L

p p( ),
(1)

ij
ij

ij
i j= −

where pi and pj are the pressures at node i and j, respectively. The length and width of the tubes are denoted as Lij 
and conductivity Dij, respectively. The flux indicates the information flow, and the length and conductivity of 
tubes indicate the edge in the brain network. The lengths of the tubes are only calculated at the first instance, but 
the conductivity can be updated according to the information of flux Qij. When the characteristic magnitude of 
the flux from the starting node to the ending node is denoted as I0, and the characteristic length and conductivity 
of the tubes are respectively denoted as L  and D , the characteristic pressure p  can be given by =p I L D/0 . 
Accordingly, the maintenance of flux through each node can be modeled as,

∑ − =
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where s and t are starting and ending nodes, respectively. Thus, the total flux in the brain from the starting to the 
ending nodes is a fixed constant I0 during the path-finding process. Therefore, the pressure of each node and flux 
are calculated using Eqs (1 and 2), respectively. The flux can be updated according to the calculated pressure at 
all the nodes.

The conductivities of the tubes are strengthened by large fluxes based on the positive feedback in the Physarum 
model, or are weakened by small fluxes when the lengths of the tubes are maintained fixed. The conductivity Dij 
is thus changed over time and is expressed as,

( )d
dt

D f Q D , (3)ij ij ijγ= −

Figure 5.  Flowchart of measurement of Physarum centrality. The process for Physarum centrality (CP) 
measurement was assessed in two steps. In step 1, the optimal path using the Physarum model was iteratively 
calculated within all pairs of network nodes, respectively. In step 2, CP was extracted in each node or edge based 
on the optimal path within all pairs of network nodes.
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where γ is a decay rate of the tube and f(Q) is usually a simply increasing function with f(0) = 043. The tubes with-
out flux are removed, and the pressure at each node is updated during iterations. This process is repeated until 
the optimal path is found, thus indicating that as the brain information flow through the path between two nodes 
increases, the importance of that route increases. Finally, unused paths are removed in the Physarum model. 
There is a negative correlation between the length of the path and the amount of flux through the path.

Centrality measure.  The criticality (c) of each edge eij is defined as,

∑= = …
−c Q k n n1 2 3 1
2

, , , , , ( ) ,
(4)ij

k
ij
k

where Qij
k is the kth final flux through edge eij, and k are the different path indices between all different pairs of 

nodes, and cij indicates the sum of the flux through the edge eij between all pairs of nodes i and j. Correspondingly, 
CP,nodeof node i is defined as,

∑=C i c( ) ,
(5)

P node
j

ij,

where cij is the criticality (c) of each edge eij. In addition, CP,node is defined as the sum of the criticality of each 
edge eij attached to i. CP,edge was also calculated by the sum of flux (c) that passed through a given edge from the 
Physarum model.

Other centrality measures.  In this study, the values of CD,node and CB,node were compared with CP,node. 
Equivalently, the value of CD,node

28 of node i is defined as,

C i M( ) ,
(6)

D node
j

ij, ∑=

where the CD,node of node i is given by the column sum of the connectivity matrix M. In addition, CD,node(i) cap-
tures the number of all edges connected to node i, and CB,node

3,8 of node i is defined as,

∑
ρ

ρ
=

≠ ≠
C i

i
( )
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,

(7)
B node

j i k

jk

jk
,

where ρjk is the number of the shortest paths from node j to k, and ρjk(i) is the number of the shortest paths 
between nodes j and k that pass through node i. Accordingly, CB,node(i) captures the influence of a node on the 
information flow between other nodes in the network. A node with a high degree of CB,node indicates increased 
interconnectivity with other regions in the network. Thus, the value of CB,edge was calculated as the number of 
the shortest paths that passes through a given edge instead of a node33. These measures were calculated using the 
Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.net).

Statistical analyses.  The Jaccard index (J) values of each set of network hubs or bridges from different 
centrality measures Were calculated to show how they overlapped quantitatively79. J was defined as the ratio of 
the number of overlapping network hubs or bridges to the total number of these hubs (or bridges) based on any 
two centrality measures,

∩
∪

∩
∩

= =
+ −

J A B
A B
A B

A B
A B A B

( , ) ,
(8)

where A and B are the sets of the hubs or bridges from each centrality measure, ∩A B  is the number of overlap-
ping hubs or bridges, and ∪A B  is the total number of A and B hub or bridge sets. The value of J varies from zero 
(no overlap) to one (perfect overlap). Linear regression analyses was performed at all 78 network nodes to assess 
the relationship of three different pairs (CD,nodevs. CB,node, CP,nodevs. CD,node, and CP,node vs. CB,node) in a continuous 
manner.

The Z-transform was applied on the centrality measures to ensure a fair comparison, and an ANOVA test 
was then performed to determine significant differences among centrality measures (CD,node, CB,node, and CP,node) 
from the different concepts. All 78 network nodes were analyzed separately, and P values such that P < 0.05 were 
considered statistically significant with Bonferroni post-hoc correction. Intersubject variability, which assesses 
whether centrality measures could be reliably reproduced across all subjects, was quantified based on the coeffi-
cient of variation (CV),

σ
µ

= = …CV X
X

n N1 2 3( )
( )

, , , , , ,
(9)

n

n

where Xn is the normalized centrality value of a network node at the nth subject, N is the total number of data-
sets, and σ and μ denote the standard deviation and mean, respectively. Equivalently, CV quantifies the central 
tendency and variability of the samples. Therefore, a lower CV indicates lower intersubject variability and higher 
consistency across subjects in the group.
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