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In this paper, we show that the nonlinear growth
rate of particles in a supersaturated solution or
supercooled melt, as well as the rate of removal of
crystals from the metastable liquid of a crystallizer,
significantly change the size-distribution function
of crystals. Taking these rates into account, we
present a complete analytical solution of the integro-
differential model describing the transient nucleation
of solid particles and their evolution in a metastable
liquid. The distribution function and metastability
degree (supersaturation or supercooling) are found
by means of the separation of variables and saddle-
point methods. The nonlinear growth rates of crystals
in supersaturated solutions and supercooled melts
(single-component and binary) are summarized and
compared with experimental data.

This article is part of the theme issue
‘Heterogeneous materials: metastable and non-
ergodic internal structures’.

1. Introduction
In actual practice, the nucleation and evolution of a
polydisperse ensemble of crystals are complicated by
their removal from a metastable liquid as well as by the
presence of mass sources or heat sinks [1–4]. In addition,
the growth rate of crystals in supersaturated solutions
and supercooled melts is a nonlinear function of the
supersaturation (supercooling) of the metastable liquid
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Figure 1. Growth rate Rg of potassium sulfate crystals in a fluidized bed crystallizer (symbols designate the experimental data
[6] and the solid curve is plotted in accordance with expression (1.2)). Hereχ3 = 0.049 h−1[�]−1, κ = 0.082 g/(h cm2[�])
and [�] denotes the dimension of supersaturation shown on the horizontal axis.

[5–11]. Namely, experimental works [5–8] demonstrate that the growth rate V of crystals is close
to parabolic with increasing the supersaturation �. In other words, the frequently used linear
approximation V(τ ) = β∗�(τ ) does not well describe the real experiments (here β∗ and τ represent
the kinetic coefficient and time). The analytical theory recently developed for supercooled single-
component and binary melts [9,10] as well as for supersaturated solutions [11] shows that the
crystal growth rate represents the following nonlinear function of metastability degree � and
time τ

V (τ ) = β∗�(τ )

⎧⎪⎪⎨
⎪⎪⎩

(1 − χ1τ�(τ )) , supercooled single-component melts [9]

(1 − χ2τ�(τ )) , supercooled binary melts [10]

(1 − χ3τ�(τ )) , supersaturated solutions [11]
(1.1)

and

χ1 = β2∗ρsL
λl

, χ2 = β2∗ρsL
λl

(
1 + m(1 − k)C0λl

DρsL

)
, χ3 = β2∗ (k − 1)Cp

D
,

where λl is the thermal conductivity, ρs is the density of the solid phase, L is the latent heat
of phase transition, m is the liquidus slope, k is the equilibrium partition coefficient, C0 is the
solute concentration far from the growing crystal, D is the diffusion coefficient, and Cp is the
concentration at saturation. To find the rate Rg (g/h cm2) of the increase in the mass of growing
crystals per unit time per unit area, let us write out the mass of crystals as M = ρsNυ, where N is
the total number of crystals and υ is the volume of a single particle. Next considering the case of
spherical crystals υ = 4πr3/3 one can find the mass growth rate as dM/dτ = 4πρsNr2V(τ ), where
V(τ ) is given by expressions (1.1). Now introducing Rg = (4πr2N)−1 dM/dτ = ρsV(τ ), we come to

Rg = κ� (1 − χ3τ�) , κ = ρsβ∗, (1.2)

where the third line of expression (1.1) is taken into account. As the growth rate (1.2) depends on
� and τ one can use a desupersaturation curve �(τ ) or its inverse function τ (�) to plot the growth
rate (1.2) as a function of a single variable V(τ ) or V(�). Using such a curve experimentally found
by Garside et al. [6] (see their fig. 5), we compare in figure 1 the nonlinear growth rates (1.1)
and (1.2) with experimental data on the nucleation and evolution of potassium sulfate in a
laboratory scale fluidized bed crystallizer.

Taking into account the aforesaid, we note that the evolution of a polydisperse ensemble
of particles in a metastable liquid should be described by means of an integro-differential
model of kinetic and balance equations, which includes the nonlinear growth rates of spherical
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crystals (1.1). In addition, this model is complicated by the presence of mass sources (heat sinks)
and the removal of product crystals in the case of the industrial crystallizer. With that in mind,
we develop a new theoretical approach for analytical description of the evolution of a particulate
assemblage in a supersaturated solution or a supercooled melt of the industrial crystallizer.

2. The model of nonlinear dynamics of crystals in a crystallizer
Consider the process of evolution of a polydisperse ensemble of particles in the metastable liquid
(supersaturated solution or supercooled melt) of a crystallizer. Owing to the mass flux QC(τ )
introduced from outside (or the heat flux Qθ (τ ) removed from the system) the supersaturation
(supercooling) necessary for crystal growth is maintained in the liquid. Taking into account the
withdrawal rate of product crystals from the metastable liquid of a crystallizer, let us write down
the kinetic equation for the particle-radius distribution function f (r, τ ) describing the evolution of
a polydisperse assemblage of particles

∂f
∂τ

+ V(τ )
∂f
∂r

+ h(r)f (r, τ ) = ∂

∂r

(
D(τ )

∂f
∂r

)
, r > r∗, τ > 0, (2.1)

where V(τ ) = dr/dτ is determined by expression (1.1), r is the radial coordinate, h(r) is the crystal
withdrawal rate (h represents the inverse of the mean residence time of particles of radius r in the
metastable liquid), r∗ is the radius of critical nuclei that are capable to appear in a supersaturated
or supercooled system, and D is the coefficient of mutual Brownian diffusion. For the sake of
simplicity, we consider the case of constant rate h and D(τ ) = d1V(τ ), where d1 stands for a
pertinent factor [4,12–14].

The mass (heat) balance equation for supersaturated (supercooled) liquids reads as

dC
dτ

= QC − 4πCp

∫∞

r∗
r2

(
V(τ )f (r, τ ) − D(τ )

∂f
∂r

)
dr, τ > 0

and ρmCm
dθ

dτ
= Qθ + 4πLV

∫∞

r∗
r2

(
V(τ )f (r, τ ) − D(τ )

∂f
∂r

)
dr, τ > 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

where C is the solute concentration of the supersaturated solution, θ is the temperature of the
supercooled melt, ρm and Cm are the density and specific heat of the mixture, respectively, and
LV = ρsL. Note that the first line of expression (2.2) corresponds to supersaturated solutions,
whereas the second line describes a phase transformation in supercooled melts.

The initial distribution function f0(r) as well as the initial metastability degree �0 = �C0 (�θ0)
should be known, i.e.

f (r, 0) = f0(r), �0 =
{

�C0, supersaturated solutions

�θ0, supercooled melts.
(2.3)

The flux of crystals overcoming the critical nucleation barrier and the distribution function of
withdrawn crystals determine the boundary conditions

V(τ )f (r∗, τ ) − D(τ )
∂f
∂r

= I(�), r = r∗; f (rp, τ ) = 0, r = rp, (2.4)

where I is the rate of nucleation, rp is the radius of withdrawn crystals (product crystals),
and � designates the current metastability degree � = �C = C − Cp or � = �θ = θp − θ in
cases of supersaturated or supercooled liquids. Here C and θ stand for the current values of
solute concentration and temperature, and θp represents the phase transition temperature of a
supercooled melt.

Our further analysis is devoted to the study of the influence of the nonlinear contribution to
the growth rate of individual crystals (which is proportional to τ�(τ ) in (1.1)) on the evolution of
a polydisperse ensemble of particles in a metastable liquid of a crystallizer.
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3. Analytical solution
For the convenience of further analysis, the mathematical model (2.1)–(2.4) can be rewritten in
dimensionless form as (parameter χ plays the role of χ1, χ2 or χ3 introduced in expression (1.1))

∂F
∂t

+ w (1 − χτ0�C0wt)
∂F
∂x

+ γ F

= u0w (1 − χτ0�C0wt)
∂2F
∂x2 , t > 0, 0 < x < x0, (3.1)

dw
dt

= Q(t) − b1w(1 − χτ0�C0wt)
∫ x0

0
(x + s∗)2

(
F − u0

∂F
∂x

)
dx, t > 0 (3.2)

and w = 1, F = F0(x), t = 0, F = u0
∂F
∂x

= J(w),

x = 0; F = 0, x = x0, (3.3)

where J = w−1(1 − χτ0�C0wt)−1 exp(pφ(w)) (p and φ(w) are given in §2 in [15] for supersaturated
solutions and supercooled melts for the Meirs and Weber–Volmer–Frenkel–Zeldovich kinetics),
x and t represent the dimensionless coordinate and time, respectively, F(x, t) and w(t) are the
dimensionless distribution function and supersaturation (supercooling), respectively, x0 is the
reduced radius of withdrawn crystals, Q is the dimensionless mass (heat) flux, and all the rest
parameters are introduced in [15] (in the case of supercooled liquids the initial supersaturation
�C0 should be replaced by the initial supercooling �θ0).

To use the method of separation of variables to solve equation (3.1), we make the boundary
conditions for the distribution function homogeneous by means of the following substitution:

F1(x, t) = F(x, t) − J(w(t))(x0 − x)
x0 + u0

. (3.4)

After that, the problem (3.1), (3.3) takes the form

∂F1

∂t
+ w(1 − χτ0�C0wt)

∂F1

∂x
+ γ F1 − u0w(1 − χτ0�C0wt)

∂2F1

∂x2 = ν(x, t), (3.5)

F1 = F0(x) − x0 − x
x0 + u0

, t = 0; F1 − u0
∂F1

∂x
= 0, x = 0; F1 = 0, x = x0 (3.6)

and ν(x, t) = J(w(t))
x0 + u0

[w(t)(1 − χτ0�C0wt) − γ (x0 − x)] − x0 − x
x0 + u0

dJ
dt

. (3.7)

Now representing the reduced distribution function F1(x, t) as a product of two functions
solely dependent on x and t, F1(x, t) = X(x)T(t), and taking into account that X(0) − u0X′(0) = 0
and X(x0) = 0, we obtain the eigenvalues nk and eigenfunctions Xk(x) in the form

Xk(x) = exp
(

x
2u0

)
[2nku0 cos (nkx) + sin (nkx)] ,

2nku0 cos (nkx0) + sin (nkx0) = 0, k = 0, 1, 2 · · ·

⎫⎪⎬
⎪⎭ (3.8)

Expanding functions ν(x, t) and F1(x, 0) in series in the eigenfunctions Xk(x)

ν(x, t) =
∞∑

k=0

νk(t)Xk(x), F1(x, 0) =
∞∑

k=0

F0kXk(x),

and substituting (3.8) into (3.5), we get

F1(x, t) =
∞∑

k=0

[
F0k +

∫ t

0
νk(t1) exp(ξk(t1)) dt1

]
exp(−ξk(t))Xk(x), (3.9)
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where νk(t) and F0k are determined by expressions (3.9) and (3.10) in [15], and

ξk(t) = Sk(t)
4u0

, Sk = (1 + 4u2
0n2

k)
∫ t

0
w(t1)(1 − χτ0�C0wt) dt1 + 4u0γ t. (3.10)

Now taking into account that the derivative S′(t) > 0 (S(t) reaches a maximum at the upper limit of
integration), we estimate the integral contribution in (3.9) on the basis of the saddle-point method
for a Laplace-type integral as [16] (u0 � 1)

∫ t

0
νk(t1) exp

(
Sk(t1)
4u0

)
dt1 ≈ 4u0νk(t) exp [Sk(t)/(4u0)]

S′
k(t)

. (3.11)

Combining (3.9) and (3.11), we have

F1 ≈
∞∑

k=0

Xk(x)

[
F0k exp (−ξk(t)) + 4u0νk(t)(

1 + 4u2
0n2

k

)
U′(t)(1 − χτ0�C0wt) + 4u0γ

]
, (3.12)

where we introduced a new unknown function

U(t) =
∫ t

0
w(t1) dt1. (3.13)

Now substituting (3.12) into the mass (heat) balance equation (3.2) and keeping in mind
expression (3.4), we arrive at the following Cauchy problem for the determination of the integral
function U(t)

U′′ = M0
(
U′, U, t

)
,

f̃ ′(t) = U′(1 − χτ0�C0U′(t)t)

and U = 0, U′ = 1, f̃ = 0, t = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)

Here the following notations are introduced

M0
(
U′, U, t

) = {
Q(t) + b1(U′)pΨ − b1U′(1 − χτ0�C0U′t)S2 − b1U′(1 − χτ0�C0U′t)4u0S3

+ δ1(U′)p} [
1 − b1U′(1 − χτ0�C0U′t)4u0S1

]−1 ,

Ψ = (x0 + s∗)4 − 4s3∗(x0 + s∗) + 3s4∗
12(x0 + u0)

, δ1 = b1u0
[
s3∗ − (x0 + s∗)3]
3(x0 + u0)

,

S1 = (p − 1)(U′)p−2(1 − χτ0�C0U′t) + (U′)p−1χτ0�C0t
(1 − χτ0�C0U′t)2

∞∑
k=0

νk4
(Zk − u0Yk)

Φk (U′)
,

S2 =
∞∑

k=0

F0k exp (−ξk(t)) (Zk − u0Yk) , ξk(t) = γ t +
(
1 + 4u2

0n2
k

)
f̃ (t)

4u0
,

S3 =
∞∑

k=0

[
(U′)pνk1 − (U′)p−1

1 − χτ0�C0U′t
νk2 − (U′)p

(1 − χτ0�C0U′t)2 νk3

]
Zk − u0Yk

Φk (U′)
,

Zk =
∫ x0

0
(x + s∗)2 Xk(x) dx, Yk =

∫ x0

0
(x + s∗)2 dXk(x)

dx
dx,
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Φk
(
U′) =

(
1 + 4u2

0n2
k

)
U′(1 − χτ0�C0U′t) + 4u0γ ,

νk1 = 1
Ik(x0 + u0)

∫ x0

0
Xk(x) exp

(−x
u0

)
dx,

νk2 = γ

Ik(x0 + u0)

∫ x0

0
(x0 − x)Xk(x) exp

(−x
u0

)
dx,

νk3 = 1
Ik(x0 + u0)

∫ x0

0
(x0 − x)χτ0�C0Xk(x) exp

(−x
u0

)
dx,

νk4 = 1
Ik(x0 + u0)

∫ x0

0
(x0 − x)Xk(x) exp

(−x
u0

)
dx.

Let us especially note that the solution of the Cauchy problem (3.14) determines the integral
function U(t). Then the metastability degree w(t) can be easily found as a derivative of this
function, i.e. w(t) = U′(t). It means that the dimensionless particle size distribution function F(x, t)
is also known by means of expressions (3.4) and (3.12) and takes the form

F(x, t) = J(w(t))(x0 − x)
x0 + u0

+
∞∑

k=0

Xk(x)

[
F0k exp(−ξk(t)) + 4u0νk(t)(

1 + 4u2
0n2

k

)
U′(t)(1 − χτ0�C0wt) + 4u0γ

]
.

(3.15)

4. Summary and conclusion
Figures 2–4 illustrate the particle-size distribution function plotted in accordance with the
analytical solution (3.15) (physical parameters of the system under consideration are given in
[15], Q(t) = A(1 − sin(ωt)/2), A = 0.005, and ω = π/15). The first important conclusion is the fact
that the size distribution of crystals strongly depends on the parameter χ (compare curves at
different χ in figures 2 and 3a,b). It is easily seen that the nonlinear growth rate of particles
in a metastable liquid of crystallizer (expressions (1.1)) substantially changes the particle-size
distribution. Our calculations show that the relative error may exceed tens of per cent in the course
of time for real metastable liquids. As this takes place, the greatest difference of nonlinear growth
law occurs for sufficiently small particles at a fixed time (figures 2a and 3a) and at essentially
large times for particles of a given size (figures 2b and 3b). From the physical point of view, the
nonlinear growth law (1.1) with non-zero χ means that the growth rates of evolving crystals
become lower as compared with the case χ = 0. In other words, we have more crystals in the
supercooled (supersaturated) liquid of a crystallizer, which grow longer until they are removed
from the system (until they reach a given size x0).

The second important conclusion is the influence of the crystal withdrawal rate h (which is
proportional to the parameter γ ) on the distribution of growing crystals. Indeed, with an increase
in the rate of removal of crystals (γ increases), the number of large particles decreases and the
number of small particles increases. Note that this effect takes place in both cases of linear and
nonlinear growth rates (figure 4a,b). In other words, with the evolution of a metastable system
with the same supercooling (supersaturation), when the number of larger crystals decreases, the
number of smaller crystals increases and vice versa. Therefore, the distribution functions shown in
figure 4 at various γ have a point of intersection. In addition, the three-dimensional dependencies
F of x and t plotted in figure 5 show that the surface of the distribution function is inverted with
an increase in the rate of removal of crystals (with increasing γ and h). In this case, the mean
residence time of crystals in the metastable liquid of a crystallizer decreases and the surface of the
distribution function bends in the direction of smaller times.

In summary, the particle-size distribution function strongly depends on two principal effects
influencing the evolution of particulate assemblages in metastable liquids: (i) the nonlinear
growth laws of crystals (expressions (1.1)) and (ii) the crystal withdrawal rate from a crystallizer.
The theory under consideration, which takes into account these important physical effects
should be used for a more precise description of similar phase transition phenomena when the
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Figure 3. Dimensionless distribution function versus dimensionless coordinate x ((a) t = 100) and time t ((b) x = 0.01) for
γ = 7.11.
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Figure 5. Dimensionless distribution function versus dimensionless coordinate x and time t forχ = 10−6 andγ = 0.711 (a),
γ = 7.11 (b), γ = 71.1 (c) and γ = 711 (d).

evolution of crystals or other aggregates plays a decisive role. Such processes and phenomena
as polymerization and crystallization in continuous apparatuses [17], evolution of protein and
insulin crystals [18–20], evolution of aggregates in colloids and magnetic fluids [21–23], crystal
growth in mushy layers [24–26], dissolution of dispersed solids, evaporation of a polydisperse
mist, combustion of a solid dispersed fuel [27–29] may be mentioned among others.
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