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It has become clear that in addition to the DNA sequence there is another layer

of information, termed epigenetic modifications, that can influence phenotypes

and traits. In particular, environmental epigenomics, which addresses the effect

of the environment on the epigenome and human health, is becoming an area

of great interest for many researchers working in different scientific fields.

In this review, we will consider the current evidence that early-life environ-

mental signals can have long-term effects on the epigenome. We will further

evaluate how recent technological advances may enable us to unravel the mol-

ecular mechanisms underlying these phenomena, which will be crucial for

understanding heritability in health and disease.

This article is part of the theme issue ‘Developing differences: early-life

effects and evolutionary medicine’.
1. Introduction
The term epigenetics was originally introduced by Conrad Waddington in the

early 1940s. The prefix epi- (in Greek—over, on) implies that something is ‘on

top of’ genetics. He defined the task of epigenetics as being to ‘discover the

processes involved in the mechanism by which the genes of the genotype bring

about phenotypic effects’ [1]. What Waddington wanted to understand is how

the human body, which consists of nearly 400 different cell types, could develop

from a single fertilized egg. During development, the cells of our body acquire

different phenotypes, which we now know is the result of differences in their

gene expression patterns. Epigenetic state can influence the accessibility of DNA

to transcription factors and members of the transcriptional machinery, thereby

influencing gene expression patterns. The state of the epigenome is determined

by epigenetic marks, which can be placed directly on the DNA or on its associated

histone proteins. The existence of DNA methylation was discovered almost simul-

taneously with the identification of DNA [2], while the first histone modifications

were discovered some 20 years later [3]. At that time, however, the importance of

these chemical modifications on and near the DNA was not understood. The first

evidence that epigenetic marks play a role in regulating gene expression was

discovered in the late 1970s and early 1980s. Experiments performed at that

time showed that cells that differently expressed certain genes had different

DNA methylation patterns [4]. In addition, it was found that 5-azacytidine, a

DNA methyltransferase inhibitor, could induce gene expression changes [5],

and in vitro studies reported the first observations that nucleosome positioning

at the promoter can block transcription [6]. In the 1990s, it became evident that

histone tails are important for gene activation [7].
2. Epigenetic modifications
Today, DNA methylation and histone modifications are known as the two main

mechanisms of epigenetic regulation. In addition, RNA molecules are now being

recognized as an additional layer in the regulation of gene expression.
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DNA methylation involves the addition of a methyl group to

the fifth carbon in the cytosine pyrimidine ring. In mammals,

DNA methylation largely occurs on CpG nucleotides and it is

thought that up to 80% of the mammalian CpGs are methylated,

with the main exception being CpG islands [8]. Historically, DNA

methylation has been associated with transcriptional repression

and high levels can be found in the heterochromatic regions of

our genome and at repetitive elements [9]. More recently, DNA

methylation over gene bodies has been linked to active gene tran-

scription in the mouse and human genomes [10]. The DNA

methyltransferases Dnmt3a and Dnmt3b are responsible for the

establishment of DNA methylation patterns, whereas Dnmt1 is

referred to as the maintenance DNA methyltransferase [11].

Together with partner proteins such as Pcna and Uhrf1, Dnmt1

can act on hemi-methylated DNA, thereby enabling the faithful

inheritance of DNA methylation patterns after each cell cycle

[9,12]. DNA methylation can also be removed, which is particu-

larly important during epigenetic reprograming (discussed

briefly below). Removal of DNA methylation can be either pas-

sive or active. Passive DNA demethylation occurs during the

process of DNA replication, when Dnmt1 is not present, and

leads to a cell-cycle-dependent dilution of DNA methylation

[13,14]. The ten–eleven translocation (TET) family of proteins is

responsible for mediating active DNA demethylation. The TET

family has three members, TET1, TET2 and TET3, which can

catalyse conversion of 5-methylcytosine (5mC) to 5-hydroxy-

methylcytosine (5hmC), 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) through their oxidizing activity [15,16].

The oxidized groups (5fc and 5caC) are excised and replaced by

unmodified cytosine via either thymine-DNA-glycosylase

(TDG) catalysed base excision or DNA base excision repair

(BER) [15,17–21]. Therefore, this process is defined as active

DNA demethylation that is independent of DNA replication.

Post-translational modifications that can primarily be

found at the amino-terminal ends, the tails, of histone proteins

are called histone modifications. They have been associated

with both transcriptional activation and repression and are estab-

lished, recognized and erased bya diverse group of proteins often

referred to as ‘writers’, ‘readers’ and ‘erasers’. Histone modifi-

cations can be found throughout the mammalian genome, but

particular marks have been associated with particular genomic

elements and genomic contexts [22]. For instance, the lysine

methylation marks H3K4me2/3 are usually found around the

transcription start sites of actively transcribed genes [23], while

H3K4me1 together with H3K27ac marks active enhancers

[24–26]. H3K9me2/3 and H3K27me3 are referred to as repressive

histone marks and can be found at repetitive elements and

around transcriptionally silent genes, respectively [27].

While originally not considered to be part of the epi-

genetic machinery, RNA molecules, which can be located

inside and outside the nucleus, are increasingly being recog-

nized as major players in epigenetic processes. In particular,

the discovery of a set of small RNA populations in mammalian

sperm, including microRNAs (miRNAs) and tRNA-derived

small RNAs (tsRNAs), has sparked great interest in their

potential function as mediators of environmentally induced

phenotypes across generations [28].
3. Epigenetic reprogramming
Epigenetic regulation can influence gene expression patterns

throughout the life of an organism, but is particularly
important during the earliest stages of embryonic develop-

ment when mammals undergo two rounds of epigenetic

reprogramming. Epigenetic reprogramming, which refers to

the genome-wide erasure of epigenetic marks, occurs in the

developing primordial germ cells (PGCs) during early to

mid-gestation in utero, and in the embryo early in development.

During PGC reprogramming, global erasure of DNA methyl-

ation and histone modifications takes place [29,30]. In

females, this process continues even after birth in the growing

oocytes of juvenile mice [31,32]. The second wave of repro-

gramming takes place during pre-implantation development

and involves the clearing of the epigenetic marks that defined

the gene expression patterns of the mature parental gametes,

i.e. the sperm or the oocyte [33,34]. This enables the zygote to

return to a state of totipotency, and allows the cells of the

early embryo to differentiate into any of the different cell

types in our body. Until recently, it was thought that because

of the two phases of reprogramming, there is little chance for

the inheritance of epigenetic marks [35]. However, there are

now reports that, in both rodents and humans, reprogramming

is not always complete [36–38]. For example, retrotransposons

that belong to the LINE/LTR family, and also imprinted

regions, were found to be protected from the global demethyl-

ation during PGC reprogramming in the mouse [38]. Similar

results have been reported for humans, where it has become

evident that evolutionarily young repetitive elements but

also some single-copy genes can escape from reprogramming

during early human [37] and PGC development [36].
4. Environmental epigenetics
Many lines of evidence indicate that early-life events are of

critical importance to adult health. In addition, it is now

widely accepted that a balanced lifestyle can help to prevent

or treat certain diseases. Although genetic variation is the

main contributor to an individual’s phenotypic response to

environmental factors, particularly for common diseases, it

has remained difficult to identify the underlying DNA-

sequence differences. Given its vital role in regulating gene

expression patterns, epigenetics could be an important

contributor. Indeed, it has become clear that environmental

challenges such as nutrients, stress, maternal behaviour,

immune challenges or chemicals can alter epigenetic marks,

and researchers from many different disciplines including epi-

demiology, behavioural sciences and molecular biology have

been investigating the relationships between early-life events

and the epigenome.

The effects of environmental influences on an organism’s

phenotype can be more profound if they occur during certain

periods of life. These stages of increased susceptibility appear

to overlap with the critical time windows of epigenetic repro-

gramming. For example, environmental insults experienced

by the mother during pregnancy could potentially influence

offspring phenotype, either directly through exposure while

in the mother’s womb or indirectly through inheritance of an

altered (epi)genetic state [39]. A large number of studies have

focused on investigating maternal/gestational effects, sum-

marized in a recent review [40]. Similarly, the father’s

phenotype or lifestyle can influence offspring phenotype.

This can be mediated through sperm or seminal fluid during

mating [41]. A number of studies have been exploring paternal

effects and they have recently been reviewed in [28].
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5. Nutrition and the epigenome
In determining the effects of the environment on the epigen-

ome during early development, scientists took advantage of

the existence of alleles that display the unusual characteristic

of variable expressivity in the absence of genetic heterogen-

eity and are termed metastable epialleles (MEs) [42]. In the

mouse, one of the most carefully studied MEs is agouti
viable yellow (Avy). The expression of the agouti locus depends

on the methylation of the 30 end of the intracisternal A-par-

ticle (IAP) retrotransposon, which inserted upstream of the

agouti gene [43,44]. Using Avy as an epigenetically sensitive

reporter, different studies showed that nutritional compo-

sition [45–50] and exposure to certain chemicals [51] during

gestation can affect the epigenome of the developing

embryo, and result in abnormal phenotypes. For example,

one study showed that consumption of ethanol by the dam

during pregnancy increases the chances of hypermethylation

of the Avy locus in her offspring, suggesting that alcohol con-

sumption can influence epigenetic state [51]. Furthermore,

the offspring of alcohol-treated dams showed develop-

mental abnormalities such as microcephaly and midfacial

dimorphisms, a phenotype that is also observed in children

diagnosed with fetal alcohol spectrum disorder.

The concept of MEs has also been investigated by

researchers studying whether distinct seasonal changes in

food availability around the time of conception and during

early pregnancy can be linked to epigenetic and phenotypic

differences in a rural Gambian population. In the initial

study, genomic regions showing variable DNA methylation

between individuals that were independent of genetic differ-

ences and showed little variation between tissues were

identified. The authors termed them ‘human metastable

epialleles’ [52]. Studies on the Gambian population have

since focused on identifying links between DNA methylation

differences and season of conception. Indeed, the wet season

could be associated with higher DNA methylation levels at

six tested MEs when compared with the dry season [53]. In

addition, the imprinted non-coding VTRNA2-1 was ident-

ified as a human ME, and found to be hypermethylated in

offspring conceived during the wet season [54].

Another well-known example of how nutritional influ-

ences during embryonic development may impact adult life

is the Dutch Hunger Winter of 1944–1945, a six-month

famine at the end of World War II that particularly affected

the western part of The Netherlands. The offspring of females

who were pregnant during the Dutch famine have been

shown to have altered birthweight and increased neonatal

adiposity [55,56]. One of the explanations for these obser-

vations could be epigenetics. Indeed, it was found that the

imprinted IGF2 gene was hypomethylated in the blood of

individuals born from mothers undernourished during

pregnancy when compared with controls [57,58].
6. Stress and the epigenome
In mammals, traumatic stress experienced in early or adult life

can influence social, emotional and cognitive behaviours and

may influence disease risk [59]. For example, rats that are nur-

tured by stressed mothers are likely to be stressed [60]. This has

been shown to involve the hypothalamic–pituitary–adrenal

HPA axis, and DNA methylation changes at the glucocorticoid

receptor gene, a critical component of the stress response, in the
hippocampi of these rats have been reported [61]. Furthermore,

brain-derived neurotrophic factor (BDNF), a gene involved in

neural plasticity, has been linked to traumatic stress. A study

performed in outbred mice showed that when pregnant

mothers were exposed to stress during pregnancy, their off-

spring had decreased BDNF expression. This correlated with

increased DNA methylation levels at the promoter of this

gene. In addition, depression-like and anxiety-like phenotypes

were observed [62]. On the other hand, exposure to a stimulat-

ing social environment during the early postnatal phase had an

influence on the expression of BDNF in the brain of adult mice

and this transcriptional change was accompanied by increased

histone acetylation levels [63].

Collectively, the aforementioned studies provide solid

support that environmental influences can shape an organ-

ism’s phenotype and that epigenetics plays a crucial role in

these processes. The challenge now is to delineate the mol-

ecular pathways affected by early-life experiences and their

causal contribution to phenotypic outcome. Considering the

wide range of epigenetic modifications and the fact that

cross-talk occurs between DNA methylation, histone modifi-

cations and RNA molecules to regulate gene expression

patterns, this is not a trivial task.
7. Towards a better molecular understanding
Over the past decade, major advances in next-generation

sequencing technologies, including single-cell approaches,

have greatly contributed to our understanding of the molecu-

lar processes important for epigenetic reprogramming in

the mouse and human. In 2009, the use of single-cell RNA-

sequencing was reported for the first time [64]. Soon thereafter,

many laboratories developed additional methods to measure

the distribution of DNA methylation [65–67], histone modifi-

cations [68], chromatin accessibility [69–71] and chromosome

conformation [72,73] in single cells. Furthermore, technologies

that can co-capture different layers of gene regulatory infor-

mation in one cell through the combination of genome

sequencing, transcriptome analysis, nucleosome occupancy

and epigenome studies have been developed [74–82]. This

has enabled the identification of previously unknown cell

types, a detailed description of gene expression patterns and

epigenetic states, and the prediction of developmental trajec-

tories [83,84]. For example, DNA methylation, transcriptome

and chromatin accessibility data have become available for

human pre-implantation embryos until the blastocyst stage

(zygote, 2-cell stage, 4-cell stage, 8-cell stage, morula) and

also for sperm and oocytes [85–88]. One study reported that

DNA demethylation is a much more dynamic process than

was previously thought, with three waves of demethylation

occurring in human pre-implantation embryos [85]. Another

study investigated chromatin accessibility and revealed that

during the earliest cell divisions, until the 4-cell stage, the

paternal genome is in a more open state when compared

with the maternal genome [88], and this correlates with

global DNA methylation levels [85,88]. Single-cell studies

focusing on epigenetic regulation in human PGCs revealed

similarities but also differences between mouse and human

germline development [36,89,90]. Overall, it was found that

the mechanism of global erasure of DNA methylation is

remarkably conserved between the two species. Some differ-

ences were observed in the deposition of the repressive
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histone modification H3K27me3. In the mouse, this mark is

found persistently enriched during PGC reprogramming [91],

whereas in human PGCs, a global loss was reported. In all

these studies, regions rich in repetitive elements were found

to be more resistant to the reprogramming events, and repeti-

tive elements are emerging as good mechanistic candidates

underlying environmentally induced phenotypes. Of note,

the repetitive compartment of the genome is often excluded

from standard bioinformatics analyses, and therefore, further

investigations or even re-analysis of published datasets are

needed to determine whether repeats indeed play a central

role in these processes.
 tb
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8. Conclusion
Numerous studies have demonstrated that environmental

challenges experienced early in life can influence an individ-

ual’s phenotype, and much has been learned about the

underlying molecular processes. In particular, monozygotic

twins, which are essentially genetically identical, are an

ideal human model system and have provided valuable

insight into the genetic versus environmental contribution

to human (disease) phenotype [92]. However, many studies

in this area are complicated by the genetically heterogeneous

nature of the human population and establishing causative

links between environmental conditions, epigenetic state

and phenotypic outcome has remained difficult in many

cases [35,93–95]. For human cohort studies, the careful
analysis of samples taken immediately before and after

exposure, or the involvement of (grand)parental generations

may not always be an option. Furthermore, it is known that

epigenetic marks differ from tissue to tissue and indeed, we

still know very little about the locus-specific regulation of epi-

genetic marks. Drawing conclusions based on blood,

fibroblasts or saliva about other tissues can therefore be chal-

lenging. In addition, cell type heterogeneity in tissues can

present an obstacle when interpreting results from bulk

sequencing data [96,97]. Studies in rodents have mainly

faced criticism because of varying experimental design,

differences in data interpretation or the lack of causal evi-

dence for the transmission of ‘a mark’ across generations.

Importantly, these challenges are being recognized by the

scientific community, and guidelines on how to address

these issues in future studies have been published [96–99].

Well-controlled experiments using mammalian models and

large, carefully characterized human cohorts in epidemiologi-

cal studies will certainly shed some light on the contribution

of epigenetics to early-life effects.
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