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There is great interest in the role epigenetic variation induced by non-genetic

exposures may play in the context of health and disease. In particular, DNA

methylation has previously been shown to be highly dynamic during the

earliest stages of development and is influenced by in utero exposures

such as maternal smoking and medication. In this study we sought to ident-

ify the specific DNA methylation differences in blood associated with

prenatal and birth factors, including birth weight, gestational age and

maternal smoking. We quantified neonatal methylomic variation in 1263

infants using DNA isolated from a unique collection of archived blood

spots taken shortly after birth (mean ¼ 6.08 days; s.d. ¼ 3.24 days). An epi-

genome-wide association study (EWAS) of gestational age and birth weight

identified 4299 and 18 differentially methylated positions (DMPs) respect-

ively, at an experiment-wide significance threshold of p , 1 � 1027. Our

EWAS of maternal smoking during pregnancy identified 110 DMPs in neo-

natal blood, replicating previously reported genomic loci, including AHRR.

Finally, we tested the hypothesis that DNA methylation mediates the

relationship between maternal smoking and lower birth weight, finding

evidence that methylomic variation at three DMPs may link exposure to

outcome. These findings complement an expanding literature on the

epigenomic consequences of prenatal exposures and obstetric factors,
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confirming a link between the maternal environment and

gene regulation in neonates.

This article is part of the theme issue ‘Developing

differences: early-life effects and evolutionary medicine’.
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1. Introduction
Epigenetic mechanisms developmentally regulate gene

expression via modifications to DNA, histone proteins and

chromatin. Because epigenetic processes can be influenced by

exposure to a range of external environmental factors [1–4]

and also by genetic variation [5,6], there is great interest in

the role that epigenetic variation may play in the context of

health and disease [7]. As epigenetic marks are inherited mito-

tically in somatic cell lineages, they provide a mechanism by

which disruption early in life can be propagated through

development, producing long-term phenotypic variation.

DNA methylation is the best-characterized epigenetic modifi-

cation, stably influencing gene expression via the disruption

of transcription factor binding and recruitment of methyl-

binding proteins that initiate chromatin compaction and gene

silencing. Despite being often regarded as a mechanism of tran-

scriptional repression, DNA methylation is associated with

both increased and decreased gene expression [8], and also

influences other genomic functions, including alternative

splicing and promoter usage [9].

The availability of high-throughput profiling methods for

quantifying DNA methylation across the genome at single

base resolution in large numbers of samples has enabled

researchers to perform epigenome-wide association studies

(EWAS) aimed at identifying methylomic variation associated

with environmental exposures and disease [7]. Although these

studies are inherently more complex to design and interpret

than genetic association studies [10–12], recent analyses

have documented differences in DNA methylation in neonates

and children following exposure to a wide range of envi-

ronmental factors during gestation, including maternal

smoking, maternal diet and pollution [2,3,13]. There is also

interest in the role that DNA methylation may play as

mediator through which environmental exposures can

influence long-term health outcomes. For example, there is

evidence that the causal relationship between maternal smok-

ing during pregnancy and low birth weight is mediated

through differences in DNA methylation at specific loci

across the genome [14,15]. While noteworthy, these analyses

have been based on moderate samples sizes, have generally

not replicated the same loci, and may have overestimated

mediation effects because of invalid assumptions and

misclassification of the exposure [16].

Another active area of research concerns the utility of DNA

methylation as a biomarker for clinical monitoring and screen-

ing. The potential of a DNA methylation based predictor has

been most robustly demonstrated for age, with a number

of algorithms available, referred to as ‘epigenetic clocks’

[17–19]. There is particular interest in how measures of age

derived from DNA methylation data correlate with actual

chronological age, and also whether ‘accelerated’ epigenetic

age predicts ageing phenotypes such as mortality, cancer and

dementia [18,20,21]. There is also interest in whether other

exposures (or phenotypes) can be inferred from an epigenetic

profile. The development of an epigenetic biomarker using
neonatal blood samples might enable the evaluation of

in utero exposures, which are hard to measure objectively,

and could be a useful prospective predictor for future health

outcomes. To this end, a biomarker of maternal smoking

during pregnancy was recently developed using cord blood

samples that demonstrates high specificity (97%)—but only

moderate sensitivity (58%) [22]—demonstrating the potential

application of such approaches. Because DNA methylation is

known to be highly dynamic during the earliest stages of devel-

opment [23,24], insults during this period may have important

functional consequences or impact upon disease susceptibility

later in life. Of note, several psychiatric disorders are hy-

pothesized to have important neurodevelopmental origins

[25–27] and have been associated with a number of prenatal

and perinatal risk factors. For example, epidemiological studies

have reported a higher risk of autism in those born with a

low birth weight [28,29] or born pre-term [30]. Although

DNA methylation predictors for age [18] and smoking [31]

developed in childhood or adult samples have been shown

to work reasonably well, methods developed specifically

in either cord blood or neonatal samples have superior

performance at these ages [19].

In this study, we first sought to identify specific patterns

of DNA methylation in neonatal blood samples associated

with three obstetric and neonatal influences measured in

the same individuals: birth weight, gestational age and

exposure to maternal smoking. We subsequently used our

results to explore whether variable DNA methylation med-

iates the relationship between maternal smoking and low

birth weight. We attempted to address this issue by quantify-

ing methylomic variation in 1263 infants using DNA isolated

from archived blood spots taken shortly after birth (mean ¼

6.08 days; s.d. ¼ 3.24 days) originally profiled in a case–

control study of autism [32]. Although we cannot exclude

the role of DNA methylation changes occurring during

the first few days after birth, our study extends previous

research into the early-life epigenome that has used samples

collected either later in childhood or from cord blood

[13,24,33], which has the limitation that it may be contami-

nated by maternal blood [34,35]. Our findings complement

the expanding literature on the epigenomic consequences of

prenatal exposures and obstetric factors, confirming a link

between the maternal environment and markers of gene

regulation in neonates.
2. Methods
(a) Overview of the MINERvA cohort
A description of the MINERvA cohort was recently published

alongside extensive details of the profiling of DNA methylation

and data quality control steps [32]. Briefly, MINERvA contains

a subset of 1316 samples from the iPSYCH autism spectrum

disorder case–control sample [36]. All perinatal data used for

case–control sample matching, plus additional information on

birth weight and maternal smoking were obtained from the

Danish Medical Birth Register or the Central Person Register.

An overview of the demographic characteristics of the MINERvA

cohort is given in electronic supplementary material, table S1. Of

note, cases and controls were matched as closely as possible.

Although rates of maternal smoking were higher in autism

cases, there was no significant difference in birth weight between

autism cases and controls.
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(b) DNA methylation profiling in MINERvA
Neonatal dried blood spot samples collected on standard Guthrie

cards and stored within the Danish Neonatal Screening Biobank

[37] were retrieved as part of the iPSYCH study [36]. Neonatal

DNA extractions and DNA methylation quantification were per-

formed at the Statens Serum Institut (SSI, Copenhagen, Capital

Region, Denmark). Briefly, DNA was converted with sodium bisul-

fite using the EZ-96 DNA Methylation Kit (Zymo Research, CA,

USA) and DNA methylation was quantified across the genome

using the Infinium HumanMethylation450K array (‘450K array’)

(Illumina, CA, USA). After a stringent quality control process (out-

lined in [32]), 1263 samples (96.0%) were included for subsequent

analysis. Normalization of the DNA methylation data was per-

formed used the dasen() function in the wateRmelon package [38].

For each sample, we derived nine additional variables from the

DNA methylation data using established algorithms: DNA methyl-

ation age [18], gestational age [19], smoking [31] and six blood cell

composition variables [39,40]. Our previous publication on these

data demonstrated that the smoking score, despite being trained

in adults who smoked, correlated with reported maternal smoking

status from the registry data [32]. All quality control and statistical

analyses were performed using the R statistical environment

v. 3.2.1 [41].

(c) Epigenome-wide association analyses (EWAS)
We performed an EWAS of three obstetric/neonatal factors that

were robustly measured in our cohort. First, to identify DNA

methylation sites associated with birth weight (measured in

grams (g)) and gestational age (measured in weeks), a linear

model was fitted for each DNA methylation site with DNA

methylation as the dependent variable, both birth weight and

gestational age as independent variables, and a set of possible con-

founders as covariates: sex, experimental array number (i.e. chip),

days to sampling, maternal smoking (using the continuous vari-

able estimated from the DNA methylation data) and six derived

cell composition variables. Given the strong concordance between

the findings of our maternal smoking EWAS and those of previous

EWAS analyses of smoking (see Results), we used the derived

maternal smoking score to make up for missing data in the registry

data and maximize power for analyses. To compare results

between autism spectrum disorder (ASD) cases and controls, we

tested for a heterogeneous effect by including an interaction term

between (i) birth weight and case–control status, and (ii) gesta-

tional age and case–control status. In these interaction models,

ASD case–control status was also included as a main effect.

Second, to identify differentially methylated positions (DMPs)

associated with registry-reported maternal smoking exposure, a

linear model was fitted for each DNA methylation site with

DNA methylation as the dependent variable, and a binary indi-

cator variable for in utero exposure to smoking in addition to a

set of possible confounders as covariates: sex, birth weight,

gestational age, experimental array number (i.e. chip), and six

derived blood cell composition variables. Significant DMPs were

identified at an experiment-wide multiple testing adjusted

threshold of p , 1 � 1027. Clustering of significant DMPs into

loci was performed by taking each significant site in turn, starting

with the one with the smallest p value (referred to as the index

association), identifying all other significant sites within 5 kb

upstream and downstream and merging these into a single

locus. Any less significant (i.e. larger p value) DMPs merged

with an index site were then excluded from consideration as an

index association. This procedure was repeated until all significant

DMPs were either merged with a more significant association or

considered as an index site. Conditional analyses were performed

within loci with at least two DMPs by repeating the original associ-

ation analysis for the secondary signal (i.e. the less significant site),

including the most significant DNA methylation site in that loci as

an additional covariate.
(d) Replication dataset
The Accessible Resource for Integrated Epigenomic Studies (ARIES;

http://www.ariesepigenomics.org.uk) cohort consists of a sub-

sample of 1018 ALSPAC (http://www.bristol.ac.uk/alspac/)

child–mother pairs with Illumina 450K array DNA methylation

data generated from cord blood (n ¼ 914), and whole blood at

two time points during childhood (age 7 (n ¼ 973) and age 15 or

17 years (n ¼ 974)). The results used in this manuscript are taken

from the gestational age and birth weight EWAS performed by

Simpkin et al. [24] and presented in electronic supplementary

material, tables S1 and S3 published alongside this manuscript.
(e) Mediation analyses
Mediation analyses were performed using the criteria outlined

by Baron & Kenny [42] and the Sobel test [43]. We considered

DMPs associated with registry-reported maternal smoking with-

out controlling for birth weight in our dataset (n ¼ 143 DMPs)

and tested whether the following criteria were met for each site:

(i) smoking significantly correlated with DNA methylation

level ( p , 1 � 1027; sex, gestational age, batch and cell

composition included as covariates);

(ii) smoking significantly correlated with birth weight with-

out adjusting the model for DNA methylation (sex and

gestational age included as covariates);

(iii) DNA methylation significantly correlated with birth

weight ( p , 1 � 1027; sex, gestational age, batch and

cell composition included as covariates);

(iv) the association between smoking and birth weight

decreased upon addition of DNA methylation to the

model (i.e. p value got larger; sex, gestational age, batch

and cell composition included as covariates);

(v) the Sobel test gave p , 3.50� 1024 (corrected for 143 DMPs

considered, implemented through the R bda package

(https://cran.r-project.org/web/packages/bda/index.html).

DMPs meeting the criteria for mediation were taken forward for

a sensitivity analysis that accounted for misclassification of the

exposure following the method outlined in Valeri et al. [16] using

the SIMEX procedure [44]. Our naive outcome regression model

between birth weight and registry-reported maternal smoking

exposure and naive mediator regression model between DNA

methylation and birth weight included covariates for gestational

age, sex, cellular composition and experimental chip. The naive

direct effect is then the coefficient from the outcome regression

model for maternal smoking and the naive indirect effect is the

naive direct effect multiplied by the estimated coefficient for maternal

smoking from the mediator regression. Applying SIMEX to outcome

and mediator regressions, we obtained corrected estimates of the

regression parameters which were then used to calculate the direct

and indirect effects. We set the parameter for specificity to 1.0 as

we assume that all smokers are likely to have reported correctly,

whereas we assume that some non-smokers will have reported

incorrectly and therefore the sensitivity parameter was set to 0.6.

A bootstrap method was used to estimate the standard errors of

the estimated effects and their 95% confidence intervals (CIs).
3. Results
(a) Blood cell proportions derived from DNA

methylation data correlate with birth weight and
gestational age in neonatal blood

Our first analyses aimed to explore whether measures

derived from DNA methylation data at birth (i.e. gestational

http://www.ariesepigenomics.org.uk
http://www.ariesepigenomics.org.uk
http://www.bristol.ac.uk/alspac/
http://www.bristol.ac.uk/alspac/
https://github.com/ejh243/MinervaASDEWAS.git
https://github.com/ejh243/MinervaASDEWAS.git
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age and blood cell composition estimates) are associated with

birth weight. We previously demonstrated the robustness

of DNA methylation data derived from neonatal blood

spots by implementing two DNA methylation clock algor-

ithms to derive estimates for (i) age in years [18] and

(ii) gestational age in weeks [19] for each sample. As

expected, we observed a strong positive correlation bet-

ween estimated and actual gestational age (r ¼ 0.602, 95%

CI ¼ (0.566, 0.636), p ¼ 3.80 � 102125) and a weaker posi-

tive correlation between estimated chronological age and

actual gestational age (r ¼ 0.139, 95% CI ¼ (0.0849, 0.193),

p ¼ 6.52 � 1027) [32]. We next extended these analyses

to investigate how birth weight correlates with these pre-

dicted ages and whether variable birth weight explains

the difference between predicted age (derived from DNA

methylation data) and actual age. Birth weight was

significantly correlated with predicted measures of both age

(r ¼ 0.119, 95% CI¼ (0.0638, 0.173), p ¼ 2.40� 1025; electron-

ic supplementary material, figure S1A) and gestational age

(r ¼ 0.333, 95% CI¼ (0.0849, 0.193), p ¼ 5.15� 10234; elec-

tronic supplementary material, figure S1B). However, the age

acceleration residuals—which are adjusted for reported gesta-

tional age—are not significantly associated with birth weight

( p . 0.05, electronic supplementary material, figure S1C,D),

indicating that variation in birth weight does not explain the

difference between reported gestational age and predicted

age and that other pregnancy and/or obstetric factors may

be influencing derived age estimates. Given the difficulties in

collecting large volumes of blood from neonates, little is

known about blood cell-type variation at this stage of life.

We therefore explored how predicted cellular composition

variables derived from the DNA methylation data

(see Methods) correlate with birth weight and reported

gestational age. Gestational age was positively correlated

with the estimated proportions of CD8 T-cells (r ¼ 0.140;

95% CI¼ (0.0857, 0.194), p ¼ 5.63 � 1027) and natural killer

cells (r ¼ 0.0722, 95% CI ¼ (0.0171, 0.127), p ¼ 0.0103), and

negatively correlated with the estimated proportion of B-cells

(r ¼ 20.231, 95% CI ¼ (20.282, 20.178), p ¼ 1.06� 10216)

(electronic supplementary material, figure S2). Birth weight

was significantly negatively correlated with the estimated

proportion of monocytes (r ¼ 20.0604, 95% CI¼ (20.115,

20.00529), p ¼ 0.0317) and positively correlated with

the estimated proportion of granulocytes (r ¼ 0.0624, 95%

CI¼ (0.00727, 0.117), p ¼ 0.0266) (electronic supplementary

material, figure S3). Given the potential confounding

influence of cellular heterogeneity in EWAS analyses using

blood, these derived variables were included in all

subsequent analyses.

(b) Birth weight and gestational age are associated
with variable DNA methylation in neonatal blood

To identify DNA methylation sites associated with reported

gestational age and birth weight we next performed an

EWAS across all Illumina 450K array sites on the autosomes

and X-chromosome (n ¼ 430 676 sites), undertaking the

analyses simultaneously to minimize confounding resulting

from the strong correlation between these two obstetric

variables (r ¼ 0.491, 95% CI ¼ (0.448, 0.532), p ¼ 1.14 �
10277; electronic supplementary material, figure S4). In

total, we identified 18 differentially methylated positions

(DMPs) associated with birth weight (figure 1; electronic
supplementary material, figures S5 and S6) and 4299

DMPs associated with gestational age (figure 1; electro-

nic supplementary material, figures S7 and S8) at an

experiment-wide significance threshold ( p , 1 � 1027) (elec-

tronic supplementary material, tables S2 and S3). The

associated DMPs were characterized by a median shift in

DNA methylation of 1.40% (s.d. ¼ 0.368%) per kg and

0.406% (s.d. ¼ 0.275) per gestational week. Seven sites were

significantly associated with both birth weight and gesta-

tional age (table 1). Sensitivity analyses repeating the EWAS

excluding samples from ‘outlier’ individuals born (i) before

35 weeks (N ¼ 23) or (ii) before 32 weeks (N ¼ 5) revealed

high concordance with our primary analysis (electronic sup-

plementary material, figure S9), suggesting that the results

are robust to the presence of premature individuals.

Although the majority of DMPs associated with increased

birth weight were associated with reduced DNA methylation

(66.7%) there was not a significant bias (sign test p ¼ 0.238)

due to the small total number of DMPs identified. In contrast,

there was a highly-significant bias towards increased

DNA methylation at sites associated with older gestational

age (73.2%, sign test p ¼ 2.29 � 102135). Although this contra-

dicts results from a previous study using cord blood derived

DNA from the ARIES cohort (n ¼ 914), which identified

a smaller number of DMPs that were enriched for sites

showing a decrease in DNA methylation with older gesta-

tional age [24], our most significant DMPs are characterized

by reduced DNA methylation with age (electronic sup-

plementary material, table S3) and associations at sites

showing this pattern of change are significantly stronger

(Mann–Whitney p ¼ 2.58 � 102228). Furthermore, we find a

significant excess of consistent effects between studies indi-

cating that age-associated changes are similar in cord and

neonatal whole blood (electronic supplementary material,

figure S10). Of 148 DMPs associated with gestational age in

the ARIES cohort, 146 (98.6%) had the same direction

of effect (sign test p ¼ 6.18 � 10241), with 110 being signifi-

cantly associated ( p , 1 � 1027) in both cohorts. We found

similar consistency for our EWAS of birth weight; all 21

DMPs associated with birth weight in the ARIES cohort

had the same direction of effect in our data (sign test p ,

2 � 102323), with two DMPs being significantly associated

( p , 1 � 1027) in both cohorts (electronic supplementary

material, figure S10). While the 18 DMPs associated with

birth weight are annotated to distinct genomic loci, the

4299 DMPs associated with gestational age are clustered

into 3550 distinct locations with up to 25 additional DMPs

located within 5 kb of the index DMP characterized by the

most significant association. Conditional analyses within

each genomic locus containing at least two DMPs (n ¼ 483;

13.6%) revealed evidence for independent secondary signals

for 240 DMPs in 193 of these loci (conditional p , 5 �
1025), while 100 DMPs within 66 loci were only associated

as a result of their correlation with the most significant

DMP in the same loci (conditional p . 0.05; electronic supple-

mentary material, table S4). Finally, given the association

between both low birth weight and pre-term birth and

autism we tested whether the DNA methylation differences

we identified were consistent between individuals who

later went on to develop a childhood diagnosis of autism

(n ¼ 629) and matched controls (n ¼ 634). There were no sig-

nificant differences between autism cases and controls for

DMPs associated with birth weight (min. p ¼ 0.0446) or for
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Table 1. DNA methylation in neonatal blood is associated with birth weight and gestational age. In total, seven differentially methylated positions (DMPs) were
associated with both birth weight and gestational age at an experiment-wide threshold of p , 1 � 1027. Genomic locations are based on hg19.

probe ID

EWAS of birth weight (g) EWAS of gestational age (weeks)

chr position

gene annotation

p-value
regression
coefficient p-value

regression
coefficient

UCSC
gene
name

UCSC
genic
region

cg04411893 9.88�1028 28.41�1026 2.28�10212 20.003758699 chr3 185 300 709

cg05937055 4.66�1029 21.20�1025 5.20�10210 20.004302303 chr1 181 128 764

cg06870470 2.97�1029 21.68�1025 6.93�10228 20.01068899 chr19 11 315 767 DOCK6 body

cg13066703 2.50�1028 21.11�1025 3.68�10236 20.008742825 chr1 211 526 705 TRAF5 body

cg19744173 1.87�10210 21.41�1025 8.41�10220 20.006889143 chr2 112 913 178 FBLN7 body

cg20068209 5.19�1028 21.37�1025 2.00�10241 20.011959147 chr6 75 988 568 TMEM30A body

cg20076442 1.18�10210 21.96�1025 3.23�10225 20.010843225 chr8 72 745 197
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DMPs associated with gestation age (min. p ¼ 3.51 � 1025)

after correcting for the number of DMPs significant in

each analysis (birth weight: p , 0.00278 corrected for
18 DMPs; gestational age: p , 1.16 � 1025 corrected for

4299 DMPs) (electronic supplementary material, tables S2

and S3).
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are unadjusted DNA methylation values.
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(c) Maternal smoking influences DNA methylation in
neonates at multiple loci

Exposure to tobacco smoke is known to be associated with

widespread alterations in DNA methylation in whole blood

[1], and previous analyses have demonstrated that these effects

can be detected in cord blood from neonates exposed to prena-

tal smoking [13]. One limitation of using cord blood is that

DNA methylation estimates can be influenced by contami-

nation with maternal blood, and we therefore sought to test

these whether these associations were detectable in neonatal

whole blood samples. Mothers were asked about their smok-

ing status at their first prenatal visit, early in the second

trimester of pregnancy. Among the mothers of neonates in

our cohort, 294 (25.1%) reported smoking during pregnancy

and 879 (74.9%) reported not smoking during pregnancy; we

excluded 36 mothers who reported giving up smoking at

some time during the pregnancy and 54 mothers for whom

smoking data were not available. First, we assessed whether

maternal smoking influenced derived measures of age gener-

ated from DNA methylation data in these samples. Neither

age, gestational age nor age acceleration was associated with

in utero exposure to smoking (electronic supplementary

material, figure S11). Next, we performed an EWAS of maternal

smoking exposure (n ¼ 1173, controlling for sex, birth weight,

gestational age, experimental batch, and derived cell compo-

sition variables), identifying 110 neonatal blood DMPs

associated with maternal smoking ( p , 1 � 1027) representing

70 discrete genomic loci (figure 2; electronic supplementary

material, figure S12 and table S5). Conditional analyses

within each genomic locus with at least two DMPs (n ¼ 13)

identified seven loci where a single DMP was associated with

maternal smoking (conditional p for other sites greater than
0.05) and four loci characterized by secondary semi-indepen-

dent effects (conditional p for other sites less than 5 � 1025;

electronic supplementary material, table S6). There was no sig-

nificant bias towards a particular direction of effect (50.9%

hypomethylated; 49.1% hypermethylated, sign test p ¼ 0.924)

and the median effect was a difference of 2.28% DNA methyl-

ation (s.d. ¼ 2.19%) (electronic supplementary material,

figure S13). There was considerable overlap with DMPs

reported in a large EWAS of maternal smoking performed in

cord blood [13] (n ¼ 6685; electronic supplementary material,

figure S14). Of note, 4847 (84.0%) of the 5768 DMPs reported

in that study were characterized by the same direction of

effect (sign test p , 2 � 102323) in our analysis of neonatal

blood, with 102 meeting criteria for experiment-wide signifi-

cance ( p , 1 � 1027) in both studies. This included

previously reported DMPs associated with tobacco smoking

in adults [1,31], such as AHRR, where five additional DMPs

were clustered with the lead signal at cg05575921, none of

which remained significant in the conditional analysis, GFI1,

which had nine DMPs including multiple independent associ-

ations, and MYO1G, which had four DMPs with evidence of

multiple independent associations (electronic supplementary

material, table S6). These findings confirm that smoking behav-

iour by mothers during pregnancy has a profound influence on

DNA methylation in their offspring at birth and in the first few

days of life.
(d) DNA methylation mediates the relationship
between maternal smoking and low birth weight

Having established that the DNA methylation signatures

associated with prenatal smoking exposure are robustly
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detectable in neonatal blood, and that variable DNA methyl-

ation is associated with an established outcome of maternal

smoking [45,46] we next asked whether methylomic variation

might mediate the relationship between maternal smoking in

pregnancy and lower birth weight. Previous attempts to explore

this using data from cord blood have been relatively inconsist-

ent [14,15], supporting a mediation role for DNA methylation

at non-overlapping DNA methylation sites. We repeated our

EWAS of maternal smoking, excluding birth weight as a covari-

ate, and identified an extended set of 143 DMPs (electronic

supplementary material, table S7) which contained 105

(95.5%) of the 110 DMPs we identified in the analysis adjusting

for birth weight. Mediation analyses, performed using the Sobel

test (see Methods), showed that DNA methylation at three sites,

annotated to three different genomic loci, met the five criteria

set out by Baron & Kenny [42] (see Methods) as providing evi-

dence for mediating the association between smoking and birth

weight (electronic supplementary material, figure S15 and table

S7). This included one site (cg09935388) annotated to GFI1 that

has been reported previously [15] and two novel mediation sites

(cg05575921 annotated to AHRR, and cg26889659 annotated to

EXOC2) (table 2). Because smoking behaviour is prone to mis-

classification—not only owing to smokers claiming to be non-

smokers, especially during pregnancy [47], but also because a

complex behaviour is simplified into a dichotomous vari-

able—we repeated the analysis for the three significant DNA

methylation sites estimating the natural direct effect between

maternal smoking and low birth weight (i.e. not via DNA

methylation) and the natural indirect effect (i.e. via DNA

methylation) using the SIMEX (simulation and extrapolation)

procedure which incorporates misclassification [44]. Strin-

gently accounting for misclassification suggests that the

estimated mediation effect via DNA methylation identified

using the Sobel test is potentially overestimated; although the

results robustly support a significant mediation effect for

DNA methylation at cg26889659, under scenarios of more

extreme misclassification (see Methods) the effects of mediation

via DNA methylation at cg05575921 and cg09935388 are no

longer significantly different from 0 (electronic supplementary

material, table S8).
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4. Discussion
In this study we quantified neonatal variation in DNA methyl-

ation in 1263 infants using samples isolated from archived

blood spots taken shortly after birth. Our study finds that gesta-

tional age, birth weight and maternal smoking are all associated

with significant DNA methylation differences in neonatal

blood, with gestational age having the most effects widespread

across the genome. These data add to a growing literature

demonstrating that prenatal and obstetric exposures can

influence epigenetic variation in early life [3,13,24,48–50], pro-

viding a potential mechanism linking them to altered gene

function and long-term health and disease outcomes.

Our use of neonatal DNA samples means that we are

uniquely positioned to identify epigenetic variation at birth,

avoiding the confounding exposures that could influence

the results from samples collected later in childhood (for

example, health and disease, nutrition, medication, and stress).

Although there have been larger studies of prenatal exposures,

a strength of our study is that we profiled whole blood from

neonatal infants rather than cord blood, minimizing the
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contamination of our samples with maternal blood DNA and

meaning our data can be more easily compared with the exten-

sive blood DNA methylation datasets derived from samples

later in life. A limitation of our sampling strategy, however, is

that no blood cell reference DNA methylation datasets specifi-

cally for use on neonatal blood are yet available, likely

reflecting the difficulties of obtaining sufficient volumes of neo-

natal blood for cell sorting and methylomic profiling. Although

there has been much written on the importance of selecting an

appropriate tissue to profile for epigenetic studies [10], the goal

of this study was to identify biomarkers of exposure, and there-

fore our use of a peripheral tissue is justified. Furthermore,

although blood spots were collected only a few days after birth

(mean ¼ 6.08 days; s.d. ¼ 3.24 days), it ispossible that some post-

natal exposure to passive smoking during the first few days of life

could also have influenced our results, although the amount of

exposure in approximately 6 days is likely to be negligible.

As well as identifying specific loci at which DNA methyl-

ation is associated with early-life factors such as smoking

exposure and gestational age, we tested the hypothesis

that DNA methylation mediates established epidemiological

relationships between exposures and outcomes. We explored

the association between maternal smoking and lower birth

weight, finding evidence that methylomic variation at several

DMPs may be mechanistically involved in linking exposure

(maternal smoking) to outcome (birth weight). While our results

are consistent with previous reports, such analyses can be influ-

enced by misclassification bias [16]. Smoking, in particular, is

prone to misclassification not only owing to participants claim-

ing to be non-smokers when they are in fact smokers, a

circumstance known to be worse when reflecting smoking

during pregnancy[47], but also as a result of simplifying a com-

plex behaviour into a single dichotomous variable representing

the entire period of pregnancy. Given our robust prenatal smok-

ing exposure associations, it is plausible that the mediator in our

analyses—DNA methylation—is in fact a better measure of

smoking exposure than self-reported status [16]. Of note, apply-

ing a methodology that accounts for misclassification of an

exposure reduced the magnitude of the mediation effect at all

three significant loci, suggesting that these results need vali-

dation using an alternative approach such as Mendelian

randomization [51].

While we explored whether DNA methylation lies on the

causal pathway between maternal smoking and low birth

weight, results from EWAS analyses do not distinguish

cause from effect. In fact, it is likely that the DNA methyl-

ation differences we report for birth weight and gestational

age reflect other in utero exposures or processes. For example

birth weight is known to be associated with maternal body

mass index, blood pressure and fasting glucose levels

[52–54] and the epigenetic changes we report may reflect

the downstream influences of these pathways. It is also poss-

ible that the birth-weight-associated DMPs identified in our

study reflect exposures or influences occurring in the immedi-

ate neonatal period before the blood samples were collected.

Similarly, the DNA methylation differences observed in neonates

exposed to prenatal smoking might also be influenced by

exposure to passive smoking from the mother or father immedi-

ately after birth, although the amount of exposure in

approximately 6 days is likely to be negligible. Another potential

limitation of our design is that the analyses were performed

within the context of an autism case–control study [32]. Of

note, however, although autism cases had a higher exposure to
maternal smoking than non-autism controls, there was not sig-

nificant difference in birth weight between infants who went

on to develop autism compared with those who did not (elec-

tronic supplementary material, table S1). Finally, the nature of

the samples we profiled in this study (i.e. small amounts of neo-

natal blood) meant that additional DNA was not available for

technical validation experiments. However, the Illumina 450K

array has been shown to yield highly reproducible measures of

DNA methylation, and the observed consistency with previous

studies of maternal smoking, gestational age, and birth weight

suggests our findings are robust.
5. Conclusion
Our data demonstrate that in utero exposures are associated

with detectable patterns of DNA methylation in neonatal

blood samples, highlighting the role that the prenatal environ-

ment plays in influencing gene regulation in neonates. While

previous studies have shown that maternal smoking effects

persist into later childhood [13], these have found that the

effects are attenuated, suggesting that obtaining a biomarker

as close to birth as possible will have maximal sensitivity

regarding exposures during gestation.
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44. Küchenhoff H, Mwalili SM, Lesaffre E. 2006
A general method for dealing with misclassification
in regression: the misclassification SIMEX. Biometrics

http://dx.doi.org/10.1161/CIRCGENETICS.116.001506
http://dx.doi.org/10.1038/ncomms6592
http://dx.doi.org/10.1038/ncomms6592
http://dx.doi.org/10.1289/EHP36
http://dx.doi.org/10.1289/ehp.1509966
http://dx.doi.org/10.1186/s13059-016-0926-z
http://dx.doi.org/10.1186/s13059-016-0926-z
http://dx.doi.org/10.1038/nn.4182
http://dx.doi.org/10.1016/S0140-6736(14)60269-5
http://dx.doi.org/10.1186/gb-2014-15-2-r37
http://dx.doi.org/10.1038/nature09165
http://dx.doi.org/10.1038/nature09165
http://dx.doi.org/10.1038/nrg3405
http://dx.doi.org/10.1371/journal.pmed.1000356
http://dx.doi.org/10.1038/nrg3000
http://dx.doi.org/10.1016/j.ajhg.2016.02.019
http://dx.doi.org/10.1016/j.ajhg.2016.02.019
http://dx.doi.org/10.1186/s12864-018-4652-7
http://dx.doi.org/10.1093/ije/dyv048
http://dx.doi.org/10.2217/epi-2016-0145
http://dx.doi.org/10.2217/epi-2016-0145
http://dx.doi.org/10.1016/j.molcel.2012.10.016
http://dx.doi.org/10.1016/j.molcel.2012.10.016
http://dx.doi.org/10.1186/gb-2013-14-10-r115
http://dx.doi.org/10.1186/s13059-016-1068-z
http://dx.doi.org/10.1186/s13059-016-1068-z
http://dx.doi.org/10.18632/aging.101020
http://dx.doi.org/10.18632/aging.100864
http://dx.doi.org/10.18632/aging.100864
http://dx.doi.org/10.1289/EHP333
http://dx.doi.org/10.1101/gr.180273.114
http://dx.doi.org/10.1101/gr.180273.114
http://dx.doi.org/10.1093/hmg/ddv119
http://dx.doi.org/10.1136/bmj.295.6600.681
http://dx.doi.org/10.1001/archpsyc.1987.01800190080012
http://dx.doi.org/10.1001/archpsyc.1987.01800190080012
http://dx.doi.org/10.1016/S1474-4422(15)00050-2
http://dx.doi.org/10.1016/S1474-4422(15)00050-2
http://dx.doi.org/10.1111/j.1600-0447.2006.00805.x
http://dx.doi.org/10.1542/peds.2010-1036
http://dx.doi.org/10.1093/aje/kwi123
http://dx.doi.org/10.1186/1868-7083-6-4
http://dx.doi.org/10.1186/1868-7083-6-4
http://dx.doi.org/10.1186/s13073-018-0527-4
http://dx.doi.org/10.1186/s13073-018-0527-4
http://dx.doi.org/10.1016/j.envres.2015.11.014
http://dx.doi.org/10.1016/j.envres.2015.11.014
http://dx.doi.org/10.1373/clinchem.2004.036517
http://dx.doi.org/10.1067/mob.2002.118306
http://dx.doi.org/10.1038/mp.2017.196
http://dx.doi.org/10.1007/s10545-007-0631-x
http://dx.doi.org/10.1186/1471-2164-14-293
http://dx.doi.org/10.1186/1471-2164-14-293
http://dx.doi.org/10.1186/1471-2105-13-86
http://dx.doi.org/10.1186/1471-2105-13-86
http://dx.doi.org/10.4161/epi.25430
http://www.R-project.org/
http://dx.doi.org/10.1037/0022-3514.51.6.1173
http://dx.doi.org/10.1037/0022-3514.51.6.1173
http://dx.doi.org/10.2307/270723


royalsocietypublishing.org/journal/rstb
Phil.Tran

10
62, 85 – 96. (doi:10.1111/j.1541-0420.2005.
00396.x)

45. Durmus B et al. 2011 Parental smoking during
pregnancy, early growth, and risk of obesity in
preschool children: the Generation R Study.
Am. J. Clin. Nutr. 94, 164 – 171. (doi:10.3945/ajcn.
110.009225)

46. Windham GC, Hopkins B, Fenster L, Swan SH. 2000
Prenatal active or passive tobacco smoke exposure
and the risk of preterm delivery or low birth weight.
Epidemiology 11, 427 – 433. (doi:10.1097/
00001648-200007000-00011)

47. Dietz PM, Homa D, England LJ, Burley K, Tong VT,
Dube SR, Dube SR, Bernert JT. 2011 Estimates of
nondisclosure of cigarette smoking among pregnant
and nonpregnant women of reproductive age in the
United States. Am. J. Epidemiol. 173, 355 – 359.
(doi:10.1093/aje/kwq381)

48. Agha G et al. 2016 Birth weight-for-gestational age
is associated with DNA methylation at birth and in
childhood. Clin. Epigenetics 8, 118. (doi:10.1186/
s13148-016-0285-3)

49. Non AL, Binder AM, Kubzansky LD, Michels KB.
2014 Genome-wide DNA methylation in
neonates exposed to maternal depression,
anxiety, or SSRI medication during
pregnancy. Epigenetics 9, 964 – 972. (doi:10.4161/
epi.28853)

50. Schroeder JW et al. 2011 Neonatal DNA
methylation patterns associate with gestational
age. Epigenetics 6, 1498 – 1504. (doi:10.4161/epi.6.
12.18296)
51. Relton CL, Davey Smith G. 2012 Two-step epigenetic
Mendelian randomization: a strategy for
establishing the causal role of epigenetic processes
in pathways to disease. Int. J. Epidemiol. 41,
161 – 176. (doi:10.1093/ije/dyr233)

52. Tyrrell J et al. 2016 Genetic evidence for causal
relationships between maternal obesity-related
traits and birth weight. JAMA 315, 1129 – 1140.
(doi:10.1001/jama.2016.1975)

53. Lawlor DA, Relton C, Sattar N, Nelson SM. 2012
Maternal adiposity—a determinant of perinatal
and offspring outcomes? Nat. Rev. Endocrinol. 8,
679 – 688. (doi:10.1038/nrendo.2012.176)

54. Metzger BE et al. 2008 Hyperglycemia and adverse
pregnancy outcomes. N. Engl. J. Med. 358,
1991 – 2002. (doi:10.1056/NEJMoa0707943)
s
.R.
Soc.B
374:20180120

http://dx.doi.org/10.1111/j.1541-0420.2005.00396.x
http://dx.doi.org/10.1111/j.1541-0420.2005.00396.x
http://dx.doi.org/10.3945/ajcn.110.009225
http://dx.doi.org/10.3945/ajcn.110.009225
http://dx.doi.org/10.1097/00001648-200007000-00011
http://dx.doi.org/10.1097/00001648-200007000-00011
http://dx.doi.org/10.1093/aje/kwq381
http://dx.doi.org/10.1186/s13148-016-0285-3
http://dx.doi.org/10.1186/s13148-016-0285-3
http://dx.doi.org/10.4161/epi.28853
http://dx.doi.org/10.4161/epi.28853
http://dx.doi.org/10.4161/epi.6.12.18296
http://dx.doi.org/10.4161/epi.6.12.18296
http://dx.doi.org/10.1093/ije/dyr233
http://dx.doi.org/10.1001/jama.2016.1975
http://dx.doi.org/10.1038/nrendo.2012.176
http://dx.doi.org/10.1056/NEJMoa0707943

	Variable DNA methylation in neonates mediates the association between prenatal smoking and birth weight
	Introduction
	Methods
	Overview of the MINERvA cohort
	DNA methylation profiling in MINERvA
	Epigenome-wide association analyses (EWAS)
	Replication dataset
	Mediation analyses

	Results
	Blood cell proportions derived from DNA methylation data correlate with birth weight and gestational age in neonatal blood
	Birth weight and gestational age are associated with variable DNA methylation in neonatal blood
	Maternal smoking influences DNA methylation in neonates at multiple loci
	DNA methylation mediates the relationship between maternal smoking and low birth weight

	Discussion
	Conclusion
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


