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Kin selection theory defines the conditions for which altruism or ‘helping’

can be favoured by natural selection. Tests of this theory in cooperatively

breeding animals have focused on the short-term benefits to the recipients

of help, such as improved growth or survival to adulthood. However,

research on early-life effects suggests that there may be more durable, life-

long fitness impacts to the recipients of help, which in theory should

strengthen selection for helping. Here, we show in cooperatively breeding

banded mongooses (Mungos mungo) that care received in the first 3

months of life has lifelong fitness benefits for both male and female

recipients. In this species, adult helpers called ‘escorts’ form exclusive one-

to-one caring relationships with specific pups (not their own offspring),

allowing us to isolate the effects of being escorted on later reproduction

and survival. Pups that were more closely escorted were heavier at sexual

maturity, which was associated with higher lifetime reproductive success

for both sexes. Moreover, for female offspring, lifetime reproductive success

increased with the level of escorting received per se, over and above any

effect on body mass. Our results suggest that early-life social care has

durable benefits to offspring of both sexes in this species. Given the well-

established developmental effects of early-life care in laboratory animals

and humans, we suggest that similar effects are likely to be widespread in

social animals more generally. We discuss some of the implications of

durable fitness benefits for the evolution of intergenerational helping in

cooperative animal societies, including humans.

This article is part of the theme issue ‘Developing differences: early-life

effects and evolutionary medicine’.
1. Introduction
Social evolution theory aims to understand and predict how natural selection

acts on heritable social traits, that is, traits that affect the fitness of other mem-

bers of a population. Hamilton’s [1,2] inclusive fitness theory defined the

condition (rb . c, known as Hamilton’s rule) for which selection can favour

the evolution of altruism (i.e. a trait that boosts the lifetime fitness b of a recipi-

ent, related by coefficient r, at a lifetime fitness cost c to the actor) directed

towards genetic relatives. Subsequent theory has emphasized repeated inter-

actions, intergroup competition and group augmentation as promoters of

cooperative behaviour [3–5]. Inclusive fitness theory in particular has provided

a very general framework to understand variation in social traits (both behav-

ioural and life-history traits), and to identify ecological and demographic

factors that facilitate cooperation and the formation of animal societies [6,7].

Cooperative animal societies, in which ‘helpers’ work to rear offspring that

are not their own, are a rich testing ground for these theories because they
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feature conspicuous examples of altruism or ‘helping’,

together with the possibility of measuring the fitness conse-

quences of variation in helping effort and life-history

decisions. In addition, research on cooperative vertebrates

provides a potentially informative comparator for Homo
sapiens, one of the few cooperatively breeding primates

[8,9]. There is now considerable evidence that major features

of human life history (e.g. long period of offspring depen-

dency, short inter-birth interval, early reproductive

cessation, prolonged post-reproductive lifespan) have been

moulded via kin selection operating in the family groups of

our Pleistocene ancestors [10–15].

Although the costs and benefits in Hamilton’s rule are in

the currency of lifetime direct fitness, tests of kin selection

theory and other proposed mechanisms of cooperation

(such as reciprocity and coercion [16,17]) rely on measuring

reasonable proxies for lifetime fitness impacts. For example,

the fitness benefit conferred by helpers might be tested by

comparing the number of surviving offspring produced by

reproductives with and without the assistance of helpers

[11,18,19]. However, the literature on early-life effects and

developmental plasticity shows that there may often be

delayed impacts of investment that are manifested long

after the initial act. In social insects, for example, variation

in provisioning in the larval period triggers developmental

switches and leads to permanent behavioural and morpho-

logical castes [20,21]. In vertebrates, permanent castes are

typically lacking, but research on laboratory rodents and

humans shows that postnatal care can have lifelong effects

on cognitive function, social behaviour and health [22–24].

Thus, the effects of help on a recipient’s fitness, particularly

when the recipient is an individual offspring, may be mani-

fested long after the helping act itself—even after the helper

has died or dispersed.

The potential for early-life investment to ‘programme’ an

offspring’s subsequent life history could promote or inhibit

selection for helping, depending on whether helped offspring

are more or less likely to disperse, and more or less likely to

produce surviving offspring themselves. These delayed

impacts of help represent an ‘internal’ durable benefit con-

ferred by the helper, similar to the ‘external’ durable

benefits that can arise through niche construction, for

example, the construction of a nest or shelter that benefits

future generations. Recent theory suggests that the potential

for helping to result in benefits that are manifested in the

future (in addition to, or instead of, fitness benefits that are

manifested contemporaneously with the helping act) has a

strong influence on selection for altruism in structured popu-

lations [25]. In these ‘patch-structured’ or ‘group-structured’

models, helping boosts the fecundity (number of offspring)

of the local group of kin, but also increases competition

among these local kin. The former inclusive fitness benefit

of helping is counteracted by the latter inclusive fitness cost

resulting from increased competition. The further into the

future the benefits of helping are realized, the lower the relat-

edness of the actor to the individuals in the patch that suffer

the costs of competition, and hence the greater the overall

strength of selection for helping [25].

The potential durable benefits of helping in cooperative

animal societies have been little explored empirically. One

exception is Russell et al.’s [26] study of meerkats (Suricata
suricatta), which showed that female offspring that gain

most weight during the helping period (and hence are
likely to have received more help), and those that are

experimentally fed, are more likely to reproduce at some

point in their lives and more likely to attain the position of

dominant breeder. In other cooperatively breeding ver-

tebrates (including humans), measuring delayed or lifelong

impacts of help is challenging because it requires following

the recipients of care across their entire lifespan, and recipi-

ents often die or disperse before attaining reproductive status.

Here, we investigate the immediate and lifelong

consequences for the recipients of helping in a cooperatively

breeding mammal, the banded mongoose (Mungos mungo),

using a 17-year dataset. This species exhibits an unusual

form of one-to-one early-life offspring care called ‘escorting’

which provides an opportunity to tease apart genetic,

maternal and alloparental effects on development and later

life history [27,28]. Multiple females give birth in each breed-

ing attempt, usually on the same day [29], and the communal

litter is kept underground for the first month of life. Mothers

show no discrimination during suckling, and pups are some-

times observed to move from female to female to suckle

[30,31]. From the time that pups emerge from the den until

they reach nutritional independence at three months old,

pups form exclusive one-to-one caring relationships with

adult helpers (their ‘escorts’) who are no more closely related

than a random group member [27]. Escorts provision and

groom the pups in their care, and carry them away from

danger. However, there is great variation among offspring

in the amount of escorting received: some pups spend all

day every day with their escort, whereas others have to

fend for themselves from an early age [27,28].

The escort system allows us to quantify the amount of

postnatal help received by individual offspring in each com-

munal litter. By contrast, in most other cooperatively

breeding insects, birds and mammals, helper effort is

shared across entire litters or broods [32], so it is more diffi-

cult to isolate the fitness impacts of the investment by an

individual helper on an individual recipient. In addition,

our system is unusual because dispersal away from the

study site is rare [33,34], and we can follow individuals

across their entire lives, from pup to reproducing adult. In

this paper, we capitalize on this system to test whether the

care received by pups in the first three months of life has last-

ing effects on their survival and reproduction as adults, long

after the period of care has ended.
2. Material and methods
(a) Study species and population
Banded mongooses are small (1.5 kg) cooperatively breeding

carnivorous mammals common to sub-Saharan Africa. Since

1995, we have continuously studied a habituated population of

wild banded mongooses living on and around the Mweya Penin-

sula in Queen Elizabeth National Park, western Uganda (08120 S,

298540 E); for details of the field site and the population, see [35]

and references therein. At any one time, the population consists

of 8–12 mixed sex groups of 10–30 individuals, plus offspring.

On average, four females give birth in each breeding attempt,

synchronizing birth to the same day in 64% of breeding attempts

[29]. The resulting mixed-parentage litter of pups is guarded at

the den during the first month of life by one or more babysitters

[35]. After emergence care is provided by escorts up to the age of

three months [27,36]. Individuals reach sexual maturity at

around 1 year old, and life expectancy at this age is around
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3 years (males ¼ 42 months; females ¼ 38 months). There is no

reproductive suppression among females in this species: adult

females start breeding when they are 1 year old and produce

up to four litters per year until they die [33]. Males, by contrast,

form an age-based social queue in which the oldest two or three

individuals mate-guard and aggressively monopolize access to

oestrous females [37,38]. Younger males, though sexually

mature, are typically excluded from reproduction until they

reach relatively advanced ages (3þ years; [38]).

We collected data from individuals from 12 social groups of

on average 22 adult individuals (s.d. 7.3, range 7–37) inhabiting

the study area between the years 2000 and 2016. All mongooses

in the study population are individually marked using either

unique hair-shave patterns or colour-coded collars, and are habi-

tuated to close observation from at least 5 m. Additionally, each

mongoose is marked with a transponder chip (Wyre Micro

Design, UK) or, before the year 2009, with a unique tattoo on

the inside of the leg. One or two mongooses in each group

are fitted with a radio collar weighing 26–30 g (Sirtrack Ltd,

Havelock North, New Zealand) to allow the groups to be located.
.B
374:20180114
(b) Life-history parameters and genotyping
Over the 17-year study period, each group was visited for at least

20 min every 1–3 days to record the presence and absence of

individuals in each group. As banded mongooses almost

always disperse in groups, either voluntarily or through a pro-

cess of violent eviction [39–41], we could distinguish between

dispersal and deaths as cause for permanent absence from the

group. For the dataset used in the analyses, we included only

those individuals whose date of birth and death were both

known with at least one week’s accuracy.

We identified female pregnancy by visual swelling of the

abdomen and confirmed this by palpation and ultrasound

scans during trapping [42]. Births occur overnight in an under-

ground den, and were identified by the absence of pregnant

females the following morning and a subsequent change in

their body shape and mass loss [29,43]. Pups were first captured

at emergence from the den, at around three to four weeks of age,

weighed and sexed, and given a unique ID; see [44] for further

details of the trapping procedure. When individuals were first

trapped, a 2 mm2 skin sample was taken for extraction of

DNA, which was used to construct a pedigree for assigning

parentage. Parentage was assigned using MasterBayes 2.51 [45]

and COLONY 2.0.5.7 [46] as described in [47], for a dataset of

2310 individuals born in the study area between the years 2000

and 2016. Lifetime reproductive success was determined as the

total number of pups assigned to each individual. For full details

of DNA extraction, genotyping, parentage assignment and

pedigree construction, see [47,48].
(c) Measuring early-life care
Shortly after emergence from the den, pups form one-to-one

caring relationships with particular adults known as ‘escorts’,

which feed, carry, groom and protect the pup from predators

[36]. The majority of pups have an exclusive relationship with

a single escort; where pups have multiple escorts, they spend

the great majority of their time with a single ‘primary’ escort

[28]. Escorting starts at around four weeks of age and continues

until pups reach nutritional independence, when they are around

90 days old (hereafter defined as the ‘escorting period’). While

pup–escort dyads are forming, pups aggressively defend

access to their escort [49], but thereafter both parties (escort

and pup) actively seek each other out to maintain the association

[50]. Experiments demonstrate that escorts and pups can recog-

nize each other’s calls, and that escorts are particularly reactive

to the distress calls of the specific pup in its care [50,51].
We observed escorting behaviour in 120 communal litters in

12 social groups that inhabited the study area between 2000 and

2016. Groups were visited an average of 12 times during the

escorting period, for a minimum of 20 min (the duration of one

pup focal observation session). Only those litters for which we

had five or more observation sessions (on different days) were

included in the analyses. Pup focals were conducted so that

each pup was followed for 20 min, and at each minute interval,

individuals within 30 cm of the focal individual were noted

(focals were paused if the focal pup went out of sight, and

resumed once sighted again). If the pup spent more than half

of the 20 min focal within 30 cm of the same individual, that

adult was marked as the escort for that focal session [27]. The

proportion of the pup focals a pup was seen being escorted

was taken as a measure of care it received, termed its ‘escorting

index’. Consequently, the escorting index varies from 0 (never

observed being escorted) to 1 (always observed being escorted).
(d) Body mass and ecological data
The emergence body mass of pups was recorded when the pups

were first trapped at three to four weeks of age; see above. Adult

body mass measurements were collected as part of the group

visits. Most individuals are trained to step onto portable weigh-

ing scales in return for a small milk reward and were weighed

weekly in the morning before foraging started.

Climate data were collected by Mweya meteorological

station, and after 2014 by the Banded Mongoose Research Pro-

ject. Cumulative rainfall during the month before the litter was

born was used as a proxy of resource availability, as previous

studies indicate that rainfall in the previous 30 days is positively

correlated with adult daily body mass gain and pregnancy rate

[52,53]).
(e) Statistical analyses and model selection
(i) Immediate survival and post-escorting survival to 1 year
We used generalized linear mixed models (GLMMs) with a bino-

mial error structure and logit link function, to analyse predictors

of survival to nutritional independence at three months, and sur-

vival to maturity at 1 year. Predictor variables were escorting

index, emergence weight of the pup, cumulative rainfall in the

month before birth, and sex of the pup. An interaction between

sex and escorting index was included to test for differential

effects of escorting between the sexes. Social group ID and com-

munal litter ID into which the pup was born were included as

random factors in the analyses. This allows the intercept of the

model to vary by litter ID and group, to control for group-level

and litter-specific factors.
(ii) Body mass
We used a linear mixed model (LMM) to look at predictors of

body mass at 1 year. The model included predictor and

random factors as above.
(iii) Age at maturity
We used LMMs to investigate the age at which first signs of

reproductive activity were observed in females (first oestrus),

and males (the first mate guarding or ‘pestering’ behaviour

during group oestrus [33]). As the definition for the start of

reproduction is different, the sexes were analysed separately,

but otherwise both models included predictor and random fac-

tors as above (escorting index, emergence weight of the pup,

rainfall during month before birth as predictors, and social

group and litter as random factors).
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(iv) Adult lifespan
Rainfall, weight at emergence, escorting index, sex of the individual

and the interaction between sex and escorting index were included

as predictors in an LMM of total lifespan, and litter and pack

included as random factors.

(v) Lifetime reproductive success
In analyses of lifetime reproductive success, the total number of

offspring was first fitted as the response variable in a GLMM

with a Poisson error structure and a log link function. The

sexes were analysed separately to improve model convergence.

Emergence weight, escorting index, rainfall and weight at matur-

ity were included as predictors, and litter and group as random

factors. We then fitted the same models again, but using the log

(total lifespan of the individual) as an offset in the model, to ana-

lyse whether the included variables predicted the rate at which

individuals produced offspring by accounting for differences in

lifespan.

In all analyses, weights and rainfall were standardized by

subtracting the mean and dividing by standard deviation, to

improve model convergence. The correlation of predictor vari-

ables in each analysis was checked to confirm that it was not

high enough to cause model fitting issues [54]. Non-significant

interactions were dropped to allow significance testing of main

terms [55], but models were not simplified further [56]. In the

analyses that involved fitting models with a normal error struc-

ture (body mass, age at maturity and adult lifespan), we

visually checked the residuals to ensure they met the model

assumptions of normally distributed residuals with homo-

geneous variance. Where necessary, we log-transformed the

response variable (adult lifespan) to meet these assumptions.

Statistical analyses were done in R version 3.3.1 [57] and

GLMM models fitted using R package lme4 [58]. The significance

of predictor variables was determined by performing likelihood

ratio tests comparing the full model with a model without the pre-

dictor variable, removing non-significant interactions to allow the

main effects of variables involved in these interactions to be

assessed [59]. We report the x2 statistics and parameter estimates
(b+ s.e.) for significant terms, and the full analysis results

including non-significant parameter estimates are presented in

the electronic supplementary material, tables S1–S3.
3. Results
(a) Developmental impacts of early-life care
(i) Immediate survival
Pups that received more care were more likely to survive until

nutritional independence, as were those that were heavier at

emergence (binomial GLMM: emergence weight: b ¼ 0.83+
0.15, x2

1 ¼ 36:44, p , 0.00001; electronic supplementary

material, table S1). Pup survival was higher in periods of

higher rainfall (b ¼ 0.51+ 0.18, x2
1 ¼ 8:66, p ¼ 0.003),

whereas the sex of the pup had no effect (b ¼ 20.16+ 0.22,

x2
1 ¼ 0:57, p ¼ 0.45).

(ii) Post-escorting survival to 1 year
Beyond the escorting period, early-life care received did not

predict survival to maturity at 1 year of age (binomial

GLMM: escorting index: b ¼ 0.11+0.43, x2
1 ¼ 0:06, p ¼

0.802; electronic supplementary material, table S1). Males

were more likely to survive to maturity (b ¼ 0.50+ 0.24,

x2
1 ¼ 4:38, p ¼ 0.036), whereas rainfall had no effect (b ¼

0.21+ 0.14, x2
1 ¼ 2:05, p ¼ 0.152).

(iii) Body mass at maturity
Pups that received more care during the escorting period

were heavier at 1 year of age, as were those that were heavier

at emergence (figure 1; LMM, pups that survived to 12

months only: escorting index: b ¼ 89.0+33.5, x2
1 ¼ 6:85,

p ¼ 0.009; emergence weight: b ¼ 52.7+ 11.8, x2
1 ¼ 18:9, p ,

0.001; for full model details, table 1).
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Figure 2. Escorting and lifetime reproductive success. (a) In females, increased escorting was associated with higher lifetime reproductive success as adults, inde-
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Table 1. Predictors of body mass (in grams) at sexual maturity (1 year). Results from GLMMs with litter and social group as random factors. Raw data are
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represented by the intercept. Non-significant interactions were dropped to allow significance testing of main terms, but models were not simplified further. To
improve model convergence, pup weight and rainfall were standardized (std) by subtracting the mean and dividing by the standard deviation.

body mass (g) at maturity, at 1 year of age

fixed effects b+++++ s.e. x2
1 p-value

(intercept) 1102.57+ 47.50

rainfall (std) 6.53+ 12.04 0.304 0.581

body mass at emergence (std) 52.66+ 11.75 18.90 1.378 � 1025

escorting index 89.04+ 33.53 6.846 0.0089

sex [male] 57.23+ 18.58 9.439 0.0021

sex � escorting index 42.32+ 64.97 0.434 0.510

number of observations 203 individuals, 82 litters, 11 packs
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(iv) Age at maturity
Female pups that received more care had their first oestrus

earlier (LMM, pups that survived to 12 months only: escort-

ing index: b ¼ 20.34+0.15, x2
1 ¼ 5:16, p ¼ 0.023). None of

the tested variables predicted the timing of first observed

mate guarding behaviour in males (all p . 0.2, see electronic

supplementary material, table S2).

(b) Lifetime impacts of early-life care
(i) Effects on adult lifespan
Adult lifespan was not longer for individuals that received

more care as pups (escorting index: b ¼ 20.03+ 0.13,

x2
1 ¼ 0:06, p ¼ 0.81; all other variables p . 0.098, see

electronic supplementary material, table S3).
(ii) Effects on lifetime reproductive success
Females that received more care as pups had higher lifetime

reproductive success (figure 2a; escorting index: b ¼ 1.691+
0.506, x2

1 ¼ 12:39, p ¼ 0.0004), as did those that experienced

heavier rainfall during the first month of life (b ¼ 0.51+
0.24, x2

1 ¼ 4:91, p ¼ 0.027) and that were heavier at maturity

(weight at 1 year: b ¼ 0.48+0.20, x2
1 ¼ 4:3, p ¼ 0.038).

When using lifespan as an offset, the amount of care and

weight at 1 year were the only significant predictors of a

female’s lifetime reproductive success (table 1). Thus,

female pups that received more care in early life had greater

lifetime reproductive success because they produced surviv-

ing offspring at a higher rate across their lifespan, not

because they lived longer. Of the female pups that survived

to adulthood, those that had been lighter at emergence had



Table 2. Predictors of lifetime reproductive success in individuals that reached maturity (lifespan . 365 days). Results from GLMMs with litter and social group
as random factors. To improve model convergence, rainfall, mass at emergence and mass at maturity were standardized by subtracting the mean and dividing
by the standard deviation.

females males

fixed effects b+++++ s.e. x2
1 p-value b+++++ s.e. x2

1 p-value

(a) predictors of lifetime reproductive success: model without offset

(intercept) 20.695+ 0.414 21.276+ 0.592

rainfall (std) 0.506+ 0.237 4.905 0.027 20.349+ 0.350 0.976 0.323

mass at emergence (std) 20.461+ 0.189 5.685 0.017 0.115+ 0.235 0.238 0.626

escorting index 1.691+ 0.506 12.388 0.0004 20.392+ 0.560 0.491 0.483

mass at 1 year (std) 0.476+ 0.197 4.321 0.038 0.746+ 0.233 11.027 0.0009

number of observations 76 individuals, 55 litters, 8 groups 109 individuals, 61 litters, 9 groups

(b) predictors of lifetime reproductive success: model using lifespan as an offset

(intercept) 21.094+ 0.346 21.989+ 0.481

rainfall (std) 0.310+ 0.185 2.972 0.085 20.342+ 0.269 1.588 0.208

mass at emergence (std) 20.343+ 0.160 2.596 0.107 20.219+ 0.218 1.016 0.313

escorting index 0.859+ 0.436 4.122 0.042 20.276+ 0.552 0.251 0.617

mass at 1 year (std) 0.533+ 0.152 4.934 0.026 0.508+ 0.216 5.523 0.019

number of observations 76 individuals, 55 litters, 8 groups 109 individuals, 61 litters, 9 groups

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180114

6

higher lifetime reproductive success (b ¼ 20.46+ 0.19,

x2
1 ¼ 5:69, p ¼ 0.017; although not when using lifespan as

an offset; see table 2 and electronic supplementary material,

table S3). This unexpected finding may reflect selective disap-

pearance during development (e.g. [60]): most lightweight

pups die before reaching adulthood, so those lightweight

pups for which we have a measure of lifetime reproductive

success may represent a special subset of high-quality or

high-survivorship individuals, compared with pups for which

early-life mortality is less severe (electronic supplementary

material, table S1).

In males, there was no significant effect of early-life care on

lifetime reproductive success (figure 2b; b+ s.e.¼20.39+
0.56, x2

1 ¼ 0:49, p ¼ 0.48). The only significant predictor of

male lifetime reproductive success was body mass at 1 year,

with males that were heaviest at maturity gaining highest life-

time reproductive success (b+ s.e.¼ 0.75+0.23, x2
1 ¼ 11:03,

p ¼ 0.0009; all other variables p . 0.3: table 2). Results were

similar when using lifespan as an offset, and the only signifi-

cant predictor of male lifetime reproductive success was

mass at 1 year (table 2).
4. Discussion
Our results suggest that early-life care directed by escorts to

specific offspring has both immediate survival benefits and

durable fitness benefits that are manifested across the off-

spring’s subsequent lifespan. The immediate survival

benefits are expected because adult escorts and pups stay

in close proximity throughout the day, and escorts are

quick to alert, defend and carry their pup away from

danger. The durable fitness benefits of being escorted are

striking and manifested in two ways. First, for both male

and female pups, escorting had a durable impact on body
mass at maturity, which is positively associated with life-

time reproductive success in both sexes. In addition,

independent of any effect on body mass, female pups that

received higher levels of escorting were more efficient at

producing surviving offspring and had higher lifetime

reproductive success compared with females that received

little escorting (table 2).

The presence of these durable fitness benefits to the

recipients of early-life care is consistent with numerous find-

ings from laboratory studies which suggest that the quality of

parental care received in early life can have a profound

impact on adult physiology, health and behaviour. In a clas-

sic laboratory study of Long–Evans hooded rats, offspring

that received more licking and grooming from their mothers

in the first 10 days of life showed reduced hypothalamic–

pituitary–adrenal (HPA) endocrinological stress reactivity

as adults [61]. Moreover, those (female) offspring were also

more likely to express high levels of nurturing behaviour

when they became mothers themselves, suggesting that

early-life care can produce a chain of behavioural effects

and potential benefits to recipients that last generations into

the future. The transgenerational inheritance of grooming/

licking behaviour in rats has a well-established epigenetic

basis [62]. If such mechanisms operate in natural populations,

cooperative care directed at offspring could have self-

reinforcing or even runaway effects on levels of local helping

(in the case where helped offspring are more likely to provide

help themselves), or self-limiting effects (if helped offspring

are less likely to provide help at a later date). The transge-

nerational impacts of cooperation are rendered plausible by

the detailed mechanistic work on laboratory rodents, and

are a fruitful area for both theoretical and empirical research.

One of our future aims is to use the unusual escort system to

investigate possible transgenerational influences on individual

cooperative behaviour in this system.
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In our study, only female offspring experienced an

additional lifetime fitness benefit of being escorted per se,

over and above any effect on body mass. This sex difference

may reflect differences in the sensitivity of female and male

reproductive systems to the conditions experienced in devel-

opment, or sex differences in the key physical attributes (e.g.

body size versus stress physiology) linked to reproductive

success. It may also reflect a unisexual pattern of epigenetic

inheritance of maternal-care-like behaviour. In the rat studies,

both male and female offspring showed similar impacts of

being licked/groomed on HPA reactivity and development,

but only mothers provide care in this system, and hence

only daughters inherited an elevated propensity to lick/

groom their own offspring [63]. A third factor in banded

mongooses is that there is a sex difference in the time delay

to the realization of any durable benefit: males form a strict

dominance hierarchy and must wait much longer to start

reproducing compared with females (3þ years versus 1

year for females; [33]), so any durable benefits of being

escorted as a pup may become diluted by other factors

(environmental and/or social) that impinge on male lifetime

reproductive success in the interim.

Theoretical analyses of durable impacts of help have

focused on external benefits that arise through niche con-

struction or the production of durable physical objects and

structures [25]. Our findings suggest that durable benefits

can also arise through development, for example, because

recipients of help are protected from external insults or stres-

sors during sensitive developmental windows, or are able to

carry over extra resources to adulthood [26]. Lehmann’s [25]

model predicts that where the benefits of help are separated

in time from the act of helping, selection for helping is

strengthened (other things being equal). Selection for helping

is particularly strong where benefits are realized after the

actor has died or ceased reproduction, and is therefore

unable to experience any negative effects of the increase in

local competition resulting from the helping act. Thus, we

can predict that where helping results in ‘internal’ durable

benefits, selection for helping should increase with helper

age, because older helpers are less likely to suffer direct com-

petition from offspring produced as a result of their help. In

humans, killer whales and elephants, grandmothers have

demonstrable positive impacts on the reproductive success

of their offspring [10,11,64–66]. However, these and other

studies typically assume that any benefits associated with

grandmother presence cease upon her death, whereas our

study suggests that the impact of care may persist long

after a helper has died. Durable benefits might go some

way towards explaining why, in humans, many analyses

have found that the (immediate) measurable fitness benefits

of grandmothering are too small to favour the evolution of

menopause ([67,68]; but see [12]).

Both our study and studies of grandmothering are

examples where it is natural to assume that the recipients

of help are members of a younger generation, such as

young offspring or younger breeders. By contrast, most

studies of cooperative breeding focus on the impact of help

on the reproductive success of breeding adults, rather than

their offspring [32]. In principle, Hamilton’s rule could be

used to determine the direction of selection on genes in

parents or in their offspring—what matters in each case is

correct consideration of genetic relatedness and recipient
reproductive value (e.g. [69]). In banded mongooses, it is

natural to view individual offspring as the recipients of

help, not their parents, because each offspring is the sole ben-

eficiary of the care provided by escorts, while the other

offspring of the parent are cared for by other individuals.

In other cooperative breeders, it is more practical to focus

on parental fitness because help is provided to multiple off-

spring at a time, and it is difficult to track the impact of

help on the reproductive success of all these younger recipi-

ents across their life course. However, our study suggests

that an exclusive focus on parental reproductive success

(measured as their number of surviving young) does not

take account of any durable benefits of help and hence may

systematically underestimate the strength of selection for

altruism in natural systems.

In conclusion, our multigenerational study of a coopera-

tive mammal living in the environment in which it evolved

suggests that helping has lifelong fitness impacts on both

male and female offspring. These durable fitness benefits

may be challenging to detect and measure, particularly in

long-lived species. Nevertheless, the extensive literature on

early-life effects gives reason to believe that durable impacts

may be widespread and can be expected to have major

impacts on social evolution and life history. Further theoreti-

cal research is needed to investigate when durable benefits

will result in positive or negative feedback between care

received and helping effort in cooperative societies, and the

consequences for social evolution. Further empirical research

is needed to test for these effects in wild animal societies, and

to investigate whether such early-life effects in natural sys-

tems are mediated by epigenetic and neuroendocrinological

changes similar to those observed in laboratory mammals.
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