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Abstract

Purpose: Quantitative changes in positron emission tomography with computed tomography im-
aging metrics over serial scans may be predictive biomarkers. We evaluated the relationship of
pretreatment metabolic tumor growth rate (MTGR) and standardized uptake value velocity
(SUVYV) with disease recurrence or death in patients with early-stage non-small cell lung cancer
treated with stereotactic ablative radiation therapy (SABR).

Methods and Materials: Under institutional review board approval, we retrospectively identified
patients who underwent positron emission tomography with computed tomography at diagnosis
and staging and simulation for SABR. Two cohorts underwent SABR between November 2005 to
October 2012 (discovery) and January 2012 to April 2016 (validation). MTGR and SUVV were
calculated as the daily change in metabolic tumor volume and maximum standardized uptake
value, respectively. Cox proportional hazard models identified predictors of local, regional, and
distant recurrence and death for the combined cohort. MTGR and SUVYV thresholds dichotomizing
risk of death in the discovery cohort were applied to the validation cohort.
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Results: A total of 152 lesions were identified in 143 patients (92 lesions in 83 discovery cohort
patients). In multivariable models, increasing MTGR trended toward increased hazard of distant
recurrence (hazard ratio, 6.98; 95% confidence interval, 0.67-72.61; P = .10). In univariable
models, SUVV trended toward risk of death (hazard ratio, 11.8, 95% confidence interval, 0.85-
165.1, P = .07). MTGR greater than 0.04 mL/d was prognostic of decreased survival in discovery
(P = .048) and validation cohorts (P < .01).

Conclusions: MTGR greater than 0.04 mL/d is prognostic of death in patients with non-small cell
lung cancer treated with SABR. Increasing SUVV trends, nonsignificantly, toward increased risk
of recurrence and death. MTGR and SUVV may be candidate imaging biomarkers to study in trials
evaluating systemic therapy with SABR for patients at high risk of out-of-field recurrence.

© 2018 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http:/

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Treatment of medically inoperable early stage non-
small cell lung cancer (NSCLC) with stereotactic ablative
radiation therapy (SABR) results in 85% to 98% primary
tumor control at 3 years.” There has been increasing
evidence supporting the use of SABR in operable patients
who have fewer comorbidities.”" Although local recur-
rence is rare, the predominant pattern of failure is isolated
distant recurrence” in 14% to 20% of cases at 5 to
7 yeeurs.z‘5

"®E_fluorodeoxyglucose positron emission tomography
with computed tomography (‘*F-FDG PET/CT) imaging
is widely used for accurate staging” and has become
increasingly prevalent for radiation therapy target delin-
eation.” PET/CT for radiation therapy planning can pro-
vide new diagnostic information, including upstaging in
63% of locally advanced cases after 60 days.®

Prior studies have identified the predictive value of
quantitative metrics on planning PET/CT. High pretreat-
ment maximum standardized uptake value (SUV ,.x) and
metabolic tumor volume (MTV) are predictive of disease
progression and death.”'' Temporal changes in these
parameters obtained from serial pretreatment PET/CT
scans, expressed as SUV velocity (SUVV) and metabolic
tumor growth rate (MTGR), might provide additional
prognostic information as imaging correlates to tumor
grade'” and tumor doubling time,"® respectively, which
are known predictors of survival.'"*'® Because we
routinely use PET/CT as part of simulation for SABR, in
patients who typically previously underwent PET/CT
during initial diagnosis and staging for lung cancer, these
parameters may represent a readily available source of
additional prognostic information in our patient
population.

In this study we hypothesized that elevated SUVV and
MTGR predict increased risk of recurrence or decreased
survival. We primarily aimed to evaluate SUVV and
MTGR in single predictor and multiple-predictor models
of recurrence and survival. Secondarily, we aimed to

identify threshold values of SUVV and MTGR that pre-
dict survival.

Materials and Methods

Patient population

Under institutional review board approval, we retro-
spectively identified adult patients with early stage
biopsy-proven NSCLC treated with SABR in our
department who underwent PET/CT imaging at 2 pre-
treatment time points: at diagnosis or staging and at ra-
diation therapy simulation. All patients had no evidence
of nodal disease and received SABR to the primary
tumor. The discovery cohort was treated between
November 2005 and October 2012 and the validation
cohort was treated between January 2012 and April 2016.
No exclusions were made based on age, gender, race,
performance status, or length of time among staging,
simulation, and treatment. Patient charts were retrospec-
tively reviewed for clinical factors and clinical outcomes,
including disease recurrence or death.

Treatment

All patients were treated with SABR, with definitive
intent, and without chemotherapy. Treatment simulation
was performed supine, with arms above the head and with
custom immobilization. Simulation scans typically
included both natural end-exhalation CT and 4-
dimensional CT, as well as PET/CT. For inferior tu-
mors, deep inspiratory breath hold was used. Gross tumor
volume (GTV) was defined on thin-slice CT (1.25 mm
slice thickness) using lung windowing. A clinical target
volume expansion was not used. For tumors with minimal
motion (<0.5-1 cm), a motion-inclusive internal target
volume was defined. Mobile tumors were treated using a
fluoroscopy guided amplitude-based motion management
system (with or without implanted fiducial markers) or
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image guided inspiratory breath-hold technique using
previously described audiovisual biofeedback.'”'® A 0.5-
cm setup margin was added to define the planning treat-
ment volume (PTV).

Patients in the discovery cohort were treated using
CyberKnife (Acurray, Sunnyvale, CA), Varian Trilogy, or
Varian TrueBeam (Varian, Palo Alto, CA) treatment
systems. Patients in the validation cohort were treated
using a Varian TrueBeam system only. SABR at our
institution consists of delivering 25 to 60 Gy in 1 to 8
fractions, using a volumetric modulated arc therapy
technique with 6 to 10 MV photons. Plans were
normalized such that 95% of the PTV was covered by the
prescription dose. Daily treatment setup included
orthogonal planar kilovolt imaging and on-board cone
beam CT with repositioning before treatment delivery.

'8F-FDG PET/CT imaging

PET/CT imaging was performed at diagnosis or stag-
ing and at treatment simulation. No restrictions were
placed on the PET/CT system used. Staging imaging was
performed on GE Discovery LS, GE Discovery ST, GE
Discovery STE (GE Medical Systems, Milwaukee, WI),
Philips Gemini TrueFlight (Philips Healthcare, Andover,
MA), Siemens BioGraph HiRes Model 1080, and
Siemens Biograph TruePoint Model 1093 (Siemens,
Erlangen, Germany) scanners. Before 2012, simulation
scans were performed on a GE Discovery ST platform,
and after 2012 a Siemens Somatom Definition AS plat-
form was used. The PET/CT protocol has been previously
described'' and consists of 8-hour fasting with blood
glucose less than 160 mg/dL before injection of 10 to
18 mCi FDG, 45 to 60 minutes of tracer uptake time, and
PET/CT acquisition with helical CT for attenuation
correction.

PET/CT image analysis

All PET/CT images were evaluated using MiM
Version 6.6.5 (Cleveland, OH) to measure SUV,,,, and
MTV at diagnosis/staging (SUVp,, MTVp,) and at
simulation (SUVgjm, MTVsim); MTV was measured using
the PET Edge (MiM Version 6.6.5) gradient-based seg-
mentation tool consistently by a single observer. This
technique defines the tumor edge by the largest signal
gradient and corresponds with pathologic specimens more
closely than threshold-based techniques.'’ Necrotic re-
gions were included in the MTV. The change in SUV .,
and MTV per unit time in days was calculated to define
the SUVV and MTGR, respectively. Local recurrence
(LR) was defined as biopsy-proven recurrence within the
PTV or increase in the size and focal FDG-avidity within
the PTV leading to a change in clinical management.
Regional recurrence (RR) was defined as biopsy-proven

recurrence outside the PTV but involving the same lobe,
ipsilateral hilum, mediastinum or supraclavicular region.
Distant recurrence (DR) was defined as biopsy-proven
recurrence in any region beyond local or regional
recurrence.

Statistical analysis

The entire cohort of patients was used to develop
univariable and multivariable Cox proportional hazard
models of LR, RR, DR, and overall survival (OS).
Benjamini-Hochberg false discovery rate adjustment was
used. Multivariable Cox proportional hazard models
included SUVV, MTGR, patient age, and MTVg;,, to test
the independent predictive value of temporally inclusive
metrics in the setting of known predictors (e.g., MTV).
Patient, lesion, and imaging characteristics between the
discovery and validation cohorts were also compared
using Student’s ¢ test. Threshold values of SUVV and
MTGR that maximize OS difference were identified in the
discovery cohort using X-tile graphical software.”’ Vali-
dation of thresholds was attempted on the validation
cohort. All statistics were performed in SAS Version 9.4
(SAS Institute Inc, Cary, NC).

Results

Patient, lesion, and treatment characteristics

A total of 152 lesions were evaluated in 143 patients:
92 lesions in 83 discovery cohort patients and 60 lesions
in 60 validation cohort patients (Table 1). Patient and
lesion characteristics were similar between cohorts,
although GTV was significantly larger in the validation
cohort (P = .02). The median biologically effective dose
delivered was similar in both cohorts and greater than
100 Gy. The median prescription dose and fractionation
was 50 Gy delivered in 4 fractions. Of note, a common
SABR dose used to treat small peripheral tumors in our
cohort is 25 Gy in a single fraction, which has a biolog-
ically effective dose of 87.5 Gy (a/B = 10).

Of the discovery cohort, 22 of 83 (26.5%, 15.4% of
full cohort) patients were treated on a CyberKnife plat-
form. Lesions treated by CyberKnife were smaller than
those treated on C-arm linear accelerator platforms with
mean GTV of 10.6 mL (standard deviation, 11.0) versus
15.8 mL (standard deviation, 19.5), respectively, and with
15 of 22 (68.2%) lesions versus 76 of 130 (58.5%) lesions
having volume smaller than 12 mL.

PET/CT image analysis

Sample patient images show cases in which rapidly
changing pretreatment SUVV and MTGR (Fig. 1)
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Table 1  Patient, lesion, treatment, and imaging characteristics
Characteristic Discovery cohort Validation cohort All patients
Median (range) or n (%) Median (range) or n (%) Median (range) or n (%)
Patient/lesion
No. of patients 83 60 143
No. of lesions 92 60 152
Age at treatment end (y) 76 (42-99) 75 (47-91) 76 (42-99)
Female 44 (53) 28 (47) 72 (50)
KPS 80 (50-100) 80 (50-100) 80 (50-100)
Histologic type
Adenocarcinoma 50 (54) 41 (68) 90 (60)
Squamous cell 29 (32) 11 (18) 40 (26)
Other 13 (14) 8 (14) 21 (14)
T stage
T1 64 (70) 38 (63) 102 (67)
T2 26 (28) 22 (37) 48 (32)
T3 2 (2) 0 (0) 2 (1)
Treatment
Diagnosis to treatment (d, interquartile range) 80 (50-119) 63 (39-82) 70 (44-108)
Total dose (Gy) 50 (25-60) 50 (25-60) 50 (25-60)
Fractions 4 (1-5) 3 (1-8) 4 (1-8)
BED 113 (80-180) 105 (80-151) 109 (80-180)
GTV (mL)* 8.6 (0.3-79.9) 11.5 (0.7-150.5) 9.4 (0.3-150.5)
PET/CT imaging
Days between scans (interquartile range) 62 (34-99) 53 (28-69) 56 (30-86)
SUV (U)
Diagnosis/staging 7.3 (0.9-23.4) 6.2 (1.4-22.4) 7.1 (0.9-23.4)
Simulation 9.0 (0.7-33.1) 6.8 (1.3-24.2) 8.2 (0.7-33.1)
MTV (mL)
Diagnosis/staging 3.0 (0.1-39.0) 4.4 (0.3-57.3) 3.7 (0.1-57.3)
Simulation 5.1 (0.02-106.7) 7.9 (0.2-125.7) 5.9 (0.02-125.7)
SUVV (U/d)* 0.02 (—0.44-0.34) 0.01 (—1.28-0.32) 0.02 (—1.28-0.34)
MTGR (mL/d) 0.01 (—0.44-0.70) 0.02 (—0.31-0.88) 0.01 (—0.44-0.88)

Abbreviations: BED = biologically effective dose; GTV = gross tumor volume; KPS = Karnofsky performance status; MTGR = metabolic tumor
growth rate; MTV = metabolic tumor volume; PET/CT = positron emission tomography with computed tomography; SUV = standardized uptake

value; SUVV = SUV velocity.
* P < .05 between discovery and validation cohorts.

resulted in distant recurrence (Fig. la, b) and slowly
changing metrics did not recur after SABR (Fig. Ic, d).

For the entire cohort, the median duration between
scans was 56 days (interquartile range 30-86). SUV .«
and MTV were not significantly different between co-
horts, and the median value of each metric increased from
diagnosis and staging to simulation (Table 1). For the full
cohort, median (range) SUVV and MTGR were 0.02 U/
d (—1.28 to 0.34) and 0.01 mL/d (—0.44 to 0.88),
respectively. SUVV was significantly higher in the dis-
covery cohort compared with the validation cohort
(P < .09).

Clinical outcomes

Median follow-up was 30 months (range,
0-79 months). Median OS for the entire cohort was
47 months, and 2-year OS was 76.3%. The cumulative
incidences of LR, RR, and DR at 2 years were 13.2%,

21.7%, and 19.0% and at 5 years were 25.6%, 36.3%, and
29.5%, respectively. For the discovery and validation
cohorts, median follow-up was 36 and 16 months,
respectively. Kaplan-Meier OS was not different between
groups (P = .73). Median OS was 47 months for the
discovery cohort and was not reached for the validation
cohort; 2-year OS was 80.1% and 68.8% and 3-year OS
was 67.4% and 62.4%, for the discovery and validation
cohorts, respectively (Fig. 2a). The cumulative incidences
of LR, RR, and DR at 2 years were 20.8%, 36.8%, and
32.7% for the discovery cohort and 10.7%, 14.8%, and
16.2% for the validation cohort, respectively. The cu-
mulative incidences of LR, RR, and DR were signifi-
cantly higher in the discovery cohort (P < .01; Fig. 2).

Univariable and multivariable Cox models

In univariable Cox proportional hazard models on the
combined cohort, increasing SUVV trended toward a
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Diagnostic and staging (a) and simulation (b) positron emission tomography with computed tomography (PET/CT) scans of an

81-year-old woman with T2 NO adenocarcinoma of the right upper lung (patient 1) indicate high standardized uptake value velocity
(SUVYV) and metabolic tumor growth rate (MTGR; 0.14 U/d and 0.35 mL/d, respectively); she underwent stereotactic ablative radiation
therapy (SABR; 50 Gy in 4 fractions) and developed distant metastases in the contralateral lung 2 months after treatment, regional
recurrence in the right lower lung 14 months after treatment, and ultimately diffuse metastases. Conversely, the diagnostic and staging
PET/CT scans (c) and simulation PET/CT scans after fiducial placement (d) in a 99-year-old man with T2 NO adenocarcinoma of the
right lower lung (patient 2) indicate low SUVV and MTGR (0.02 U/d and 0.01 mL/d, respectively); he underwent SABR (50 Gy in 4
fractions) and remained free from recurrence after 59 months of follow-up. Standardized uptake value (SUV) and metabolic tumor
volume (MTV) at each time point, as measured from Fig. la, b, ¢, d, are shown in (e) and (f), respectively.

significant increase in hazard of death (hazard ratio [HR],
11.8; 95% confidence interval [CI], 0.85-165.1; P = .07).
SUVYV and MTGR were not significantly associated with
hazard of LR, RR, or DR. Increasing GTV (HR, 0.98;
95% CI, 0.96-1.00; P = .03), MTVp, (HR, 0.95; 95%
CI, 0.90-0.99; P = .02), and MTVg;,, (HR, 0.97; 95% CI,
0.95-1.00; P = .03) were associated with decreased

hazard of DR. After Benjamini-Hochberg false discovery
rate adjustment, no univariable models were statistically
significant, although the association between GTV, MTV,
and SUVV and DR trended toward significance (P = .11;
Table 2).

In multivariable Cox proportional hazard models, there
was a trend toward increased hazard of DR for MTGR
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¢), and distant recurrence (DR; d) for the discovery and validation cohorts.

(HR, 6.98; 95% CI, 0.67-72.61; P = .10). Increasing
SUVV was found to have a large but statistically insig-
nificant hazard for LR (P = .16), RR (P = .17), DR
(P = .17), and OS (P = .12). MTV remained associated
with decreased hazard of DR (HR, 0.96; 95% CI, 0.93-

0.99; P = .01; Table 3).

Table 2

SUVV threshold for survival

Survival was not associated with SUVV or MTGR as
continuous variables, so threshold values of SUVV and
MTGR, to maximally dichotomize high versus low risk of
death, were identified in the discovery cohort. SUVV less

Univariable Cox proportional hazard regression models with Benjamini-Hochberg false discovery rate (FDR) adjustment

Local recurrence

Regional recurrence

Distant recurrence Overall survival

HR (95% CI) P  HR (95% CI) P  HR (95% CI) P FDR HR (95% CI) P

Clinical factors

Age 0.99 (0.95-1.04) 77 097 (0.93-1.01) .12 0.99 (0.95-1.03) .56 0.81 1.03 (0.99-1.06) .10

T stage 0.55 (0.20-1.49) 24 1.09 (0.66-1.78) .74 0.78 (0.37-1.61) .49 0.81 1.09 (0.63-1.90) .75
Treatment factors

BED 1.00 (0.99-1.01) 98 1.00 (0.99-1.01) .89 1.00(0.99-1.01) .99 0.99 1.00 (0.99-1.01) .51

GTV 0.99 (0.97-1.02) 53099 (0.97-1.01) .35 0.98 (0.96-1.00) .03 0.11 1.00 (0.98-1.01) .51
Imaging metrics

SUVpx 1.04 (0.98-1.11) 20 1.04 (0.99-1.09) .15 1.02 (0.96-1.08) .52 0.81 1.01 (0.97-1.06) .61

SUVsim 1.04 (0.99-1.10) .15 1.05 (1.00-1.10) .06 1.01 (0.96-1.08) .65 0.65 1.03 (0.99-1.08) .12

MTVpy 0.99 (0.95-1.04) .69 0.99 (0.95-1.02) .43 0.95(0.90-099) .02 0.11 0.99 (0.97-1.02) .62

MTVsim 0.99 (0.96-1.02) 47 0.99 (0.97-1.01) .27 097 (0.95-1.00) .03 0.11 1.00 (0.99-1.01) .61

SUVV 12.36 (0.38-404.55) .16 4.34 (0.44-42.42) .21 4.00 (0.38-42.57) .25 0.63 11.8 (0.85-165.1) .07

MTGR 0.63 (0.13-2.99) 56 0.51 (0.14-1.93) .32 0.78 (0.18-3.33) .73 0.73 1.07 (0.29-3.94) 91

Abbreviations: BED = biologically effective dose; CI = confidence interval; Dx = at diagnosis; GTV = gross tumor volume; HR = hazard ratio;
MTGR = metabolic tumor growth rate; MTV = metabolic tumor volume; PET/CT = positron emission tomography with computed tomography;
Sim = at simulation; SUV = standardized uptake value; SUVV = SUV velocity.

P-values less than 0.05 are bolded.
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Table 3 Multivariable Cox proportional hazard regression models

Variable Local recurrence Regional recurrence Distant recurrence Overall survival

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P
SUVV 12.03 (0.36-402.74) 16 5.43 (0.58-62.03) A7 5.98 (0.47-76.47) 17 8.30 (0.60-115.59) A2
MTGR 0.67 (0.13-3.31) .62 0.73 (0.09-5.80) 76 6.98 (0.67-72.61) 10 2.78 (0.36-21.16) 32
Age 0.96 (0.92-1.01) .09  0.99 (0.95-1.04) .68 1.03 (0.99-1.06) 18
MTVgim 0.99 (0.97-1.02) Sl 0.96 (0.93-0.99) 01 099 (0.97-1.01) 32

Abbreviations: CI = confidence interval; HR = hazard ratio, MTGR = metabolic tumor growth rate; MTVg;,, = metabolic tumor volume at
simulation; SUVV = standardized uptake value velocity.
P-values less than 0.05 are bolded.

than 0.08 U/d was associated with significantly longer applied to the validation cohort, the SUVV threshold was
median OS (57 vs 32 months, P < .01; Fig. 3a) and not significantly associated with survival (P = .43;
MTGR less than 0.04 mL/d had significantly longer me- Fig. 3c); MTGR threshold was significantly associated

dian OS (57 vs 38 months, P = .048; Fig. 3b). When with a survival difference (P < .01; Fig. 3d). Of note, the
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Fig. 3  Standardized uptake value velocity (SUVV; a, ¢, ¢) and metabolic tumor growth rate (MTGR; b, d, f) thresholds of 0.08 U/
d and 0.04 mL/d, respectively, were identified in the discovery cohort (top row) and applied to the validation cohort (middle row) and
the full cohort (bottom row). MTGR (<0.04 mL/d), but not SUVV, was prognostic of survival.
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validation cohort had only 7 lesions (11.7%) with SUVV
greater than 0.08 U/d. In the full cohort, patients with
SUVYV less than 0.08 U/d and MTGR less than 0.04 mL/
d had longer median OS (54 vs 37 months, P = .10, and
57 vs 37 months, P < .01, respectively; Fig. 3).

Discussion

In patients with early stage NSCLC treated with
SABR, MTGR greater than 0.04 mL/d predicted worse
survival in discovery and validation cohorts. As a
continuous variable, increasing MTGR trended toward
prediction of distant recurrence. Although a threshold
value of SUVV was not validated as prognostic of sur-
vival, increasing SUVV trended toward prognosis of LR,
RR, DR, and worse survival but was not statistically
significantly. These findings suggest MTGR, and possibly
SUVV, may be valuable prognostic imaging biomarkers
akin to doubling time and tumor grade, which are known
prognostic parameters.' "'

Previous studies identified MTV as predictive of dis-
ease progression and death.”'" In apparent contradiction,
single time point volumetric measurements in the present
analysis, such as GTV, MTVp,, and MTVg;,, were
associated with decreased hazard of DR; MTVg;,, was
also significantly associated with decreased hazard in
multivariable models. However, there are at least 2 po-
tential factors that may have contributed to these trends in
our study. First, because the discovery cohort was treated
chronologically earlier than the validation cohort, a
treatment era effect may be a confounder. For example,
22 patients, all in the discovery cohort, were treated on a
CyberKnife platform at a time during which a less accu-
rate effective path length dose calculation algorithm was
used; half of those patients (n = 11) had any disease
recurrence (7 local failures). As previously reported,
effective path length calculation overestimates dose to a
clinically significant degree, an effect that is greater for
smaller tumors.”' Later our institution adopted tumor-
volume adapted dosing of SABR in which doses are
escalated to larger tumors, which mitigates the adverse
prognostic impact of tumor volume™””; our experience
suggests similar clinical outcomes with tumor-volume
adapted therapy, but there may be a control benefit with
higher doses to larger tumors in this cohort. These factors
and others, such as improved staging with more sensitive
PET/CT scanners and increased experience with SABR
over time, may have contributed to the larger number of
recurrences in the discovery cohort despite smaller
tumors.

We attempted to identify threshold values of MTGR
and SUVYV to dichotomize patients into high and low risk
of death. MTGR greater than 0.04 mL/d was prognostic
of worse survival. A SUVV threshold was not validated
when applied to the validation set, potentially because of

the small sample size; only 7 lesions in the validation
cohort had SUVV greater than the threshold. Application
of the thresholds to the full cohort is reported for
completeness but does not represent part of the validation
process. Although temporally separated cohorts can be
used in validation studies,”* this approach may be
vulnerable to advances in technology used for treatment
or measurement of the studied biomarker itself.

Our study had limitations. First, as a retrospective
study, it was vulnerable to recall bias, convenience sam-
pling, and unmeasured confounding. Although this study
was larger than many previous retrospective studies of
PET/CT-based biomarkers, statistical power was limited
by the sample size. Multivariable models were limited to
4 parameters to address the small number of events.
Furthermore, false discovery rate adjustment was imple-
mented for conservative interpretation of single predictor
models. Second, 9 patients with synchronous primary
lung cancers (total of 21 lesions), all in the discovery
cohort, were included in the study to increase power. This
may increase the incidence of recurrence because of the
cumulative risk from 2 independent processes or from
inaccurate staging. Third, this study did not limit the PET/
CT imaging device or technique; a wide variety of
scanners were used, particularly for imaging at the time of
diagnosis/staging. Inter- and intrascanner variability in
SUV and MTV measurement may introduce variability,
including the potential for negative SUVV and MTGR
values. Controlling for scanner variability could have
reduced SUVV and MTGR signal noise within our data
and resulted in a stronger predictive effect but would have
excessively limited our study cohort. On the other hand,
our data represent a real-world implementation of MTGR
and SUVV, and as such offer generalizability of our re-
sults to common scenarios in which staging and simula-
tion are often performed on different scanners. Fourth, the
use of multiple serial pretreatment PET/CT scans is not
currently the standard of care; however, we capitalized on
the routine use at our institution of PET/CT simulation for
thoracic radiation therapy. The median time between
diagnostic and simulation scanning in our study (56 days)
is similar to that reported in other studies” >’ and repre-
sents an area for future work-flow improvement. Our re-
sults suggest that in addition to restaging and upstaging
information, simulation PET/CT may provide novel
prognostic imaging biomarkers.

Conclusions

For patients with early stage NSCLC treated with
SABR, an MTGR threshold of 0.04 mL/d is prognostic of
survival. Our results suggest that increasing MTGR may
be prognostic of distant recurrence and increasing SUVV
may be prognostic of recurrence and death, but larger
studies are warranted. These metrics may be promising to
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study as imaging biomarkers in clinical trials of adding
systemic therapy (chemotherapy or immunotherapy) to
SABR to prevent regional and distant recurrence. Future
studies are needed to more completely validate the
prognostic and potentially predictive value of these
biomarkers.
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