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Revolutionizing immunology with single-cell RNA sequencing
Haide Chen1,2,3, Fang Ye1 and Guoji Guo1,2,3,4,5

The immune system is composed of a complex hierarchy of cell types that protect the organism against disease and maintain
homeostasis. Identifying heterogeneity of immune cells is the key to understanding the immune system. Advanced single-cell RNA
sequencing (scRNA-seq) technologies are revolutionizing our ability to study immunology. By measuring transcriptomes at the
single-cell level, scRNA-seq enables identification of cellular heterogeneity in far greater detail than conventional methods. In this
review, we introduce the existing scRNA-seq technologies and present their strengths and weaknesses. We also discuss potential
applications and future innovations of scRNA-seq in immunology.

Cellular & Molecular Immunology (2019) 16:242–249; https://doi.org/10.1038/s41423-019-0214-4

INTRODUCTION
The immune system is a host defense system comprising many
immune cells. Technical developments in microscopy and flow
cytometry have accelerated the classification of immune cells over
the years. However, these methods are still limited by the number
of parameters for cell-type definition and the prerequisite of prior
knowledge. The classical system is facing the challenge of
understanding the complexity of the immune system, including
the heterogeneity, development, differentiation, and microenvir-
onment of immune cells in health and disease.1

Recently, the advancement of single-cell RNA sequencing
(scRNA-seq) has revolutionized our ability to study the immune
system and break through the bottleneck of immunology studies.
Individual single cells are classified by transcriptome analysis
rather than surface markers. The redefined cell types show the
extreme heterogeneity of immune cells, which is an important
feature of immunology.2 Now we are in the “Age of Discovery.”
Using scRNA-seq, many new cell types and differentiation
pathways can be identified.
These findings inspire researchers to improve scRNA-seq

technology throughput, sensitivity, precision, cost, and conve-
nience. Several cutting-edge scRNA-seq methods and platforms
have been established to satisfy different applications that have
distinct requirements.2,3 In this review, we present an overview of
existing scRNA-seq technologies and discuss their different
strengths and weaknesses. We also describe the main applications
of scRNA-seq in immunology and discuss potential future
innovations.

TECHNICAL ADVANCES IN SCRNA-SEQ
When studying embryology, immunology, physiology, and pathol-
ogy, valuable information may be missed with traditional bulk
analyses. scRNA-seq provides a solution to comprehensively study
multicellular tissues by identifying heterogeneity and characterizing

novel cell types in health and disease samples. These single-cell
characterizations are important to reconstruct developmental
trajectories and cell–cell interactions in tissues. The first scRNA-seq
protocol was established by Tang et al.4 in 2009. A large number of
technical breakthroughs have leveraged advances in single-cell
capture, sample barcoding, cDNA amplification, library preparation,
sequencing, etc. They paved the way for the development and
optimization of a large variety of scRNA-seq platforms. It is now
possible to choose the most suitable technique for a specific
scientific question. Here we review several widely used options and
discuss their workflow, strengths, weaknesses, and applications.

PRINCIPLE OF SCRNA-SEQ
scRNA-seq is a powerful method for analyzing the cell-specific
transcriptome at the single-cell level. The workflow of scRNA-seq
consists of single-cell capture, mRNA reverse transcription, cDNA
amplification, cDNA library preparation, high-throughput sequen-
cing, and data analysis. The number of sequenced reads, which
represents the gene expression level, makes up a digital gene
expression matrix for bioinformatic analysis. Each cell type
possesses a unique transcriptome that can be presented as a
data matrix. Remarkably, current scRNA-seq methods combined
with a distinct single-cell capture platform can meet the diverse
needs of various types of immunological research.

SCRNA-SEQ METHODS
There are approximately 10 pg of total RNA (1–5% mRNA) in a
typical mammalian cell. Among all the scRNA-seq, synthesis of
cDNA from a minute amount of mRNA is obtained by reverse
transcription with poly(T) primers. Approximately 10–20%
of mRNA is reverse transcribed at this stage.5 The efficiency of
reverse transcription determines the sensitivity and precision
of scRNA-seq. Three mainstream strategies are used to perform
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reverse transcription (Table 1). One uses poly(A) tailing followed
by PCR, as in the Tang-seq.4,6 Another method uses second-strand
synthesis followed by in vitro transcription (IVT), such as CEL-seq/
CEL-seq27,8 and MARS-seq.9 However, the premature termination
of reverse transcription significantly reduces transcript coverage at
the 5’ end.10 A third approach uses a template-switching method,
as in STRT-seq11 and Smart-seq/Smart-seq2.10,12 The third
approach can reduce 3’ coverage biases originating from
incomplete reverse transcription and obtain full-length transcript
coverage; it also requires fewer reaction steps, which makes it
more popular. However, the sensitivity of template-switching may
be lower than the first two methods.13

After reverse transcription, cDNA amplification can be per-
formed using two approaches (Table 1), PCR and IVT. PCR is used
in Tang-seq,4,6 STRT-seq,11 and Smart-seq/Smart-seq2.10,12 The
approach may introduce amplification bias during PCR cycles. IVT
is a linear amplification process that is used in CEL-seq/CEL-seq27,8

and MARS-seq.9 However, it includes additional reverse transcrip-
tion of the amplified mRNA that may cause 3’ coverage biases.
Smart-seq/Smart-seq2, which is widely used for single-cell full-
length mRNA analysis, may provide information regarding gene
alternative splicing, gene mutation, and allele-specific expression.
In the general application of gene expression analysis, gene
identification and quantification can be performed using either 3’
(CEL-seq/CEL-seq2 and MARS-seq) or 5’ (STRT-seq14) fragments of
genes, which reduces the number of sequenced reads and cost. In
a study of T cell receptors (TCRs) and B cell receptors (BCRs), 5’ end
sequencing was very important for tracking immune clones.15 To
estimate and control the amplification bias, unique molecular
identifiers (UMIs) are added to label each individual transcript
within a cell during reverse transcription.5 In saturation sequen-
cing, considering the initial mRNA capture efficiency, the absolute
copy number of a transcript in a single cell can be counted using
the number of UMIs. The repeated sequencing reads that arise
from PCR with the same UMIs can be removed in the data analysis
process. Several scRNA-seq methods use this strategy, such as
MARS-Seq,9 updated STRT-Seq,5 and CEL-seq.8

SINGLE-CELL CAPTURE METHODS FOR SEQUENCING
The single-cell capture strategy determines the cost and scale of
single-cell sequencing. Recently, we have seen significant progress
in capture platform development (Table 2). When a biological
sample contains few cells, such as an early embryo, simple
micromanipulation with mouth pipetting4 or laser capture
microdissection (LCM)16,17 can isolate single cells quickly and
accurately. These manual approaches ensure that each isolation
attempt can capture a single cell. The micromanipulation
approach does not require expensive instruments. The LCM
approach can also provide spatial information of individual cells.
However, these manual approaches are technically challenging,
labor intensive, time-consuming, and low throughput. To increase
throughput, flow cytometry is used to place individual cells into
each well of microtiter plates containing lysis buffer. Flow
cytometry is able to analyze hundreds of single-cell samples,
which can be enriched by fluorescent labels. However, the volume
of reaction reagent cannot be scaled down to nanoliter volumes.
This leads to a high molecular reagent cost per cell. To save
reagent and labor costs, single-cell barcodes are introduced into
each cell during reverse transcription.7 After reverse transcription,
all of the cDNAs labeled with cell information, which can be traced
back to their cellular origins, are pooled together for amplification
reactions and library preparation. The single-cell barcoding
strategy is widely used in high-throughput scRNA-seq.
Recently, several commercial platforms have been invented for

convenient use. The Fluidigm C1 system, which currently can
analyze up to 800 cells at a time, applies integrated fluidic circuits
(IFCs) for single-cell capture and mRNA amplification reactions. Ta
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The highly automated microfluidic chip (nanoliter volumes) saves
labor and molecular reagents. The Fluidigm C1 system had high-
quality gene expression readouts in our study.18 However, high-
throughput platforms always make small compromises in
sensitivity and precision,19 which are indicated by gene number
and distribution. The capture efficiency of IFC chips is easily
affected by cellular characteristics. For cells with substantial
differences in size or high viscosity, the Fluidigm C1 system may
bias the population examined and have a low capture rate.
Moreover, the high cost for the automated device and microfluidic
chip also limits its large-scale application.
Cyto-seq, Seq-well, and Microwell-seq20–22 use a microwell array

to capture single cells with high-throughput and at a low cost. In
these microwell platforms, individual single cells are settled into
individual wells by gravity, and then each well is covered by a
barcoded magnetic bead that can capture mRNA after cell lysis.
Our Microwell-seq platform uses agarose plates with 105

microwells to capture 5–10 thousand individual cells. The cell
quality and capture efficiency are estimated under the micro-
scope. Barcoded magnetic beads carrying uniquely oligonucleo-
tides are placed on the plate at a saturated concentration. Because
the beads are sized, only one is trapped into each well. After
removing excess beads, the cells are lysed, and released mRNA is
captured by the beads. The beads are then pooled, followed by
reverse transcription (template switching), cDNA amplification
(PCR), library preparation, and sequencing. Our Microwell-seq
platform has advantages in throughput, convenience, and cost.
Using Microwell-seq, we finished the first mammalian single-cell
atlas,20 the Mouse Cell Atlas (http://bis.zju.edu.cn/MCA/). The
microwell platform is easy to set up without requirements for
expensive instruments. It is easily scalable by using larger
microwell plates. Recently, BD released the Rhapsody system
based on arrays of 200,000 microwells.
Currently, the most popular high-throughput platform is based

on droplet-based microfluidics (microdroplets). This strategy uses
microfluidic and reverse emulsion devices to isolate individual
single cells into thousands of nanoliter droplets that contain lysis
buffer and barcoded beads. In 2015, this approach was first
applied by two academically developed technologies, known as
inDrop23 and Drop-seq.24 Both of them use oil to surround
individual aqueous microdroplets (volume of ~2 nl) that contain
lysis buffer, barcoded beads, and cells. After cell lysis, the
barcoded beads capture released mRNA by the poly(A) tails. For
inDrop, the reverse transcription reactions (second-strand synth-
esis) are performed within the drops, and then cDNAs are
collected and amplified by IVT. For Drop-seq, the beads are all
released from the drops and pooled for reverse transcription
(template-switching mechanism), and then the cDNAs are
amplified using PCR. The microdroplet-based methods use
massive parallelization to increase throughput and minimize labor
and reagent costs, so they have gained popularity, especially in
mapping single-cell atlases for multicellular organisms.25–30

Several commercial platforms based on microdroplets are
available, including Chromium System (10x Genomics)31 and
Nadia (Dolomite Bio, based on Drop-seq). Several comparative
analyses of droplet-based high-throughput scRNA-seq systems
(Drop-seq, inDrop and 10x Genomics) showed that they perform
comparably32,33 and offer satisfactory transcript detection effi-
ciency. Compared with 10x Genomics, both Drop-seq and inDrop
have a cost advantage, which is typically the main concern in
high-throughput analysis. As a commercialized platform, 10x
Genomics, which has a high price tag, has been extensively
optimized to show higher molecular sensitivity and precision with
less technical noise.
An additional promising platform on the horizon is based on “In

situ barcoding.” It adopts several rounds of split-pool to barcode
individual single cells with combinatorial indexing in situ. This
strategy is implemented in Sci-RNA-seq34 and SPLiT-seq.35 TheTa
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methods use fixed single cells as the reaction vessels, which
reduces equipment requirements. After fixing, cells are randomly
divided into a 96-well plate for reverse transcription, which is
carried out inside cells with well-specific primers. Then the cells of
the plate are pooled. After sufficient mixing, these cells are
randomly divided into a new 96-well plate with short, well-specific
oligonucleotides. cDNAs from one cell have the same barcode
order, which they receive from the split-pool process of barcoding.
By increasing the number of split-pool rounds and using 384-well
plates, the number of barcode combinations can hit ten million.
This platform greatly facilitates ultra-high-throughput single-cell
analysis and cuts the cost of library construction for sequencing.

APPLICATIONS OF SCRNA-SEQ IN IMMUNOLOGY
These scRNA-seq protocols, which show distinct characteristics in
throughput, sensitivity, precision, cost, and operability, can meet
the needs of different disciplines, such as neurobiology, stem cell
biology, and immunology. In this review, we focus on applications
in immunology (Fig. 1).

DEVELOPMENT OF THE IMMUNE SYSTEM
Our understanding of immune system development has impor-
tant consequences for both basic research and clinical applica-
tions. For example, using the principle that drives immune system

development, pluripotent stem cells36 and somatic cells37 can be
induced to form immunocompetent hematopoietic stem cells
(HSCs), which are widely used to treat disorders of the blood and
immune system. The earliest definitive hematopoiesis, which
produces HSCs with multilineage potential and long-term
reconstitution ability, is detected at mouse embryonic day (E)
10.5 in the aorta–gonad–mesonephros (AGM) region. Recently,
Zhou et al. applied scRNA-seq to analyze endothelial cells, pre-
HSCs in the AGM region, and HSCs in the fetal liver.38 They found
that pre-HSCs have unique features regarding transcription factor
regulation, signaling pathways, metabolism, and cell cycle status.
They identified a new molecular signature (CD20139,40) for pre-
HSC isolation and revealed the importance of mammalian target
of rapamycin (mTOR) for the emergence of HSCs. In a similar
study, Baron et al. used scRNA-seq to study dynamic gene
expression during endothelial hemogenic specification, intra-
aortic hematopoietic cluster formation, and pre-HSC maturation.41

These studies pave the way for the dissection of complex
molecular changes occurring in the successive steps leading to
HSC formation in vivo and will inform future efforts of HSC
production in vitro for clinical applications.
Several groups also describe the new use of scRNA-seq in the

study of physiological hematopoiesis.42–48 In the classical model of
hematopoiesis, a highly organized and hierarchical hematopoietic
lineage tree starts with long-term HSCs, followed by multipotent,
oligopotent, bipotent, and unipotent progenitors. scRNA-seq

Fig. 1 Mapping the immune cell atlas by single-cell RNA sequencing (scRNA-seq). The advanced technologies in scRNA-seq allows
construction of an immune cell atlas at the single-cell level. The immune cell atlas contains the detailed cellular and molecular signatures of
immune cells from different physiological as well as pathological contexts, tissues, individuals, and species. scRNA-seq can also be combined
with single-cell multi-omic analysis, and spatial gene expression analysis to promote our understanding of the immune system
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provides gene expression profiling to define molecular pheno-
types of cells that extend beyond surface markers. The existence
of these oligopotent and bipotent progenitors has become
controversial.49 Paul et al.45 combined index sorting with MARS-
seq to analyze bone marrow cells (KIT+SCA1−Lineage−) and found
a high heterogeneity of gene expression within the common
myeloid progenitors (CMPs). These CMPs are largely transcription-
ally committed toward a single distinct myeloid fate but are not
progenitors with a mixed state. The comprehensive data challenge
traditional CMPs, which are defined by cell surface markers.
Nestorowa et al.47 used a similar approach to map a single-cell
resolution expression atlas of early blood stem cell differentiation
in mouse bone marrow and provided new insights into dynamic
gene expression during HSC differentiation. Notta et al.48 com-
bined a single-cell functional assay and single-cell transcriptome
analysis to study human hematopoiesis. They found that the
hematopoietic hierarchies are distinct across human develop-
ment. Prenatally, the megakaryocytic lineage is derived from HSCs
and multipotent progenitors. By adulthood, the megakaryocytic
activity only comes from HSCs. In a recent scRNA-seq study of
human hematopoiesis, Velten et al.44 found that individual HSCs
gradually acquire lineage biases without passing through
oligopotent or bipotent progenitors. This indicates a continuous
process of hematopoiesis downstream of HSCs. In a similar human
hematopoiesis study, Karamitros et al.43 suggest the existence of
bipotent and rare multilineage progenitors among lymphoid-
primed multipotential progenitors, granulocyte-macrophage pro-
genitors, and multilymphoid progenitors. In a more recent study,
Jason et al.42 integrated single-cell transcriptomics and chromatin
accessibility analysis to identify continuous differentiation trajec-
tories in early human hematopoiesis. The trajectory of
“HSC–CMP–MEP” provides evidence for common progenitors of
erythroid and myeloid lineages. scRNA-seq is also widely used to
study hematopoiesis in zebrafish.50,51 Altogether, single-cell
analysis helps to identify the heterogeneity of progenitors and
rebuild the hematopoietic lineage hierarchy, which indicates a
more sophisticated way of immune cell differentiation.
The trajectory analysis is also used to study the development

and differentiation of individual immune lineages, including the
early myeloid,52–56 lymphoid,57–60 and megakaryocytic/erythroid
lineage.61,62 Ginhoux et al.53,54 combined scRNA-seq and CyTOF to
unravel the developmental pathways of the human dendritic cell
(DC) lineage. In their model, common DC progenitors in the bone
marrow diverge at the point of emergence of pre-DCs and
plasmacytoid DC potential. The pre-DCs are heterogeneous and
contain one early pre-DC subset and two functionally and
phenotypically distinct lineage-committed subsets (pre-cDC1
and pre-cDC2). The discovery of multiple committed pre-DC
populations and the mechanism of lineage differentiation open
new avenues for therapeutic application. Jaitin et al.55 applied
CRISP-seq, an integrated method of CRISPR-Pooled Screens and
scRNA-seq, to track the development of myeloid cells and identify
the regulatory circuits for lineage differentiation. Olsson et al.56

used scRNA-seq to delineate the myeloid developmental hier-
archy in mice. They identified the mixed-lineage states in myeloid
progenitors and proposed that these progenitors are obligatory
during cell-fate specification.
scRNA-seq is also used in the study of immune cell aging.

Grover et al.63 compared the transcriptomes between young and
old HSCs at the single-cell level. They observed that aged HSCs are
highly biased toward megakaryocyte and platelet differentiation,
which can be rescued by deletion of the platelet transcription
factor FOG1. Recently, Martinez et al.64 used scRNA-seq to analyze
unstimulated and stimulated CD4+ T cells in young and old mice.
They found that the lack of coordination in aged CD4+ T cells is
responsible for impaired immune performance in old mice. Aged
CD4+ T cells with increased cell-to-cell transcriptional variability
respond to immune stimulation more variably, which weakens

their collective effectiveness. scRNA-seq can better explain
mechanisms behind aging that have not been studied before.

CELLULAR HETEROGENEITY IN THE IMMUNE SYSTEM
To fight different pathogens and disorders efficiently, immune
cells have extreme heterogeneity. The heterogeneity is typically
defined by a panel of surface markers, which can be measured
using flow cytometry or mass cytometry. However, these
approaches are limited by the number of chosen markers. Now,
a more powerful approach to perform cell-type identification is
based on single-cell transcriptomic techniques, which can dissect
cellular heterogeneity in far greater detail without prior knowl-
edge of the genes of interest. In human peripheral blood
mononuclear cells, Villani et al.65 found new types of DCs,
monocytes, and progenitors using unbiased scRNA-seq. In
addition, non-immune organs (such as the liver66) also have
specialized immunologic features, including immune cell types
and their distinct subsets, localization, and function. It is time to
map a single-cell atlas for immune cells across all mammalian
tissues that can identify all regional immune cells and system-
atically characterize their localization, gene expression, and
function in distinct organs. Moreover, an atlas would be a
valuable resource for both basic research and clinical applications
in immunology.
In our recent work, we used our Microwell-seq platform to

construct a single-cell mouse cell atlas that covers most immune
cells from major tissues and organs.20 We analyzed the cross-tissue
heterogeneity of tissue-resident macrophages and found that tissue-
resident macrophages increase their specialization to adapt to the
microenvironment and immune functions in different tissues. Mass
et al.67 used scRNA-seq to study the early development of tissue-
resident macrophages and found heterogeneity of transcriptional
regulation in tissue-resident macrophages across different tissues.
De et al.68 combined single-cell gene expression and imaging
studies to identify a self-maintaining population of tissue-resident
macrophages in the gut that support enteric neurons and the
submucosal vasculature. Cohen et al.69 mapped the single-cell atlas
of lung cells during development (E 12.5–Day 7) and found three
different subsets of macrophages. Moreover, using ligand–receptor
interaction analysis, they found that lung resident basophils
are important regulators of alveolar macrophage imprinting. The
immune cells of the placenta play important regulatory roles in
reproductive success. Vento et al.70 finished the first comprehensive
single-cell atlas of the placenta between 6 and 14 weeks of
gestation. Three major subsets of decidual natural killer cells (CD39+

dNK1, ANXA1+ dNK2, and CD160+ dNK3) were defined. dNK1, with
high expression of glycolytic enzymes and HLA I receptors, may be
responsible for the different reproductive outcomes between a first
pregnancy and subsequent pregnancies. In both human tonsils71

and mouse small intestine,72 a heterogeneity of CD127+ innate
lymphoid cells was also identified using scRNA-seq. These results
provide critical insights in the heterogeneity of tissue-resident
immune cells and demonstrate distinct roles of immune cells in
development, homeostasis, and physiology across tissues.

IMMUNE CELLS IN DISEASES
One important role of the immune cell is to fight diseases, such as
cancer, microbial infection, and cell damage. The preliminary
single-cell studies of the composition and development of the
immune system in healthy organisms paved the way for profiling
immune cells in pathological tissues, which may allow for the
identification of molecular drivers of disease, the characterization
of regional immune escape, and a better understanding of the
generation and progression of various diseases.
Infiltrated immune cells in pathological tissues directly contact

pathogens. Single-cell studies on infiltrated lymphoid and myeloid
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cells have provided new insights into diagnosis and treatment of
disease. Both Gaublomme et al.73 and Karmaus et al.74 combined
scRNA-seq and mouse experimental autoimmune encephalomye-
litis models (a model for human multiple sclerosis) to identify the
heterogeneity of pathogenic T helper 17 (Th17) cells. Gaublomme
et al. found that pathogenic Th17 have a wide spectrum of
pathogenicity, spanning from more regulatory to more patho-
genic cells. They also identified several candidate genes (Gpr65,
Plzp, Toso, and Cd5l) related to Th17 pathogenicity. Karmaus et al.
found that Th17 are phenotypically, transcriptionally, and
metabolically heterogeneous, including CD27+ and CD27− sub-
sets. CD27+ Th17 cells with inferred stemness features and low
anabolic metabolism highly express the transcription factor TCF-1.
The reciprocal CD27− subset specifically expresses T-bet. The
transition from CD27+ Th17 to CD27− Th17 cells is mediated by
mTORC1. These results highlight that metabolism regulates the
stability and plasticity of Th17 cells. From a therapeutic
perspective, identification of heterogeneous Th17 cells and
candidate genes and signaling pathways provides new targets
for treatment of excessive inflammation. In breast cancer, Savas
et al.75 found significant heterogeneity in the infiltrating T cell
population. A subset of CD8+ T cells with features of tissue-
resident memory T (TRM) cells express high levels of immune
checkpoint molecules and effector proteins. These cells are
significantly associated with patient survival and prognosis. Azizi
et al.76 also used scRNA-seq to map the breast cancer immune cell
atlas. They observed the phenotypic expansion of intratumoral
immune cells, both lymphoid and myeloid cell lineages. Using
mouse cancer models (colon carcinoma and melanoma), Singer
et al.77 defined distinct gene expression modules (dysfunction,
activation, act/dys, and neither) that are enriched in different
subsets of CD8+ tumor-infiltrating lymphocytes. Tirosh et al.78

analyzed tumor-infiltrating T cells to reveal exhaustion programs
in human metastatic melanoma. Sade et al.79 profiled single-cell
transcriptomes of immune cells from melanoma patients treated
with checkpoint inhibitors. They found that the transcription
factor TCF7 can predict positive clinical outcomes of immunother-
apy. Using scRNA-seq, Lonnberg et al.80 reconstructed the
developmental trajectories of Th1 and Tfh (T follicular helper)
cells in a mouse malaria model. Pathological macrophages are
studied in infection81,82 and mouse Alzheimer models.83 Using
scRNA-seq and mass cytometry, Winkels et al.84 mapped the
immune cell repertoire in mouse atherosclerosis.
The diverse repertoire of TCRs and BCRs, assembled by random

V(D)J recombination, can be used to illustrate T and B cell85 clonal
expansion patterns and lineage tracing. The combination of full-
length (or 5’ complementarity determining regions) TCR or BCR
sequencing86 and high-throughput scRNA-seq is a nontrivial
challenge. Based on both single-cell transcriptome and TCR
sequencing, Zhang et al.87–89 developed an integrated approach,
single T cell analysis by RNA sequencing and TCR tracking
(STARTRAC), to track the dynamic T cell subsets identified in liver
cancer,88 non-small-cell lung cancer,87 and colorectal cancer.89 In
liver cancer, they identified specific markers for regulatory T cells
(Tregs; CCR8 and LAYN) and exhausted CD8+ T (LAYN) cells. Based
on clonal TCRs, they found that tumor-infiltrating exhausted CD8+

T cells mainly evolve from other types of CD8+ T cells inside the
tumor, whereas Tregs are more likely recruited from the periphery.
Moreover, they identified a GZMK+CD8+ T cell cluster as a
transition state from effector to exhausted T cells. In non-small-cell
lung cancer, they identified two clusters of possible “pre-
exhausted” CD8+ T cells, which are associated with a better
prognosis of lung adenocarcinoma. The tumor Tregs also show
heterogeneity with a bimodal distribution of TNFRSF9, a marker
for activated tumor Tregs. TNFRSF9+ Tregs highly express IL1R2,
which is correlated with poor prognosis. In colorectal cancer, they
identified two IFNγ+ Th1-like cell clusters in tumors, including a
GZMK+ effector memory T cell cluster and a CXCL13+BHLHE40+

Th1-like cell cluster. The latter cluster is highly enriched in
microsatellite-instable patients and may contribute to the favor-
able response to immune-checkpoint blockade therapies. More-
over, they compared T cell populations across cancers and found
that T cell patterns were distinct in both tumors and adjacent
normal tissues. In colorectal and liver cancers, exhausted CD8+

T cells and CD4+ Treg cells are enriched, whereas non-small-cell
lung cancer enriches PDCD1−CTLA4−ZNF683+ TRM cells. This
suggests the influence of organ-specific immune characteristics
on tumor immunity and immunotherapies. In a similar study, Li
et al.90 combined scRNA-seq and TCR-seq to analyze tumor-
infiltrating immune cells in human melanoma. They identified the
“bystander” cytotoxic T cells and established the trajectories of
CD8+ T cell dysfunction. Dysfunctional CD8+ T cells, previously
defined as exhausted CD8+ T cells, do not form a specific cell
population but are highly proliferating, clonal, and dynamically
differentiating. Neal et al.15 combined 5’ scRNA-seq and 5’ V(D)J-
seq to determine the tumor-immune microenvironment in tumor
organoid models. These applications, which link repertoire and
transcriptome information at the single-cell level, open new
avenues for investigation of tumor regional immunity (Fig. 1).
Both leukemia and myeloma are tumors of the blood system.

scRNA-seq is also widely used to identify the heterogeneity of
cancerous immune cells. De et al.91 analyzed four T cell acute
lymphoblastic leukemia (T-ALL) samples, in which T-ALL cells
show transcriptional uniformity. They illuminated the mutational
hierarchy and found that, in half of the cases, T-ALL develop-
ment starts from a multipotent progenitor cell. Giustacchini
et al.92 combined single-cell transcriptome analysis with high-
sensitivity mutation detection to reveal the heterogeneity of
cancer stem cells in chronic myeloid leukemia. They also
identified a blast-crisis-specific stem cell population. Ledergor
et al.93 applied scRNA-seq to study the heterogeneity of plasma
cells from multiple myeloma. They found a distinct molecular
characterization of tumor cells in symptomatic and asympto-
matic patients.

CONCLUSIONS AND PERSPECTIVES
Recent studies in immunology have indicated that scRNA-seq
analysis is a powerful tool for reconstructing the trajectory of
development, differentiation, and identification of heterogeneity
in health and disease. By combining single-cell analysis of the
proteome,94,95 genome,96,97 epigenome,98,99 and spatial loca-
tion,16,17,100 scRNA-seq will continue to promote our under-
standing of the immune system (Fig. 1). The ultimate application
for scRNA-seq is to map the immune cell atlas, which contains the
detailed cellular and molecular signatures of immune cells from
different physiological and pathological contexts, tissues, and
species (Fig. 1). Single-cell transcriptional profiling of dynamic
immune cells can characterize transcriptional transition states and
reconstruct a high-resolution trajectory. A molecular map for the
specific immune cell types and gene regulation may provide
robust cellular and molecular targets for disease diagnosis and
treatment. Understanding the differences in the immune micro-
environment across tissues will guide and accelerate both basic
research and clinical applications for cancer. Moreover, we can
compare the immune cell atlas of different species to explore the
evolution of the immune system.
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