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Abstract
To assess the use of plasma free amino acids (PFAAs) as biomarkers for metabolic disorders, it is essential to identify
genetic factors that influence PFAA concentrations. PFAA concentrations were absolutely quantified by liquid
chromatography–mass spectrometry using plasma samples from 1338 Japanese individuals, and genome-wide quantitative
trait locus (QTL) analysis was performed for the concentrations of 21 PFAAs. We next conducted a conditional QTL
analysis using the concentration of each PFAA adjusted by the other 20 PFAAs as covariates to elucidate genetic
determinants that influence PFAA concentrations. We identified eight genes that showed a significant association with PFAA
concentrations, of which two, SLC7A2 and PKD1L2, were identified. SLC7A2 was associated with the plasma levels of
arginine and ornithine, and PKD1L2 with the level of glycine. The significant associations of these two genes were revealed
in the conditional QTL analysis, but a significant association between serine and the CPS1 gene disappeared when glycine
was used as a covariate. We demonstrated that conditional QTL analysis is useful for determining the metabolic pathways
predominantly used for PFAA metabolism. Our findings will help elucidate the physiological roles of genetic components
that control the metabolism of amino acids.

Introduction

Circulating metabolite concentrations in the body can serve
as useful biomarkers for the diagnosis, prognosis, and risk
assessment of diseases, particularly for metabolic disorders
such as diabetes, dyslipidemia, and hypertension [1–8].
Among these metabolites, the free amino acids in plasma
(PFAAs) are key regulators of metabolic pathways, and
their concentrations are influenced by both genetic and
environmental factors, such as the diet [9–14].

Recently, several genome-wide association studies
(GWAS) also identified genetic variations associated with
PFAAs in European populations [9–11, 13, 15]. However,
the influence of heritability and whether these loci are
shared among other human populations are still unknown.
In addition, metabolite concentrations are influenced by
other metabolites within the same metabolic pathway.
Therefore, genome-wide quantitative trait locus (QTL)
analyses conditioned on the other amino acids sharing the
same pathway are necessary.
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In this study, we sought to elucidate genetic determinants
that influence PFAA concentrations. We conducted a QTL
analysis of PFAAs measured by an absolute quantification
method using plasma samples from 1338 Japanese
individuals.

Materials and methods

Subjects and ethics

Participants were recruited from the Nagahama
Prospective Genome Cohort for Comprehensive Human
Bioscience (the Nagahama Study). All of the subjects
were approved by the Institutional Review Board and the
ethics committees of each institute, to which donors
gave written informed consent, in accordance with the
national guidelines.

Absolute quantification of PFAA concentrations

The concentrations of 21 PFAAs from 2,084 individuals
who participated in the Nagahama study in 2008 (n= 1124)
and 2009 (n= 960) were quantified. Blood samples (5 ml)
were collected from forearm veins after overnight
fasting into tubes containing ethylenediaminetetraacetic
acid (EDTA; Termo, Tokyo, Japan). The plasma was
extracted by centrifugation at 2010×g at 4 °C for 15 min and
then stored at –80 °C. After deproteinizing the thawed
plasma samples using 80% acetonitrile, the samples were
subjected to pre-column derivatization, then the absolute
concentrations, the absolute concentrations of the
PFAAs were measured by high performance liquid chro-
matography - electrospray ionization mass spectrometry

(HPLC–ESI–MS). The methods were previously developed
and verified by the authors [16–19].

Quantification was considered successful when the
obtained value was within the determination range of the
calibration curve.

PFAA concentrations for QTL analysis

For the QTL analysis, we prepared three adjusted PFAA
concentrations from the measured absolute concentrations
of PFAAs. The first adjusted concentration was adjusted for
sex and age by linear regression after Box-Cox transfor-
mation. The second was adjusted by the other 20 PFAAs
by multiple linear regression after the first adjustment.
For this regression analysis, explanatory variables were
selected by the step-wise function (stepwiseglm) in
MATLAB, with P= 0.001 and P= 0.01 as inclusion and
exclusion criteria, respectively. The third was adjusted
by one of the other PFAAs by linear regression after the
first adjustment.

SNP genotyping and quality control (QC) process

A total of 1594 samples were genotyped using three com-
mercially available Illumina genotyping arrays (Illumina,
Inc., San Diego, CA): Human610-Quad BeadChip (610 K),
HumanOmni-2.5-Quad BeadChip (2.5M-4), and
HumanOmni-2.5-8 BeadChip (2.5M-8). The 1,124 subjects
recruited in 2008 were genotyped using 610 K (n= 1,113)
or both 610 K and 2.5M-4 (n= 11). The 470 subjects
recruited in 2009 were genotyped using 610 K (n= 101),
2.5M-4 (n= 293), 2.5M-8 (n= 62), or both 610 K and
2.5M-4 (n= 14). In total, 2,638,338 SNPs were genotyped
in the arrays. As shown in Fig. 1, through a sample QC

Fig. 1 Flow diagram of the QC
processes and QTL analyses
using the PFAA concentrations
of Japanese subjects from the
Nagahama Study
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process, 256 samples were excluded from the analysis:
3 genetic outliers identified by principal component
analysis (PCA), 138 relatives, and 115 samples with a
call rate of SNPs < 0.95. Through a marker QC process,
1,200,574 SNPs were excluded: 138,990 SNPs with a
call rate < 0.99, 1,187 SNPs with deviation from Hardy–
Weinberg equilibrium (P < 1.0 × 10–6), and 1,060,397
SNPs with a variant allele frequency < 1%. After the
QC processes, 1,437,764 SNPs in 1338 samples remained
for the GWA studies. Of these, 266,274 SNPs shared
among all of the arrays were defined as intersectional
SNPs. All of the QC procedures were processed using
PLINK ver. 1.07 [20]. Both genotype and PFAA con-
centrations data of Nagahama study is deposited on the
Japanese Genotype-phenotype Archive affiliated to the
DDBJ (DNA Data Bank of Japan), via National Bioscience
DataBase (NBDC), Japan. The data is accessible on
hum0012 at https://ddbj.nig.ac.jp/jga/viewer/permit/dataset/
JGAD00000000012.

Imputation

The 1,437,764 SNPs from 1,338 samples used for the GWA
studies were imputed using MACH ver. 1.0 [21]. An
imputation panel was generated using the genotyping data
of 665 Nagahama Study samples that were not used for the
present GWA analyses and contained the results of
1,560,699 SNPs with Illumina HumanCoreExome Bead-
Chip (Exome), HumanOmni2.5 S BeadChip (2.5 S), 2.5M-
4, and 2.5M-8 arrays. Of these 665 samples, 478 were
genotyped using all of the arrays, and 187 were genotyped
using the Exome, 2.5 S, and 2.5M-4. Imputed SNPs with a
variant allele frequency > 1% or an r2 < 0.5 were excluded
from the subsequent association analysis. Finally, 1,288,202
SNPs from the 1338 samples were fixed with 1,021,918
additional SNPs.

QTL analysis

For the three PFAA concentrations described above,
QTL analysis was conducted with a an additive model
implemented in PLINK [2.0]. The genome-wide
significance threshold after Bonferroni correction was
P < 3.88 × 10–8.

Direct genotyping

The direct genotyping of two imputed SNPs (rs1744297
and rs2238732) was performed with TaqMan® SNP Gen-
otyping Assays using the ABI PRISM 7700 system
(Applied Biosystems, Foster City, CA). The genotyping
success rates were 98.7% (1917/1942) and 98.6% (1915/
1942) for rs1744297 and rs2238732, respectively.

In silico analysis of genetic variants

The exome sequencing data of 300 Japanese individuals
from the Human Genetic Variation Database (HGVD) were
used to identify candidates for genetic variants with a
functional impact on PFAA concentrations [22, 23]. Pair-
wise linkage disequilibrium (LD) coefficients (r2) were
calculated using PLINK [20]. The impacts of the non-
synonymous variants were predicted using the Ensembl
Variant Effect Predictor [24], which is based on the SIFT
[25] and PolyPhen [26] algorithms. Expression QTL
(eQTL) analysis data (release version 8.0) were also
downloaded from the HGVD [22].

Results

PFAA profiling

We measured the PFAA concentrations by an absolute
quantification method using HPLC–ESI–MS [16–19]. The
concentrations of 21 PFAAs were quantified successively in
all of the samples (N= 2,094). The PFAA concentrations in
the 1,338 samples used for GWAS are summarized with
biochemical parameters in Table 1. The means, standard
deviations, and ranges of the absolute concentrations were
comparable to those obtained in an independent study in a
Japanese population, except for arginine, glutamate, and
ornithine [27]. The averaged levels of glutamate and orni-
thine higher, and that of arginine was lower, than in the
previous study.

QTL analysis of PFAAs (GWAS-1)

A flow diagram of the QC processes and QTL analyses is
shown in Fig. 1. The first QTL analysis was conducted for
each PFAA concentration, which was adjusted for sex and
age after Box-Cox transformation, with 266,274 intersec-
tional SNPs of 1338 samples (GWAS-1). Twenty-eight
SNPs in four loci were significantly associated with glycine,
serine, glutamine, and phenylalanine (Fig. 2a and Table 2).
The strongest association was observed in the CPS1 locus
on chromosome 2 for the glycine concentration
(rs12613336, P= 2.07 × 10–70). CPS1 encodes mitochon-
drial carbamoyl-phosphate synthase 1 (CPS-I), a key
enzyme in the urea cycle, which generates carbamoyl-
phosphate from H2O, CO2, and ammonia. Two chromoso-
mal loci showing significant associations with the serine
concentration were identified: the PSPH locus on chromo-
some 7 (rs13244654, P= 1.80 ×10–21) and the CPS1 locus,
which was also associated with the glycine concentration
(rs12613336, P= 4.77 × 10–12). PSPH encodes phospho-
serine phosphatase (PSPH), which catalyzes the hydrolysis
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of 3-phosphoserine to generate serine. In addition, the GLS2
locus and the PAH locus on chromosome 12 were asso-
ciated with the concentration of glutamine (rs7302925, P=

9.73 × 10–11), and phenylalanine (rs17450273, P= 6.60 ×
10–10), respectively. GLS2 encodes glutaminase, which
catalyzes the hydrolysis of glutamine to glutamate and
ammonia, and PAH encodes phenylalanine hydroxylase.

Next, we performed imputation using the genotyping
results of 665 samples that were unrelated to those used for
the present GWA study. The additional imputed genotypes
of 1,021,928 SNPs were used for the QTL analysis. We
identified two additional chromosomal loci in which mul-
tiple SNP markers showed a significant association with
PFAA concentrations (Fig. 2b and Table 2): the ASPG
(putative asparaginase) locus on chromosome 14 for
asparagine (rs1744297, P= 1.30 × 10–51) and the PRODH
(proline dehydrogenase) locus on chromosome 22 for pro-
line (rs2238732, P= 5.96 × 10–40). To confirm these
associations, these two SNPs were genotyped for the same
DNA samples using the Taqman assay (Table 3). We
obtained P= 2.36 × 10–48 for rs1744297 and P= 5.78 ×
10–36 for rs2238732, and the concordance rates between the
imputed and directly genotyped SNPs were 98.6% (1300/
1319) and 97.6% (1289/1321) for rs1744297 and
rs2238732, respectively.

The imputation analysis identified six additional chro-
mosomal loci with potential associations. However, only
one SNP marker showed a significant association for each
locus, so no further analysis was performed. The 151 SNPs
showing significant associations either by genotyping or by
imputation are listed in Table S1.

QTL analysis of PFAAs conditioned on the other
amino acids (GWAS-2)

We next conducted QTL analysis using the concentration of
each PFAA adjusted using the other 20 PFAAs as covari-
ates (GWAS-2 in Fig. 1). The optimal regression models for
each PFAA were constructed using a step-wise variable
selection method (Table S2). Two additional association
loci were identified by the conditional QTL analysis (Fig. 2c
and Table 2). The strongest association was observed at a
non-synonymous variant, rs56335308, in the SLC7A2 (a
solute carrier family 7, cationic amino acid transporter) gene
on chromosome 8 for arginine (P= 2.64 × 10–16) and
ornithine (P= 4.70 × 10–14). The other was the PKD1L2
locus on chromosome 16 for glycine (rs8059153, P= 1.46
× 10–8). This gene encodes a member of the polycystin
protein family. In addition, an association was found
between rs2238732 in the PRODH locus and the alanine
concentration (P= 7.10 × 10–11). On the other hand, the
significant association between serine and the CPS1 locus
disappeared (P= 0.63). The other six associations main-
tained significant levels after the conditional analysis. The
209 SNPs identified as significant in GWAS-2 are listed in
Table S3.

Table 1 Clinical characteristics and PFAA concentrations of the
1,338 subjects in this study

N (%)

Total 1338

Women 873 (62.5%)

Current smoker 256 (18.3%)

Diabetes mellitus 63 (4.5%)

Prevalent cardiovascular disease 49 (3.7%)

Prevalent cancer 48 (3.4%)

Mean (SD) Range

Age, years 49.8 (14.6) 30–75

Body-mass index, kg/cm2 22.1 (3.2) 14–41

Systolic blood pressure, mmHg 127.6 (17.4) 84–230

Diastolic blood pressure, mmHg 80.1 (11.1) 50–138

Blood glucose, mg/dL 92.1 (22.2) 68–572

HbA1c, % 5.38 (0.60) 4.23–14.22

Insulin, μIU/mL 6.15 (7.70) 0.77–118.00

Total cholesterol, mg/dL 203.0 (34.9) 86–338

HDL cholesterol, mg/dL 65.0 (16.6) 27–122

LDL cholesterol, mg/dL 120.4 (31.4) 26–240

Triglyceride, mg/dL 95.4 (68.0) 21–930

Free fatty acid, mEq/L 0.73 (0.29) 0.14–2.11

Total protein, g/dL 7.3 (0.4) 5.9–9.5

Albumin, g/dL 4.5 (0.2) 3.0–5.2

Amino acids, µM

alanine (Ala) 319.3 (71.0) 169.5–646.4

alpha-amino-butyric acid (a-ABA) 16.4 (5.1) 4.2–59.9

arginine (Arg) 63.2 (18.2) 13.6–174.5

asparagine (Asn) 45.7 (8.0) 26.3–93.4

citrulline (Cit) 31.0 (8.2) 9.9–110.3

glutamate (Glu) 53.2 (19.3) 19.1–176.9

glutamine (Gln) 541.6 (69.2) 185.6–757.7

glycine (Gly) 225.6 (64.4) 90.7–717.9

histidine (His) 77.8 (10.1) 49.0–220.3

isoleucine (Ile) 56.5 (13.7) 24.0–119.9

leucine (Leu) 111.2 (23.0) 58.2–198.9

lysine (Lys) 171.5 (32.7) 84.7–326.4

methionine (Met) 21.9 (4.7) 11.5–60.3

ornithine (Orn) 82.8 (22.1) 31.3–181.8

phenylalanine (Phe) 54.5 (8.5) 34.3–95.9

proline (Pro) 133.5 (45.7) 53.7–559.9

serine (Ser) 112.7 (21.9) 42.0–215.2

threonine (Thr) 115.1 (28.1) 54.5–287.9

tryptophan (Trp) 50.1 (8.8) 27.2–81.9

tyrosine (Tyr) 56.8 (11.9) 27.1–130.9

valine (Val) 200.8 (41.0) 110.5–366.9
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QTL analysis of PFAAs adjusted conditioned on one
of the other amino acids (GWAS-3)

We also conducted QTL analyses of 21 PFAAs condi-
tioned on one of the six PFAAs (asparagine, glutamine,
glycine, phenylalanine, proline, and serine) identified as
significant in the above studies (GWAS-3 in Fig. 1). The
significant association between serine and the CPS1
locus disappeared when glycine was used for the
adjustment (P= 0.002) (Fig. 3a). In contrast, significant
associations between five PFAAs (arginine, asparagine,
glutamine, ornithine, and threonine) and the CPS1 locus
were still apparent when glycine was used as a covariate
(Fig. 3a).

When asparagine was used as a covariate, rs1744297
in the ASPG locus showed additional associations
with ten PFAAs: alanine, glutamine, histidine, lysine,
methionine, ornithine, serine, threonine, tryptophan, and
tyrosine (Fig. 3b). Rs2238732 in the PRODH locus also
showed an association with seven PFAAs (alanine, iso-
leucine, leucine, ornithine, threonine, tyrosine, and
valine) (Fig. 3c) using proline as a covariate. Similarly,
significant associations were observed in PSPH for
threonine using serine (P= 3.82 × 10–8) and in PAH for
methionine using phenylalanine (P= 1.91 × 10–9) as a
covariate. All of the statistics in GWAS-3 are listed in
Table S4.

In silico analysis for the functional interpretation of
the association between identified SNPs and PFAA
concentrations

In the above analyses, three of the eight loci that showed
significant associations, namely, rs56335308 in GLS2,
rs2657879 in PRODH, and rs450046 in SLC7A2, were non-
synonymous variations with potential functional effects on
PFAA concentrations (Table S1). We tried to identify non-
synonymous SNPs that were in strong LD with the SNPs
showing significant associations within the eight loci in
the above analysis, by conducting an in silico analysis
using pair-wise LD information in the HGVD exome
sequencing data set [23]. Among the 223 SNPs with LD

Fig. 2 Regional association plots of the six loci significantly asso-
ciated with PFAA concentrations (n= 1338). a Association was sig-
nificantly identified from genotyped data. b Association was
significantly identified after imputation. Chromosomal positions and P
values for genotyped SNPs (red) and imputed SNPs (blue) are shown.
c Chromosomal positions and P values for genotyped SNPs (red) and
imputed SNPs (blue) of the conditional (upper) and unconditional
(lower) analyses are shown. Dotted lines indicate the genome-wide
significance threshold after Bonferroni correction. Brightness of the
red color in the linkage disequilibrium (LD) blocks corresponds to the
strength of LD
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coefficients (r2) greater than 0.8 with SNPs significantly
associated with PFAAs, four non-synonymous variants were
identified: rs1047891 in CPS1, rs8012505 in ASPG,
rs8054182 in PKD1L2, and rs5747933 in PRODH
(Table S5). The predicted functional impacts of these var-
iants were not deleterious to the gene products except for
ASPG. There were no non-synonymous variants for the
PSPH or PAH gene.

We next investigated whether these SNPs within the
eight loci identified in the current study or those that were in
strong LD with them influenced gene expression using the
HGVD expression QTL (eQTL) information [22]. We
found that rs4948073, which was located approximately
240-kb downstream of the PSPH gene, showed the stron-
gest association with the expression level of the PSPH gene

(P= 3.03 × 10–46). There were no significant eQTLs for the
other six loci.

Discussion

In this study, we conducted a QTL analysis of the absolute
concentrations of PFAAs quantified by LC-MS technology.
The concentration of a PFAA can be influenced by other
PFAAs within the same metabolic pathway. Therefore, it is
also important to perform conditional QTL analysis con-
sidering the amino acids’ metabolic pathways when identi-
fying the genetic determinants of PFAA concentrations.
Notably, here we identified two additional genetic loci
associated with the concentrations of arginine, ornithine, and
glycine (Table S2). One of the identified genes, SLC7A2 was
associated with arginine and ornithine. This protein is
known to transport plasma arginine into cells for protein
synthesis and to convert arginine into ornithine or nitric
oxide [28]. SLC7A family members, such as SLC7A5,
SLC7A6, and SLC7A9, are associated with plasma trypto-
phan, lysine, and arginine, respectively [9, 13, 29, 30]. Thus,
it is likely that genetic variations of SLC7A2 would affect the
plasma concentration of arginine and ornithine. The other
identified gene, PKD1L2, which showed an association with
glycine concentration, encodes polycystic kidney disease
protein 1-like 2. Previous studies suggested that genetic
variation of the PKD1L2 gene may be associated with high-
density lipoprotein cholesterol [31, 32]. Rs8054182, which
has strong LD with rs8059153 (r2= 0.989), introduces an
amino acid change from methionine to isoleucine at position

Fig. 3 Strength of the associations of three loci (CPS1, ASPG,
and PRODH) conditioned on other PFAA concentrations. P values
for the SNPs conditioned on other PFAA concentrations are plotted
as bars

Fig. 4 Metabolic pathways relevant to genotype-PFAA associations.
The six PFAAs (red) were associated with genotypes in the genes
(yellow). THF tetrahydrofuran, 5-CH3-THF 5-methyltetrahydrofolate,
5,10-CH2-THF 5,10-methylenetetrahydrofuran, NH4

+ ammonium ion,
GCS glycine cleavage system, SDH serine dehydratase, SHMT serine
hydroxymethyltransferase
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1630, which is in the conserved ion channel pore region
[33]. It is therefore possible to speculate that PKD1L2 acts
as part of a glycine transporter (Fig. 4).

Significant associations of CPS1 with the plasma levels
of arginine, asparagine, glutamine, ornithine, and threonine
were observed only after being conditioned on glycine
(Fig. 3a). Asparagine and glutamine syntheses have CPS-I
in their upstream pathway (Fig. 4). Threonine is also
involved in the ammonia-generating reaction mediated
by L-serine dehydratase/L-threonine deaminase [34]. Both
arginine and ornithine are involved in the urea cycle, which
is the downstream pathway of CPS-I (Fig. 4). These
mechanisms suggest that the plasma concentrations of these
five PFAAs are influenced by the enzymatic activity of
CPS-I. Similarly, associations exist for ASPG for ten
PFAAs were obtained only after being conditioned on
asparagine (Fig. 3b). Rs8012505, a non-synonymous SNP
that has strong LD with rs1744297, is located at the pro-
visional cytoplasmic asparaginase I (ansA) domain and
changes serine to arginine at position 344. We speculate that
ASPG can use these ten PFAAs as substrates for deami-
nation. Similarly, significant associations of PRODH for
seven PFAAs were obtained only after being conditioned on
proline, suggesting that PRODH can use them as substrates
(Fig. 3c). In some situations, use of heritable covariates
might introduce unintended bias into estimate [35]. Direct
enzymatic verification whether ASPG and PRODH can
catalyze other amino acids than asparagine and
proline, respectively, will be desirable to confirm our
speculations.

We also demonstrated that the conditional QTL ana-
lysis is useful for determining the metabolic pathway
predominantly used for PFAA metabolism. For example,
the concentration of plasma glycine is correlated with that
of serine (r= 0.54), and the significant association
between serine and CPS1 in the unconditional QTL ana-
lysis disappeared when conditioned on glycine (Fig. 3a).
In contrast, the significant association between glycine
and CPS1 was not affected by the analysis conditioned on
serine (Fig. 3a). CPS-I is considered an entrance to the
urea cycle, which detoxifies the ammonia that is produced
by amino acid degradation. Two separate pathways that

generate ammonia are likely to be involved in this pro-
cess. The first is the conversion of glycine to ammonia
catalyzed by the glycine cleavage system (GCS) with
tetrahydrofolate production [36]. The second is the con-
version of serine to ammonia and pyruvate, which is
catalyzed by serine dehydratase [37]. In addition, glycine
and serine are reversibly converted to each other via
serine hydroxymethyltransferase [38]. The study of
hyperglycinemia, an inborn deficiency of GCS, revealed
that GCS plays a critical role in both glycine and serine
catabolism in the liver [36]. The results of the conditional
QTL analysis in the present study were consistent with
previous clinical observations.

It is still unknown whether common variants that
influence the concentrations of plasma amino acids are
associated with risks of lifestyle-related metabolic dis-
eases. For example, although the plasma glycine con-
centration is associated with an increased risk of diabetes
[7, 8, 39], no genetic variants that are significantly asso-
ciated with a risk of diabetes have been identified within
the CPS1 locus [12]. Further longitudinal studies with
increased sample sizes are needed to assess whether the
PFAA concentrations can be used as intermediate bio-
markers for metabolic disease risk under a variety of
genetic backgrounds.
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Table 3 Direct genotyping assay of ASPG and PRODH loci

Locus (rs ID) Genotyped samples Validation samples Combined data set

Beta(SEa) r2 P value N Beta(SEa) r2 P value N Beta(SEa) r2 P value N

ASPG
(rs1744297)

0.79 (0.05) 0.15 2.36 × 10–48 1319 0.83 (0.07) 0.19 2.40 × 10–28 598 0.81 (0.04) 0.16 1.04 × 10–74 1917

PRODH
(rs2238732)

0.64 (0.05) 0.11 5.78 × 10–36 1321 0.67 (0.07) 0.14 1.21 × 10–20 594 0.65 (0.04) 0.12 2.33 × 10–54 1915

astandard error
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