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Abstract
Clinical exome sequencing (CES) has become the preferred diagnostic platform for complex pediatric disorders with
suspected monogenic etiologies. Despite rapid advancements, the major challenge still resides in identifying the casual
variants among the thousands of variants detected during CES testing, and thus establishing a molecular diagnosis. To
improve the clinical exome diagnostic efficiency, we developed Phenoxome, a robust phenotype-driven model that adopts a
network-based approach to facilitate automated variant prioritization. Phenoxome dissects the phenotypic manifestation of a
patient in concert with their genomic profile to filter and then prioritize variants that are likely to affect the function of the
gene (potentially pathogenic variants). To validate our method, we have compiled a clinical cohort of 105 positive patient
samples that represent a wide range of genetic heterogeneity. Phenoxome identifies the causative variants within the top 5,
10, or 25 candidates in more than 50%, 71%, or 88% of these exomes, respectively. Furthermore, we show that our method
is optimized for clinical testing by outperforming the current state-of-art method. We have demonstrated the performance of
Phenoxome using a clinical cohort and showed that it enables rapid and accurate interpretation of clinical exomes.
Phenoxome is available at https://phenoxome.chop.edu/.

Introduction

Individual Mendelian pediatric diseases are rare, yet
approximately 8% of the worldwide population is diag-
nosed with at least one genetic disorder before reaching
adulthood [1]. Exome and genome sequencing have rapidly
altered the landscape of clinical genetics by enabling
researchers and physicians to make novel gene-disease
associations [2] and precise molecular diagnoses [3].
However, molecular testing using Clinical Exome Sequen-
cing (CES) remains challenging with only about 30% of
patients receiving a definitive diagnosis [4]. Making a
diagnosis is often complicated by the sheer volume of
variants detected and the presentation of overlapping phe-
notypic characteristics in affected individuals [5].

A carefully designed analysis workflow is essential for
high quality interpretation of CES [6]. Clinical correlation,
which includes concurrent assessment of the patient’s
phenotypes and genotypes, is central to the overall inter-
pretation [7]. During this step, putative causative genes and
variants that may contribute to the clinical findings are
identified. Nonetheless, clinical correlation is often time

* Ahmad N. Abou Tayoun
ahmad.tayoun@ajch.ae

* Mahdi Sarmady
sarmadym@chop.edu

1 Division of Genomic Diagnostics, Department of Pathology and
Laboratory Medicine, The Children’s Hospital of Philadelphia,
Philadelphia, PA, USA

2 Department of Biomedical and Health Informatics, The Children’s
Hospital of Philadelphia, Philadelphia, PA, USA

3 Department of Pathology and Laboratory Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA

4 Department of Pediatrics, Perelman School of Medicine at the
University of Pennsylvania, Philadelphia, PA, USA

5 Division of Human Genetics, Department of Pediatrics, Roberts
individualized Medical Genetics Center, The Children’s Hospital
of Philadelphia, Philadelphia, PA, USA

Supplementary information The online version of this article (https://
doi.org/10.1038/s41431-018-0328-7) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0328-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0328-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-018-0328-7&domain=pdf
http://orcid.org/0000-0002-4957-2910
http://orcid.org/0000-0002-4957-2910
http://orcid.org/0000-0002-4957-2910
http://orcid.org/0000-0002-4957-2910
http://orcid.org/0000-0002-4957-2910
http://orcid.org/0000-0003-1159-8354
http://orcid.org/0000-0003-1159-8354
http://orcid.org/0000-0003-1159-8354
http://orcid.org/0000-0003-1159-8354
http://orcid.org/0000-0003-1159-8354
http://orcid.org/0000-0002-1542-1305
http://orcid.org/0000-0002-1542-1305
http://orcid.org/0000-0002-1542-1305
http://orcid.org/0000-0002-1542-1305
http://orcid.org/0000-0002-1542-1305
http://orcid.org/0000-0001-6069-804X
http://orcid.org/0000-0001-6069-804X
http://orcid.org/0000-0001-6069-804X
http://orcid.org/0000-0001-6069-804X
http://orcid.org/0000-0001-6069-804X
https://phenoxome.chop.edu/
mailto:ahmad.tayoun@ajch.ae
mailto:sarmadym@chop.edu
https://doi.org/10.1038/s41431-018-0328-7
https://doi.org/10.1038/s41431-018-0328-7


consuming and requires extensive medical and genetic
expertize [8].

The use of prior biological and clinical knowledge,
such as previously known disease-causing genes and
variants, can assist in gene-disease clinical correlation [9].
A number of databases [10–12] that curate gene-disease
associations have been developed, along with several
computational variant annotation tools, which are now
routinely used in CES [13–15]. Detailed phenotypic
information greatly enhances the diagnostic power of
exome sequencing, prompting an array of phenotype-
driven approaches that often employ machine learning
methods, including eXtasy [16], Phenomizer [5], PHIVE
[17], Phevor [18], PhenIX [19], Phen-Gen [20], SimReg
[21], Phenolyzer [22], and PVP [23]. Most of these tools
use the vocabulary from the Human Phenotype Ontology
(HPO) [24] to describe a patient’s phenotypic
abnormalities.

These tools have clearly demonstrated the utility of
using gene-curated phenotype data to improve disease
gene identification. Most of these approaches have been
validated on a large number of simulated scenarios, but a
limited number of clinical samples. However, in some
cases, clinician evaluation of variants has been shown to
outperform computational approaches. [25]. Additionally,
none of these machine-learning based tools have been
validated on a large-scale clinical sequencing cohort. As
variant interpretation remains a challenge for clinical
laboratories, continuous refinement of computational
algorithms is necessary.

Here, we present a computational framework, Phe-
noxome, to filter and then prioritize candidate variants
using population frequency, deleteriousness and clinical
relevance of the affected gene (Fig. 1). Phenoxome uses
two inputs, (i) a variant call format (VCF) file represent-
ing the genotypes of the affected individual, and (ii) a set
of symptoms described using HPO terms. Our approach
first filters the variants according to rarity, predicted
protein effects and other prior knowledge. Following this,
Phenoxome generates a personalized gene panel (PGP)
derived from the phenotypic manifestations, and each
gene in the PGP is scored based on its potential invol-
vement in these phenotypes. Finally, each variant is
prioritized based upon a composite score combining the
knowledge inferred from both variant level and gene level
information. We first evaluate the performance of our
method on comprehensive computational simulations of
different scenarios. We then demonstrate the effectiveness
of Phenoxome using 105 positive clinical exomes from
Children’s Hospital of Philadelphia (CHOP). Our
approach outperforms the state-of-art method by yielding
superior overall rankings of the causative variants of the
clinical samples.

Material and methods

Variant annotation and filtration

Variants are first annotated using SnpEff package v4.214

with hg19 RefSeq database. In addition, the variants
are also annotated with the Human Gene Mutation
Database (HGMD) v2017.210, and minor allele fre-
quencies from the Genome Aggregation Database
(gnomAD) v2.0 [26].

Similar to the clinically-validated strategy implemented
at CHOP [27], Phenoxome retains a variant if it meets one
of the following criteria:

● AF < 1% in gnomAD and classified as disease mutation
(DM or DM?) in HGMD

● AF < 0.2% in all sub-populations in gnomAD and
predicted to alter protein or splice sites (i.e splice
acceptor/donor, stop retained/gained, start/stop loss,
inframe deletion/insertion, frameshift and missense
variants)

A detailed variant filtering scheme is demonstrated in
Fig. 2.

Global variant prioritization strategy

In Phenoxome, each variant that passes filtration receives
a composite score reflecting its likelihood of affecting
the protein’s function and causing disease, and hence a
ranking of the variants is achieved based upon the scores.
We define a pathogenic variant as a disease causing
variant in the context of a patient’s phenotypes. Similar
to other approaches [19, 20], the composite score of each
variant is constructed using a deleterious score and a
phenotypic relevance score, derived from variant
level and gene level measurements, respectively. A var-
iant level score usually indicates the disruptiveness of
the variant, inferred by characteristics such as rarity,
evolutionary conservation and predicted functional
impact [28]. A gene level score generally reflects the
assessment of the affected gene’s functional involvement
in the observed phenotypes. Unlike other approaches
that calculate the composite score by averaging the var-
iant score and the gene relevance score [17, 19], our
approach assigns greater weight to the phenotypic com-
ponent while generating the overall score of a variant.
This empirical implementation was derived from the
clinical observation that most of the rare variants
with disruptive protein effects were harbored by
genes that shared little or no known disease overlap
with the phenotypic manifestation of the affected
individual.
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Deleterious score

Each of the variant that passes filtration is evaluated and
assigned a deleterious score based upon its predicted
functional impact and HGMD label. Inspired by clinical
protocols classifying variants into different categories
[29], we implement a tier system to triage the variants
into three different bins. A variant is deemed the most
damaging if it is in HGMD with a DM/DM? class (bin 1).
The damage level is deemed high if the functional impact
of a non-HGMD variant is any of the following: splice
site aberration, frameshift, stop gain, start loss or stop
loss (bin2). The rest of the variants are deemed medium
damaging if the predicted effects include missense,
inframe deletion or insertion (bin3). Binned variants are
given a deleterious score of 1.0, 0.8, and 0.6 for bins 1, 2,
and 3 respectively (Fig. 2).

Phenotypic relevance score

Variants are also assessed on the gene level using HPO.
HPO is a computational representation of a wide collec-
tion of phenotype abnormalities in human. Each of the
phenotypes in the vocabulary is annotated with genes
implicated with the clinical symptoms, curated from
resources including OMIM [11] and Orphanet [30].
Because of its strictly controlled and standardized voca-
bulary, hierarchical structure and well-defined

phenotype-gene relationships, HPO has become an ideal
resource for clinical phenotyping [31].

Phenotypic terms in HPO are organized in a directed
acyclic graph where they are associated by “is a” rela-
tionships. An “is a” relationship indicates that one phe-
notype is a subclass of another phenotype that is a more
generic parent term [32]. For instance, Abnormality of the
atrial septum “is an” Abnormality of the cardiac setpa
which “is an” Abnormal heart morphology. The design of
Phenoxome takes the advantage of the hierarchical
structure of HPO and assembles a Personalized Gene
Panel (PGP) for each patient, where each gene of the PGP
is potentially associated with the input phenotypes. Our
approach starts from each of the provided phenotypes,
and then traverses down the ontology tree to retrieve all
of its direct and indirect subclass nodes/phenotypes until
a terminal node is encountered (Fig. S1). The nature of “is
a” associations guarantees that all of the children nodes
are essentially subclasses of the primary phenotypes by
the definition of the hierarchy. In addition, to account for
imprecision in selecting the primary phenotypes in clin-
ical scenarios, the algorithm also visits the immediate
parent nodes of the input phenotypes. The original terms
describing the phenotypes of the patient are considered
primary, while the terms retrieved during the extension
process are termed secondary. Following this, PGP is
compiled to collect all of the genes associated with any of
the primary or secondary phenotypes. These genes are

Fig. 1 Step-wise schema of Phenoxome’s overall workflow. a Raw
variants yielded from sequencing the patient’s exome and subsequent
bioinformatics analysis. Blue rectangles imply genes and ovals indi-
cate variants. b Variants annotated by Phenoxome using a series of
bioinformatics resources. Distinct color schemes indicate different
predicted effects on protein products. c Variants retained after filtering
procedure depending on HGMD annotations, population allele fre-
quency and functional effects. d Variants deleterious score are derived

from the tier strategy where a darker color implies a more disruptive
variant. e Genes harboring post-filtered variants are assigned pheno-
typic relevance scores inferred by their associations with relevant
phenotypes in HPO. A darker color implies the gene is more pertinent
to the patient’s phenotypic manifestation. f Each of post-filtration
variants receives an overall score by integrating both variant deleter-
ious score and the gene’s phenotypic relevance score. Hence a global
prioritization of the variants is achieved in the framework
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reported to have caused corresponding symptoms and
therefore are potentially relevant to the patient’s
phenotypes.

Once Phenoxome identifies the primary and secondary
terms, and a sub-graph of the HPO tree containing all of
the nodes and their parent-child relationships is also
generated, we then employ a network-based approach,
PageRank with Priors [33], to prioritize each phenotype
in the sub-graph. The algorithm evaluates the significance
of each node of a graph with a clear-defined transition
matrix by imitating a random walker surfing the graph.
Starting from a root node, the surfer selects an outgoing
edge from the current node randomly to jump to the next
node in each iteration. The algorithm converges when the
significance scores of the nodes become steady. In a
directed acyclic graph, this process is similar to the
ontology propagation described by Singleton et al. [18].
However, with a set of priors (root set), the random surfer
opts to jump back to any of the node in the root set
regardless of its current location with a predefined prob-
ability in each iteration. The iterative stationary prob-
ability equation of a node n is given by

πðnÞiþ1 ¼ ð1� βÞ
XNeighborðnÞ

u¼1
pðnjuÞπiðuÞ þ βpn ð1Þ

where β is the back probability. The first component of
the equation summarizes the likelihood of arriving at this

node from all of its neighboring nodes while the second
component indicates transporting back to the root set. In
Eq. 1, pn ¼ 1

Rj j when the node is in the root set and 0 if
otherwise. Rj j is the size of the root set. The stationary
distribution after the convergence of the algorithm
represents the probability of the random surfer landing
on each node at any given moment.

In order to implement the algorithm in the context of
the sub-graph of the HPO tree, we set the primary HPO
terms as the priors and the back probability β to be 0.5 as
it was within the range that was suggested to yield opti-
mal performance by previous studies [34], meaning there
is a 50% chance of the random surfer returning to the
primary terms in each step. It is intuitive to see several
benefits with this implementation for the clinical utility.
The primary phenotypes are ranked highly because of the
back probability; the secondary phenotypes that are close
to the primary phenotypes are ranked highly because they
are easily accessible from the root set; and the secondary
phenotypes with more “is a” relationships are ranked
highly because they are more likely to be visited during
the random walk. Each gene in PGP may be associated
with multiple primary and secondary phenotypes, thus a
variant receives a phenotypic score that is the sum of all
of the phenotypes’ scores the affected gene is associated
with. In this way, variants harbored by genes associated
with more significant phenotypes are ranked higher.

Fig. 2 Variant filtration strategy and tiers of deleterious score. A
HGMD variant of DM or DM? class is retained if the minor allele
frequency of the variant is less than 1% in general population in
gnomAD database. This variant is binned tier one and is assigned 1.0
as deleterious score (shown in orange 1). A non-HGMD variant is
retained if the predicted protein effect is disruptive, and its minor allele
frequency is less than 0.2% in general population, as well as five sub-

populations (East Asian, Finnish, Non-finnish European, African/
African American and South Asian) in gnomAD. If the predicted
effects of the variant include change of splice site, start/stop loss,
frameshift and stopgain, the variant is binned tier two and is assigned
0.8 as deleterious score (shown in blue 2). The variant is binned
tier three otherwise and is assigned 0.6 as deleterious score (shown in
blue 3)
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Integrated variant pathogenicity score

As discussed earlier, an overall score is assigned to each of the
candidate variants. The first component is the gene-phenotypic
score and the second is the deleterious score. Each of the
components are normalized to the range of [0, 1] across all the
variants. Following this, weight factor α is employed to
combines the two components together in the final sig-
nificance score:

s v; αð Þ ¼ α� pheno scoreðvÞ þ 1� αð Þ
� deleterious scoreðvÞ ð2Þ

where α is intuitively set to 0.8 to ensure the global
implementation is phenotype-driven. The final scores of all
variants are then normalized to the range of [0, 1] and hence a
prioritization of the variants is achieved. The configuration of
α was re-evaluated after initial benchmarking, which is
discussed in the Supplementary Materials and Methods.

Clinical sample cohort

Acquiring validated large-scale clinical cohorts for dif-
ferential clinical diagnostics studies is challenging and
limited access to these resources has forced most of the
abovementioned computational tools to perform their
validation largely or solely using in silico patient profiles.
We have collected a large cohort of clinical patients (n=
105) where each individual patient received a positive
molecular diagnosis from clinical exome sequencing
(CES) analysis. Eighty-five positive samples were from
patients diagnosed by the clinical exome test at the
Division of Genomic Diagnostics (DGD) at CHOP
between 2014 and 2017. Twenty positive exomes were
collected through the CHOP Pediatric Sequencing (Ped-
iSeq) project, which was a part of the National Human
Genome Research Institute (NHGRI) Clinical Sequencing
Exploratory Research (CSER) consortium. For this study,
we define positive cases as having at least one pathogenic
variant in the final clinical laboratory report. The variant
interpretation procedure followed ACMG/AMP guide-
lines [35], and the pathogenic variants were thoroughly
evaluated and classified as disease causing with concrete
supporting evidence [27]. The phenotypic features of
these patients were carefully discussed and documented
by physicians upon clinical chart reviews, and the cor-
responding HPO terms were selected to best represent the
symptoms. All of the samples in the cohort were from
pediatric patients representing a wide range of complex
syndromes. Additional phenotypic characteristics, as well
as the sequencing details and subsequent bioinformatics
processing of the samples are described in Supplementary
Materials and Methods.

Results

Ranking candidate genes using synthetic patient
profiles

Since the phenotypic scores of candidate variants are
imperative to the overall prioritization and due to the general
lack of clinical data, we first assessed the performance of the
candidate gene ranking using in silico patients [5, 21]. We
focused on 33 monogenic diseases with known causative
genes and used a similar strategy discussed by Masino et al.
[36]. Three clinical scenarios were considered during the
simulations, including “optimal”, “noisy” and “imprecise”.
1000 simulated profiles were generated per scenario for each
diseases. The details of the generation of these profiles are
discussed in the Supplementary Materials and Methods.

We carried out the candidate gene prioritization approach
of Phenoxome on all simulated patient profiles of the three
scenarios. For each synthetic patient, our algorithm first gen-
erated the PGP from the phenotypes and then prioritized the
genes in PGP using the phenotypic relevance scores presented
in Methods. In all of the simulated cases, the causative genes
were constantly captured by the PGP across the 33 diseases of
the above scenarios. In the “optimal” scenario, the causative
gene was ranked in the first place for 98.5% of the simula-
tions. Introducing the “noise” terms did not have any sub-
stantial impact on the rankings. In the “noisy” scenario, the
causative gene was ranked first for 94.4% of the cases. Con-
sistent with previous studies, a deteriorated performance of
Phenoxome in the “imprecise” scenarios was observed where
the causative gene was ranked first in only 3.7% of the cases.
However, the target gene was ranked within top 10% of the
PGPs in 89.8% of the cases. The overall summary of the
performance of Phenoxome in three scenarios is demonstrated
in Fig. 3, with corresponding AUC (area under curve) values
for the “optimal”, “noisy” and “imprecise” scenarios of 0.995,
0.991, and 0.952, respectively [5, 36].

Performance on clinical samples

We then used the clinical cohort to validate Phenoxome per-
formance. Paired VCF files and HPO terms of each clinical
sample were utilized as described in Methods. These VCF
files were generated by the original version of the clinical
bioinformatics pipeline at the time the case was analyzed.
Phenoxome generated a list of ranked variants independent of
the original clinical evaluation. The numbers of variants in the
original input VCF files ranged from 37,150 to 258,968. Since
these samples were collected during a period of four years,
various enhancements were made to the clinical bioinfor-
matics pipeline, such as better use of laboratory-specific
sequence quality metrics for variant filtration. These
enhancements led to less variants in more recent version of the
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pipeline. The clinically reported pathogenic variants were
consistently retained in the final ranked lists and their ranks
were recorded for each of the patient. If more than one
pathogenic variant was reported, the best rank of these variants
was used in the benchmarking for the case.

The median rank of the pathogenic variants in the 105
patients was 5 with a standard deviation of 23. Specifically,
92 (88%) pathogenic variants were ranked in the top 25, 74
(71%) in the top 10, 53 (51%) within the top 5, while 17
pathogenic variants (16%) were ranked in the first place.

Causal genes harboring the pathogenic variants were
captured in the PGP in 95 out of 105 cases (associated with
at least one primary or secondary phenotype). The median
rank of the pathogenic variants was 4 among those 95 cases.
Three primary and/or secondary phenotypes were annotated
to the causal gene on average among these cases. Causal
genes were associated with at least one primary phenotype
in 78 out of 95 cases while they were associated with only
secondary phenotypes in the other 17 cases. No statistical
differences between the two groups were observed regard-
ing the ranks of the pathogenic variants. For the 17 cases
where the causal genes were associated with only secondary
phenotypes, the ranking of causative variants were in the
range of 1 to 24 with an average of 6. It is common that the
causal gene was associated with a primary phenotype when

it was also implicated in secondary phenotypes inferred
from other primary phenotypes. In a striking instance where
the patient was documented with phenotypes of Chronic
mucocutaneous candidiasis, Recurrent fungal infections,
Recurrent candida infections and Impaired T cell function,
the pathogenic variant was identified in IL12RB1, which
was not directly annotated with any of the primary pheno-
types but was associated with Onychomycosis which was a
sub-class of Recurrent fungal infections. Thus, the causal
gene was captured in the PGP and the missense pathogenic
variant was ranked in the second position for this patient.

Phenoxome heavily relies on the provided phenotypes and
the gene-phenotype associations in prioritizing the variants.
Thus, using the most accurate and up-to-date phenotypes is
essential to achieving the optimal performance. On the other
hand, as phenotypic features of patients evolve over time, as
well as new gene-phenotype associations are uncovered, re-
analysis using Phenoxome could yield new diagnosis. In our
clinical validation cohort, 10 pathogenic variants (marked in
orange in Fig. 4) were not in PGP during the initial bench-
marking. These variants were retained after filtration but the
affected genes were not associated with any primary or sec-
ondary phenotypes. The pathogenic variants in these 10 cases
were ranked in the range of 5 to 140. With one exception
where the pathogenic variant was ranked in top 5, the rest of
these variants all scored well below the median rank of the
cohort, with an average rank of 59. To investigate the ten
cases, re-analysis was performed using the latest build of HPO
(build 1249, January 2018). Three out of the ten causative
genes were annotated with at least one pertinent phenotype in
the re-analysis, resulting substantially better ranks of the
pathogenic variants (Table 1). The improvement was due to
novel gene-phenotype relationships curated by HPO that were
absent in the HPO database version at the time of the initial
analysis. These findings highlight the clinical utility of re-
analysis of exome data to yield additional diagnosis in a
systematic manner [37]. For the remaining seven cases, we
noted that precise HPO terms were not provided in the clinical
HPO phenotyping information.

Comparison with PhenIX

Unlike Phenoxome, most previously published computational
approaches were primarily assessed using simulated patient
data (see Table S1). Studies have suggested that the perfor-
mance of such tools could vary significantly when using actual
clinical cases [38, 39]. Specifically, a recent comparative study
examined the performance of a wide range of phenotype-
driven variant prioritization methods on 21 positive clinical
exomes, and determined that PhenIX was the most effective
[40]. Thus, we benchmarked the performance of PhenIX on
the exomes in our cohort and compared the rank positions of
the causative variants with Phenoxome. The analyses of the

Fig. 3 Benchmarking Phenoxome on simulated patient profiles. Blue
curve is the ROC of Phenoxome’s performance on the “optimal”
scenarios based on score ranks; green and red curves indicate the
“noisy” and “imprecise” scenarios, respectively. Each of the plots was
generated from 33,000 simulated cases. Sensitivity was defined as the
frequency of “target” genes that are ranked above a particular
threshold position, and specificity as the percentage of genes ranked
below the threshold. For instance, a sensitivity/specificity value of 70/
90 indicates that the disease gene (the “target”) is ranked among the
best-scoring 10% of genes in 70% of the prioritizations
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clinical samples in the cohort using PhenIX is discussed in
the Supplementary Materials and Methods.

As the result, the pathogenic variants were ranked in
the range of 1 to 497 among 86 patients in the cohort.
PhenIX ranked the causative variants in first place in 22
(21%) out of the 86 cases, showing a slight advantage
over Phenoxome (17/105). However, PhenIX scored
notably fewer causative variants in the top 5 (45, 43%),
top 10 (50, 48%), and top 25 (57, 54%) than Phenoxome,
respectively (Table S2). Moreover, PhenIX did not report
the causative variants in the final ranked list in 19 out of
the 105 cases.

Collectively, Phenoxome outperformed PhenIX on the
clinical cohort by yielding more robust rankings of the same
pathogenic variants (Fig. S2) as suggested by the statistical
analysis on the overall rankings of the pathogenic variants
(p= 0.0015; Mann–Whitney test).

Discussion

Several academic and commercial variant prioritization
tools have been introduced in recent years. These algo-
rithms have demonstrated efficacy and efficiency in a wide
variety of scenarios albeit only a handful of them have been
validated on a limited set of clinical sequencing data. Here,
we presented a clinical laboratory focused computational
framework to aid with clinical correlation and variant
interpretation. Through a series of benchmarking using both
in silico and clinical data, Phenoxome has demonstrated
high clinical utility in identifying the causative variants in a
wide range of scenarios and outperformed the semantic
similarity-based approaches such as PhenIX.

Phenoxome’s advantage over PhenIX is exhibited through
the consistently retention of causative variants during the fil-
tration process and by achieving better rankings overall.

Table 1 Re-analysis results on 3 clinical samples

Sample HPO terms Initial analysis rank Re-analysis rank

CHOP-PA-S28 HP:0000577;HP:0001249;HP:0000717;HP:0000739;HP:0000047;HP:0004322;
HP:0001999;HP:0002275;HP:0011098

41 31

CHOP-PA-S52 HP:0001263;HP:0001508;HP:0008872;HP:0001385;HP:0004474;HP:0004482;
HP:0000280;HP:0010813

48 8

CHOP-PA-S78 HP:0000410;HP:0001508;HP:0001263;HP:0001738;HP:0000010;HP:0012330;
HP:0100785;HP:0004322;HP:0000076

41 3

Fig. 4 Summary of performance of phenoxome on clinical cohort.
Blue bars represent the cases where the causative variants/genes are
associated with at least one pertinent phenotype. Orange bars represent
the cases where the causative variants/genes are not associated with

any pertinent phenotype. 53(51%) target variants were ranked in top 5
while 92(88%) target variants were ranked in top 25 among 105
clinical cases
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Specifically, we believe our model outperforms PhenIX in the
CES cohort because Phenoxome is more patient-centric by
utilizing PGP. In semantic similarity-based models, the phe-
notypic relevance score of a gene is calculated by comparing
the set of phenotypes manifested by the patient and all of the
phenotypes associated with the gene, which may lead to what
we call “phenotype dilution”. In clinical chart reviews, the
symptoms are summarized into several key phenotypes.
However, a well-studied gene may be associated with a wide
range of diseases that may be unrelated to each other. All of
these associated phenotypes contribute to the semantic simi-
larity calculation, which may “dilute” the associated pheno-
types specific to this patient. On the other hand, our approach
only takes into account the primary and secondary phenotypes
of the patient and thus the signal is enhanced for the causal
gene, as other irrelevant phenotypes associated with the gene
are not considered in the analysis. For instance, in a clinical
sample where a patient was documented with Volvulus,
Intestinal pseudo-obstruction, Cholestatis and Intestinal mal-
rotation, a missense variant in ACTG2 was classified patho-
genic. ACTG2 was associated with a total of 34 different
phenotypes in HPO, ranging from Camptodactyly of finger to
Sepsis, including Intestinal malrotation. Most of these phe-
notypes were not observed and unrelated to this patient, as
they were “noise” in the similarity metrics and PhenIX
prioritized this variant at rank 70. In contrast, Phenoxome did
not consider those “noise” phenotypes in its modeling and
ranked the causative variant in the second place.

Trio (an affected proband with both parents) clinical
exome sequencing has been proven more effective in
detecting de novo and compound heterozygous variants
compared to a proband-only approach [41]. However, since
parents are not always available for CES analysis, variant
prioritization in Phenoxome is designed to be independent
of mode of inheritance.

We also compared the number of variants requiring manual
review in the 85 DGD CES samples retrospectively. On
average, Phenoxome reported 240 less variants per case which
could save significant review time from the interpretation
workflow. Phenoxome not only reduces the number of var-
iants for manual review but also allows the clinical laboratories
to sift through the variants using a prioritized list. Specifically,
the search for the pathogenic variants can stop after identifying
those that explain all of the patient’s phenotypes [35], and
hence enabling rapid interpretation of clinical exomes.

Phenoxome is different from attempts to optimize the input
phenotypes such as Bauer et al. [42]. Instead, it generates a
patient phenotypic profile from the HPO terms provided.
Furthermore, Phenoxome does not make inferences from non-
human genomic data, unlike several other tools [18, 20]. By
utilizing only well-established evidence of human disease and
associated genes, it is designed for clinical sequencing
applications and is not optimized for novel gene discovery.

This strategy offers clinical robustness that precludes non-
human genomic data, which often does not benefit clinical
diagnostics [40]. While Phenoxome is able to effectively
reduce raw variants to a more manageable prioritized list,
clinical input and further curation are still essential for eval-
uating the pathogenic status of the variants.

The performance benchmarking highlights the importance
of validating computational algorithms using real-world clin-
ical data sets. Furthermore, our validation results also indicate
that selecting the most accurate phenotypes to describe the
symptom manifestations of a patient is crucial for CES inter-
pretation and ultimately an accurate diagnostic. We have
shown several scenarios that could have contributed to those
cases where the causal genes were not in the PGP. One
plausible explanation is the phenotype-gene annotations are
absent from HPO, due to the lag between publication and
annotation database updates. It is also possible that a pheno-
type abnormality, which could potentially direct Phenoxome
to the causal gene, might have been missed or unobserved
during the clinical chart review. Nonetheless, with its robust
algorithm and regular database updates, Phenoxome provides
a platform that enables clinicians and laboratories to re-analyze
undiagnosed cases.
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