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Background: Disease populations, clinical practice, and healthcare systems are constantly evolving. This can result
in clinical prediction models quickly becoming outdated and less accurate over time. A potential solution is
to develop ‘dynamic’ prediction models capable of retaining accuracy by evolving over time in response to
observed changes. Our aim was to review the literature in this area to understand the current state-of-the-art
in dynamic prediction modelling and identify unresolved methodological challenges.

Methods: MEDLINE, Embase and Web of Science were searched for papers which used or developed dynamic clinical
prediction models. Information was extracted on methods for model updating, choice of update windows and decay
factors and validation of models. We also extracted reported limitations of methods and recommendations for future

Results: We identified eleven papers that discussed seven dynamic clinical prediction modelling methods which split
into three categories. The first category uses frequentist methods to update models in discrete steps, the second uses
Bayesian methods for continuous updating and the third, based on varying coefficients, explicitly describes the relationship
between predictors and outcome variable as a function of calendar time. These methods have been applied to a limited
number of healthcare problems, and few empirical comparisons between them have been made.

Conclusion: Dynamic prediction models are not well established but they overcome one of the major issues with static
clinical prediction models, calibration drift. However, there are challenges in choosing decay factors and in dealing with
sudden changes. The validation of dynamic prediction models is still largely unexplored terrain.

Keywords: Prediction models, Calibration, Dynamic models, Validation

Introduction

Healthcare systems have limited resources and their
budgets are being reduced [1], while there are increasing
numbers of people living with one or more long-term
conditions [2, 3]. This can have a negative effect on
health outcomes [4], and systems therefore need to be
more efficient. One way to improve efficiency is by
implementing preventative measures which delay or pre-
vent the onset of disease and increase the overall health
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of the population. Increased data collection in healthcare
systems and availability of large-scale data sources pro-
vide an opportunity to effectively target care and re-
sources in a data-driven way. This could also be used to
guide health policies, assist in healthcare auditing and
select appropriate therapies in individual patient man-
agement, along with other uses [5] to improve the
healthcare system as a whole.

Clinical prediction models (CPMs) are used for diagno-
sis or prediction of future outcomes for individuals [6, 7]
and thus have the potential to be wused for
decision-making and effective targeting of resources.
CPMs use information about an individual at a given time,
to compute the risk/probability of a future outcome; they
have been increasingly used over the past two decades.
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CPMs are currently used to support various decisions. For
example, QRISK [8] computes an individual’s risk of de-
veloping cardiovascular disease over the next 10 years,
and if the individual’s risk is above 10%, then they would
be considered for statins.

Over time, population demographics, prevalence of
disease, clinical practice, and the healthcare system as a
whole may change, meaning that predictions based on
static data can become outdated and hence no longer ac-
curate. This is known as calibration drift [9] and is one
of the major pitfalls in using CPMs in practice [10]. It
can lead to over or under-prescribing of treatment and,
if the model is used for audit purposes, it can provide
misleading results because it does not correctly adjust
for case mix. QRISK [11] is updated yearly for this rea-
son. However, this provides periodic updates, and al-
though this is a step in the right direction, it is
problematic because patients’ calculated risk changes
abruptly when updates are applied, while patients’ actual
outcomes do not.

It would be advantageous if models could be produced
that would continuously update over time as more infor-
mation is collected and made available, thus providing
accurate risk predictions that respond rapidly to new in-
formation. This could reduce the use of outdated models
and avoid multiple models being produced and used, re-
ducing both time and effort. This approach is known as
dynamic prediction modelling. We define dynamic
models (DMs) as those which acknowledge the real time
of each point, are designed to evolve over time and ad-
dress the problem of calibration drift. The model could,
in principle, change after a single new observation,
which could be a structural change or a coefficient
change. Models can evolve over time, and an individual’s
risk can also change over time. Here, we focus on
models evolving over time as opposed to the alternative
where we observe repeated measures for an individual
and observe time-varying coefficients.

Our aim was to review methods for developing and
validating dynamic prediction models, in order to under-
stand the current state-of-the-art in this field and iden-
tify unresolved methodological challenges.

Methods

Search strategy

The literature search was conducted in three electronic
databases, MEDLINE, Embase and Web of Science.
OVID was used to search the former two databases, and
searches were restricted to the English language because
of limited translation resources but were not restricted
by publication year. The MEDLINE search terms com-
prise terms the authors considered to best describe dy-
namic prediction modelling (Table 1). The search was
tailored to each database and supplemented with
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Table 1 Ovid search terms

1 dynamic model* mp. [mp =ti, ab, hw, tn, ot, dm, mf, dv,
kw, fx, nm, kf, px, rx, ui, syl

2 dynamic prediction*.mp. [mp =ti, ab, hw, tn, ot, dm, mf,
dv, kw, fx, nm, kf, px, rx, ui, syl

3 clinical prediction model*.mp. [mp =ti, ab, hw, tn, ot, dm,
mf, dv, kw, fx, nm, kf, px, rx, ui, sy]

4 dynamic model* prediction.mp. [mp =ti, ab, hw, tn, ot, dm,
mf, dv, kw, fx, nm, kf, px, rx, ui, sy]

5 dynamic regression.mp. [mp =ti, ab, hw, tn, ot, dm, mf, dv,
kw, fx, nm, kf, px, rx, ui, sy]

6 dynamic logistic regression.mp. [mp = ti, ab, hw, tn, ot, dm,
mf, dv, kw, fx, nm, kf, px, rx, ui, syl

7 model updating.mp. [mp =ti, ab, hw, tn, ot, dm, mf, dv, kw,
fx, nm, kf, px, rx, ui, sy

8 clinical prediction.mp. [mp =ti, ab, hw, tn, ot, dm, mf, dv, kw,
fx, nm, kf, px, rx, ui, sy

9 (dynamic model* and updat*).af.

10 dynamic prediction model*.af.

11 model revision.mp. [mp =ti, ab, hw, tn, ot, dm, mf, dv, kw, fx,
nm, kf, px, rx, ui, sy]

12 model recalibration.mp. [mp = ti, ab, hw, tn, ot, dm, mf, dv, kw,
fx, nm, kf, px, rx, ui, syl

13 lor2or4or5or6or9ori10

14 3or8

15 13 and 14

16 7or11or12

17 150r 16

18 dynamic.mp. [mp =ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm,
kf, px, rx, an, ui, syl

19 14 and 18

20 17 or 19

relevant papers that were identified from the reference
list of the included papers. Further snowballing, using
Google Scholar, was also performed by conducting a cit-
ation search which identified papers referencing our ini-
tial relevant paper list.

Selection of studies

A two-stage screening process was conducted by one au-
thor (DJ) to assess the relevance of studies and was ap-
plied after the initial search and again after the two
snowballing approaches. The first stage consisted of
screening the titles and abstracts of citations to exclude
articles that did not meet the inclusion criteria. The eli-
gible criteria for inclusion were original methodological
peer-reviewed journal articles which considered (1) dy-
namic prediction models (DPMs), (2) model updating
methods that could be performed in real time, or (3)
model coefficients as functions of time. Exclusion cri-
teria were determined in advance and included confer-
ence proceedings, papers with methods that could not
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change over time or update in real time, static prediction
models and models that only consider a single time
point (e.g. models for cross-sectional data). Dynamic
survival models were also excluded because they do not
fall under our definition of dynamic prediction. Applied
research, without any methodological work, was ex-
cluded because our interest was around the current
state-of-the-art and methodology in the area.

Extraction
We evaluated papers on two general domains: modelling
methods and validation and evaluation. We extracted
each method we considered to meet, or have the poten-
tial to meet, our definition of dynamic modelling. For
validation, we extracted how the models implemented
were evaluated. For all the methods found during the
search, we also extracted any modelling challenges and
further work discussed by the authors and provide our
suggestions for the future work needed in the area.

No specific study measures or synthesis were calcu-
lated across studies.

Results

Our initial search resulted in 1034 papers, with 61 consid-
ered potentially relevant after abstract and title screening.
After full article screening, 8 were identified for which in-
formation was extracted and snowballing was taken place.
An additional 14 papers were then considered relevant, but
after screening, only 3 were included for which information
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was extracted. Hence, in total, 11 papers were deemed rele-
vant for final inclusion (see Fig. 1).

Seven methods were reported across 11 papers which
could be used to deal with calibration drift in prediction
models (see Table 2). These can be split into three cat-
egories: discrete model updating, Bayesian model updat-
ing and varying coefficient modelling.

To illustrate the approaches, we will focus on progno-
sis and consider a regression model with either a con-
tinuous or binary endpoint at a fixed point in time. A
response y, is observed for an individual at a time ¢ = (¢,
..o ty), and a vector of predictors x,= (xy:k=1,...,K)
such that:

S(EW,)) = Bo(8) + B ()t (1)

for link g, where S(?) is the intercept and Sx(t) is a vector
of the regression coefficients for the K predictors at time ¢.

Equation 1 is a general form of a dynamic prediction
model, but the methods described in the literature vary
on how to estimate the coefficient functions Sy(f) and
Br{t) and update the model. Below, we outline each of
the methods found in the literature, followed by a dis-
cussion of the various challenges highlighted within the
papers.

Modelling methods

Discrete model updating—model recalibration and revision
Discrete model updating methods use new data over
time to update the model. Using a single observation or

Records identified through
OVID search
(n =340)

Records identified through
Web of Science
(n=694)

Additional studies identified
after snowballing
(n=14)

| |

Records screened
(n=1034)

v

Full-text articles assessed
for eligibility
(n=61)

Records excluded
(n=973)

][ Eligibility ] [ Screening ] [ Identification ]

A4

Studies included
(n=8)

Records excluded
(n=53)

4

Additional studies included

Included

after assessing eligilibility
(n=3)

Fig. 1 PRISMA flow diagram of included studies

Final studies included
(n=11)
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Table 2 Tick table of methods included in each paper
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Author Modelling methods
Discrete model updating Bayesian model updating Varying
Intercept Overall slope Individual slopes Model Bayesian dynamic Bayesian model coeﬁ‘icignt
update update update revision modelling averaging modelling

Fan v

Finkelman v

Hickey v v

Hoover v

Janssen v v v v

McCormick v v

Raftery v v

Siregar v v v v

Steyerberg v v v v

Su v v v v v v

Van v

Houwelingen

small group of observations can result in an unstable
and less accurate model. Hence, these methods are up-
dated in batches at set times, for example, each month
or year, to ensure a sufficient amount of data is collected
and used for the update. We denote these batch times as
T;= (T, ..., Tg) where B« n.

Four discrete updating methods are discussed in the
final included papers; ‘Intercept update;, ‘overall slope up-
date; ‘individual slopes update’ and ‘model revision’. All
four methods consider a frequentist approach.

The ‘intercept update’ method [12-15] fits a regression
model to the new data, at updating batch time T}, using
the linear predictor of Eq. 1 as an offset. This recalcu-
lates a new intercept, Bo(T;) with Sx(T}) = fx remaining
constant over time.

‘Overall slope update’ [12-15] re-estimates both the
intercept and an overall slope a(T)) for each update time T}
This factor is used to proportionally adjust the original co-
efficients and thus creates a new predictor-outcome associ-
ation Si(T}) = a(T)Bx(T;_1) and a new intercept, So(T)).

‘Individual slopes update’ [13-16] is a two-step
method where the overall slope updating is first used
and then a subset of the coefficients, which are statisti-
cally different in the new data compared with the his-
toric data, are re-estimated. Thus, Sx(T}) = a(T)Bx(T;_1)
+yx(T;) where yx(T)) is a vector of length k which has
zeros located in the elements corresponding to the par-
ameter estimates that are not re-estimated. The choice
of which variable coefficients to re-estimate can be de-
cided by a likelihood ratio test, stepwise variable selec-
tion or obtaining expert opinion. A special case [12-17]
would be to update all model coefficients and not only
those that are statistically different. Hence, all prognostic
effects are updated and the original CPM is only used to

select the covariates included in the updated model.
After revision, shrinkage can be conducted, where the
coefficient estimates are shrunk towards the recalibra-
tion estimates [13—15]. This can be done, for example,
using ridge regression [18, 19].

‘Model revision’ [13, 15] considers adding predictors
into the model. This method re-estimates existing coeffi-
cients as in the above approaches, but also tests if any
additional predictors now have a statistically significant
effect in model fit by performing likelihood ratio tests in
a forward stepwise variable selection manner. This
builds a new model.

SEW)) = Bo(T) + B(T) x: (2)

Where L is the total number of predictors in the up-
dated model at the time T}, such that, L> K and L - Kis
the number of additional predictors added to the model
at time 7;. This model is applied for individuals ¢ such
that T;<t<Tj, .

Continuous model updating—Bayesian updating

Two continuous updating methods are discussed in five
of the final included papers [12, 13, 17, 20-22]. The first
method is known as Bayesian dynamic modelling, and
the second, known as dynamic model averaging, is a
generalisation of the first. In both methods, the informa-
tion obtained from past data is used as prior information
and combined with the new data to obtain updated esti-
mates. Thus, the updating (posterior) equation is pro-
portional to the product of the likelihood (at time £) and
the prior (prediction equation at time ¢-1),



Jenkins et al. Diagnostic and Prognostic Research (2018) 2:23

p( B (2) | Yt) °<p(ﬁ]<(t) | Yt_l)p( ¥, B (2) )°<Prior x Likelihood

(3)

where the prediction equation (prior) is obtained

through Kalman filtering by supposing p(B(¢-1)| Y1)

~ N(p(¢-1),¢, ), where Y, 1 ={y1,...,y,_1}. This results
in the prediction equation.

P( () |Yt—1) ~ N(BK(t_]-)aRt);Rt
=¢, 1+ W, . (4')

where W, represents the covariance matrix.
We can also introduce a forgetting factor, 1,, such that

R, = %1/, . This down weights (or decays) historical
A g Y

observations so they have less influence/weight than
new data by essentially inflating the variance of the
prior. Typically, A, is constant over time, and close to 1.
In principle, the forgetting factor could change over
time, but this has yet to be done in practice. A forgetting
factor of 0.99 was used in one study [21], while another
[13] performed sensitivity analysis using different values
for the forgetting factor. Su et al. [13] suggests that A,
can be selected using an auto-tuning procedure at each
time point which could result in a time-varying forget-
ting factor. However, this would result in a much higher
computation load.

Two advantages are discussed in using the forgetting
factor. The first is that the model becomes less computa-
tionally demanding than when forgetting is not applied,
which can make the dynamic model more feasible to use
in practice. The second is that the model relies less on
the historical data. If the model coefficients are changing
over time, then giving a lot of weight to past data may
decrease prediction accuracy. Also, the historical data
used for the prior could anchor the results and provide
inaccurate predictions.

The first method described is for a single model case,
but if there exist multiple models M,, ..., M,, imple-
mented at the same times, then the above approach can
be applied simultaneously to each model. We can then
combine each of the 7 models together to create one final
model, thus resulting in dynamic model averaging (DMA).
In DMA, a weighted average of models is used at each
time point, where the ‘better’ models contribute more
weight in the final model and the weights can vary over
time. One major advantage of this approach is that it al-
lows parameters to be down-weighted/excluded and
emerging factors to become present over time. Hence,
there is extra flexibility in this approach that the others do
not have and forgetting can also be applied within DMA.

All of the above methods, both continuous and
discrete, are two-step approaches in which the initial
CPM is computed using the first batch of data and that
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model is subsequently updated in light of new data. The
initial model will generally fix which parameters are in-
cluded within the model, although, as described above,
there is a discussion in the literature [23] about adding
or deleting predictors during the updating. The majority
of studies set a specific time interval where all the data
within that window would be used for the next update.
One study [21] had data to perform monthly updates
but another [12] only considered updating yearly, and
one [10] considered updating models on either a
monthly, yearly or 2 yearly basis. Finkelman et al. [22]
was the only paper to consider the batch as observation
numbers and not the length of time. They considered
250, 500, 1000 and 5000 for the updating batch numbers
and concluded the results were ‘fairly insensitive to
changes’ in the size of the update. Some papers [10, 22]
have suggested, for the discrete methods, that a suffi-
cient number of new data is needed in each batch to en-
sure enough is obtained for accurate and stable
predictions. Step one of these models will not always
consider the same time period as step two (model updat-
ing). For example, one of the models, Hickey et al. [17],
conducts, uses a first step of 12 months to create the ini-
tial CPM but then uses monthly updates for step two.

Some of the studies also compared which of the
methods performed best. However, not all methods were
included in each paper. Raftery [20] used mean square
error (MSE) and maximum absolute error (MAE) to
compare the Bayesian models. After 200 sample updates,
the models become stable and differences between
models become smaller than in the initial sample up-
dates where the DMA performs better because ‘it's more
adaptive’. Finkelman also used MAE to compare models,
but to improve interpretability, the ‘relative improve-
ment'was computed, which is the improvement of the
current model compared with the intercept-only model.
McCormick, on the other hand, used the Brier score to
compare model performance.

Varying coefficient model

Varying coefficient models [24] (also known as func-
tional response models) were developed to explore dy-
namic patterns in data. These are particularly useful
when we encounter multiple data from the same individ-
uals over time, known as longitudinal data, and/or have
data changing over time, known as functional data. Vary-
ing coefficient models are often used to model longitu-
dinal data, for example, the risk of HIV after birth [25]
and Sx(t) is modelled as a function of time from birth.
We can also use it as an approach to dynamic modelling
in which the relationship between predictors and the
outcome variable is described as a function of calendar
time. This approach has been used in other areas, such
as economics, but not yet in healthcare.
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Following the form of Eq. 1, in this case, we have S(t)
and B(t) = (51(9), ..., fx{t)) as functions of time which
are assumed to be smooth. Hoover et al. [25] presents
three ways the coefficients can be estimated: kernel,
polynomial and smoothing splines.

A special case of this method is where only the inter-
cept is dependent on time. Eq. 1 would then become

S(EW) = Bo + Bkt + Brimet

where the betas are no longer functions of time and f3;,,,.
adjusts the intercept for observed calibration drift in the
development dataset, i.e. So(£) = Bo + Brimet - This is argu-
ably the simplest approach to overcome the problem of
calibration drift, but to the best of our knowledge, it has
not been applied in healthcare settings to improve cali-
bration. Compared with the previous methods, the vary-
ing coefficient model does not regularly update at each
time but rather attempts to estimate the complete func-
tion of the coefficients over time given data up to a cer-
tain time point. Hence, this method does not view data
as a stream but rather assumes all data are available over
time and then estimates Sx(tf). No study considering
varying coefficient models also considered discrete or
continuous updating approaches. A comparison between
the different methods has yet to be explored.

All included papers discuss dynamic models as a way
of using all the data available to create models that are
evolving over time and have the flexibility of adapting to
a changing landscape over time. The discrete and con-
tinuous updating models use current/new data to update
past knowledge, rather than using a static time frame
and assuming the prediction model remains the same
over time. However, the weight applied to the historic
data varies. On the one hand, all data, historic and new,
is used equally. On the other hand, the historic data may
be given no weight in the update, so only the new data
is used to update the model. These are just two ex-
tremes, and dynamic model updating can be anywhere
within this space. The functional varying coefficient
models differ because they are not updating over time.
These models use the complete data available to esti-
mate the coefficient function over time in order to pro-
vide future predictions. However, they have the potential
to be updated using discrete updating, but this has yet
to be explored.

Model validation

Once a model has been computed and selection of ap-
propriate predictors has taken place, it is not sufficient
to assume the model is accurate and predicts well. We
therefore need to formally validate our models. For static
CPM:s, cross-validation and bootstrap validation are the
recommended methods over split sample or external
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sample validation [12], but validation is more complex
when it comes to DPMs. The literature around validat-
ing a dynamic CPM is much less established, meaning
that it was not possible to identify different validation
techniques for each of the dynamic modelling methods
separately.

Siregar et al. [12] and Su et al. [13] assess calibration
and discrimination in all of their models. Both validate
their models in subsequent years (after model updating
has stopped), but in reality, the model would continue
updating and so a way is needed to validate in this
framework to provide real-time validation without using
the same data that is then used for the model. Su et al.
[13] also note that because validation is conducted at a
separate time to the model, then their validation consti-
tutes transportability rather than validation. Split sam-
pling could be performed, where part of the sample at
each update is used to validate the updated model, but
this was not explored in any of the papers and would
need doing in a dynamic way which could add to the
computational aspect of the models. Van Houweingen
[16] conducts a split sample validation on the original
CPM and uses this to determine if an update is needed
as the new data is collected; however, validation of the
updating model was not undertaken. There would also
be a lag time from determining if a model is valid, such
that, the model would possibly have been updated many
more times. McCormick [21], on the other hand, de-
signed their model for a setting when data is not stored
and so validating can be an issue here. They suggest
maximising the average one-step-ahead prediction by
updating a tuning parameter, but not through numerical
optimisation because of computational infeasibility.
Using an Occams window [26, 27] approach was also
discussed as a possible solution to computational prob-
lems. This would consider a smaller model space at each
time (after time 1) by using a subset of all possible
models based on a cutoff value for each models weight
contribution at the previous time. However, none of
these methods have been formally implemented in any
of the included papers or across healthcare, although
this has been applied within economics [28].

Hickey et al. [10] produced time series plots of the
beta values to obtain inferences of the association be-
tween the outcome and risk factor. This allowed for
comparison of methods, as well as the ability to visually
detect any abrupt changes. Although this provides a bet-
ter understanding of how the models are working, it is
not a formal way in which to validate, test or compare
models. Hickey et al. [10] acknowledge that not per-
forming validation was a limitation of the study and sug-
gests that to do so, one would need to compute and
monitor the model’s discrimination over time, in a con-
tinuous way. Conducting time series on the coefficients
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could potentially be used to detect patterns in the coeffi-
cient estimate over time or even be used as a way to pre-
dict future beta estimates which could then be
compared to the DM predictions, but either has yet to
be explored.

Therefore, validation is a clear issue in this area and
was only used in a small number of studies which
mainly considered the discrete approaches.

Other challenges

All of the methods described above assume a steady
change in the model coefficients over time. However,
sudden large changes are possible and could result in
poor model performance. These changes can occur for
many reasons, such as a change in policy, introduction
of new interventions, a change in data collection, or the
introduction of clinical decision support that is based on
the CPM. An example of a step change in clinical prac-
tice is the introduction of less invasive coronary surgery
[10]. This change in surgery, along with a change in the
case-mix of the population undergoing cardiac surgery,
resulted in the EUROSCORE CPM [29] largely
over-predicting patient risk [7]. One way to model these
changes in a CPM would be to include a time factor but
it has yet to be discussed in the literature how well dy-
namic models react to these changes and which models
provide the most accurate predictions and should be
used in these circumstances. However, this assumes that
a step change is anticipated for a known reason. How-
ever, in practice, it is not always anticipated or known.
Therefore, it would also be advantageous to account for,
and model, unexpected step changes. McCormick et al.
[21] suggest that when these occur, a smaller forgetting
factor should be chosen to allow for these changes.
However, the windowed approach in Hickey et al. [17] is
used to dampen any abrupt changes. Step changes have
the potential to impact model accuracy and being able
to identify them, as well as knowing how to deal with
them, could have great benefit. There is currently little
work discussing what to do when they occur and how to
detect or define a true step change. Analysing the impact
of these changes (with various magnitudes and fre-
quency) on model performance and understanding how
best to weight past data (if at all) when they occur would
be largely beneficial for future work. Also, the ability to
detect step changes would be valuable and could be used
to either identify when models need to be updated or in-
form the user a change has occurred and investigation
into the data is needed.

Finally, computational complexity was discussed as a
limitation of DMs, but only two papers [20, 22] formally
considered computation time. Finkelman et al. [22] dis-
cuss that the computation time linearly increased with
the number of updates, but around the same number of
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subjects were included in each update and computation
time could vary if the numbers varied across iterations.
Raftery et al. [20] discuss that although DMs and DMA
do increase the computation time, they are still well
within a range for practical application. In a large system
when updating is to be applied when each new data
point is collected, then this could be problematic if the
computation time associated with updates exceeds the
time between subsequent data points. Continuous model
updating is then not feasible.

The software is available to perform dynamic model-
ling; the dma [30] and fda [31] packages in R can be
used for continuous updating and the varying coefficient
methods, respectively. To our knowledge, no package is
available for discrete updating, but it can easily be pro-
grammed manually in many software packages. Exten-
sion of these, along with user-friendly tutorials, would
aid widespread implementation into the clinical setting.

Discussion

In this study, we conducted a literature review which
has identified three main types of dynamic modelling,
with the main differences between the methods emer-
ging in relation to how the coefficients are estimated.
Our review has enabled us to draw together all the
methods within one paper and highlight gaps in the lit-
erature for future research. Discrete and continuous up-
dating have been used a small number of times within
the healthcare setting to address the issue of calibration
drift. These methods update the model over time, which
provides the dynamic aspect of these models. We have
also identified an additional method, varying coefficient
modelling, that could be used in healthcare but has yet
to be implemented for dynamic prediction in this set-
ting. This method differs in comparison to others as it
does not update but uses the data up to time ¢ to esti-
mate the function for each coefficient in the model over
time. The continuous updating and varying coefficient
methods both assume a smooth function over time and
discrete updating differs by assuming discrete changes.
These dynamic prediction models have the potential to
be extremely useful but currently have limited exposure
to healthcare problems, and validation of these models
in practice is challenging. Further work is needed to de-
velop ways to validate these models and assess how
these models perform under different healthcare settings
and scenarios.

To our knowledge, only two other studies have per-
formed a review of dynamic modelling methods. Su et
al. [13] describes both the discrete and continuous up-
dating methods and then applies them to a clinical data
set, updating on a monthly basis. Comparisons of model
performance and accuracy of future predictions were
then made. Siregar et al. [12] also describe the discrete
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and continuous updating methods, excluding dynamic
model averaging. The methods were then applied to a
cardiac data set by updating the EUROSCORE model
and comparing model discrimination across all methods.
Overall, our work is consistent with these two papers
but extends the findings by conducting an up-to-date lit-
erature search and includes the use of varying coefficient
modelling as a possible method to maintain model per-
formance over time. Comparisons of the intercept up-
dating method with different updating times and
population size were compared with the standard con-
tinuous updating method by Hickey et al. [17]. This
work compares the methods in a real-world situation
and discusses the limitations of the methods, but it is
not a complete review of dynamic modelling. Our review
draws together all methods in the literature and identi-
fies gaps in the literature but does not provide practical
examples and direct comparisons of all the methods
found.

The most pressing problem to address, which we have
highlighted in this study, is that of validation. The purpose
of any model validation is collected incremental evidence
that the model works satisfactorily in populations where it
is applied—thus provided trust among its potential users
and enabling adoption [32, 33]. Many well-established
(static) prognostic models, such as the Apache IV model
[34] for predicting mortality in critically ill patients, were
validated in numerous studies before they were broadly
adopted in clinical practice. Because dynamic prediction
models are moving targets, it is fundamentally impossible
to follow the same approach. We can validate each of the
individual iterations, but by the time that users have taken
notice of the validation results, the model will have already
progressed to a next iteration and those results might be
outdated. So, to enable a similar mechanism that instills
trust and fosters adoption, validation methods are needed
that can provide evidence of good performance of the en-
tire dynamic ‘system’. These methods should convince us
that both the initial model and all its future iterations have
good performance, regardless of the new data points that
are used for updating.

Future work would also benefit from assessing the im-
pact of step changes, as well as the impact size and fre-
quency of updates could have on predictions. A close
test procedure has previously been used [35] to select
which discrete updating method should be used when
updating your model. However, this has only been used
for transportability to a new population, opposed to up-
dating regularly over time. Exploring this method to ad-
dress calibration drift, as well as, extending the method
to include Bayesian updating and decide when/if updat-
ing should occur would be extremely useful and increase
the utility of the approach. Testing and comparing these
dynamic models in more complex data structures, such
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as clustered data, would also be beneficial. This could be
done with the use of random effects or generalised esti-
mating equations, as previously suggested [22, 25]. Also,
only a small number of studies have applied and consid-
ered these dynamic modelling methods for use within
healthcare, with the majority of applications only consid-
ering the discrete updating methods [36] and focusing
on transportability for models to different populations
[37, 38] rather than using the methods discussed to ad-
dress temporal changes over time. Therefore, more prac-
tical examples and comparisons of the methods found
are warranted for further work. This would help aid the
broader adoption of these methods into clinical practice,
which is a current issue with CPMs as a whole. While
this is not confined to dynamic prediction models, this
is a common problem with prediction models and re-
finements, such as improved reporting and better use of
existing CPMs (e.g. a focus on external validation rather
than de novo development) could improve the adoption
of CPMs in clinical practice. Also, incorporating models
into hand-held technology (e.g. mobile apps to allow cal-
culation of complex models a patient’s bedside) and ex-
tending the methods into software with user-friendly
tutorials would be of value.

Because dynamic prediction models are an emerging
field and not a well-established concept, different au-
thors may have used different terminologies to describe
dynamic prediction models; further, there are currently
no MeSH terms for these methods and this could have
resulted in some studies not being captured within our
search. Our search focussed on the methodological pa-
pers, and it was not possible to go through all of the ap-
plied work. This may have resulted in some methods, or
adaptations of existing methods, not being captured
within our search. Nevertheless, we believe that we have
identified the main methodological approaches to dy-
namic model development, updating and validation.

Although the focus of this review was in methods ac-
counting for temporal differences over time, some of the
methods and issues raised would apply to geographic or
contextual updating, for example, where a model is to
be used in a different population to which it was origin-
ally developed. Also, although we restrict our attention
to prognostic models, the findings are generalizable to
diagnostic modelling.

Conclusion

Several statistical methods for creating dynamic predic-
tion models have been described in the literature. These
methods are well developed but their application to
real-world clinical prediction problems is sparse and no
dynamic prediction models have been deployed in clin-
ical practice. Validation of dynamic prediction models is
an unresolved issue that needs to be addressed urgently.
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