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Abstract

Background: Treatment of locally advanced squamous cell carcinomas of the head and neck (SCCHN) remains
unsatisfactory. Although the addition of concurrent radiochemotherapy (RCT) or the combination of radiotherapy
with blockade of the epidermal growth factor receptor (EGFR) have improved outcomes over radiotherapy alone,
further optimization is urgently needed. The introduction of immune checkpoint inhibitors is currently revolutionizing
cancer treatment. Clinical evidence has recently been provided in melanoma that immune checkpoint blockade may
cooperate with radiation. Therefore, we searched in the literature for the evidence of combining immune checkpoint
inhibitors with radiotherapy in primary treatment of SCCHN.

Discussion: A substantial amount of previous studies has dissected the molecular mechanisms of immune
evasion in SCCHN. The biological effects of radio- and chemotherapy in tumor cells and the immune cell
microenvironment were characterized in detail, revealing significant interference of both types of treatment
with anti-tumor immunity. This extensive review of the literature revealed considerable amount of evidence
that addition of immune checkpoint inhibitors might boost the immunomodulatory potential of radiotherapy

and RCT regimens in SCCHN.

Summary: Promising activity of immune checkpoint inhibitors has already been reported for metastatic/recurrent
SCCHN. Given the immunogenic effect of radiotherapy and its enhancement by chemotherapy, combination of
radiotherapy or RCT with this new type of immunotherapy might represent a valuable option for improvement of

curative treatment modalities in SCCHN.
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Background

Medical need for improvement of definitive treatment in
locally advanced SCCHN

Patients with SCCHN completing radiotherapy-based treat-
ment remain at considerable risk for local relapse within the
radiation field, regional recurrence in the neck and
hematogenous spread of tumor cells with the potential to
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form distant metastases. Primary radiochemotherapy (RCT)
applied concurrently with cisplatin still cures less than 40 %
of patients [1], and in case of disease recurrence after RCT,
the 2-years survival rate is below 20 %. Furthermore, the
addition of chemotherapy to radiation improves locoregio-
nal control at the cost of severe acute and late morbidity [2]
but does not reduce the risk of distant metastases [1, 3].
During the last decade, there has been increasing inter-
est in combining RCT with molecularly targeted agents.
Most targeted approaches for radiosensitization tested so
far have been directed against molecular pathways within
cancer cells in order to increase the magnitude of DNA
damage or to inhibit cellular mechanisms which interfere
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with tumor cell DNA repair, thereby increasing the effi-
cacy of RCT. Based on the overexpression of EGFR in
the majority of SCCHN cases and its causative role in
radioresistance [4, 5] the EGFR signaling pathway was
established as the first molecular target for radiosensiti-
zation in SCCHN [6, 7]. Consequently, the combination
of cetuximab, a blocking antibody to EGFR with radio-
therapy was shown to significantly improve outcome of
locally advanced SCCHN when compared to radiother-
apy alone [8]. However, despite improvement of locore-
gional control over radiotherapy alone, the cumulative
rate of distant metastasis at 1 or 2 years remained un-
changed by this combination [8]. Disappointingly, the
RTOG study 0522 evaluating further treatment intensi-
fication by combining cetuximab with concurrent RCT
failed to meet its endpoints to improve progression-free
and overall survival [9]. Further trials which evaluated
the combination of RCT with drugs directed against
EGFR family members, a broader spectrum of receptor
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tyrosine kinases or the mTOR signaling pathway have
not yet been completed or were stopped early due to the
lack of significant activity (Table 1) which underlines the
urgent need for novel concepts in this treatment setting.
In view of the recent promising results of immune check-
point inhibitors in the treatment of metastatic/recurrent
SCCHN, combination of radiotherapy or RCT with this
new type of immunotherapy might represent a valuable
option. The aim of this review is to collect evidence from
the literature which supports the notion that immune
checkpoint blockade may cooperate with radiation in
SCCHN.

Basic components of host immunity to cancer

In principle, the defense by the immune system against
pathogenic microbes and toxins from the environment is
divided into two general types of processes: the innate
immunity and the adaptive immunity. Innate immunity
recognizes and fights microbial invaders at the site of

Table 1 Clinical trials evaluating the combination of platinum-based RCT with targeted drugs in locally advanced SCCHN

Pathway/Target Drug Clinical trial

Results/Status

Tumor-specific targets (terminated trials)
EGFR Cetuximab

Panitumumab

Cetuximab NCT00791141 (adjuvant, phase Il, ACCRA-HN)
Erlotinib NCT00410826 (definitive, phase II)
RTK (VEGFR2, EGFR, MET) Vandetanib NCT00720083 (adjuvant, phase Il, RTOG0619)
mTOR Everolimus NCT00858663 (definitive, phase 1)

Tumor-specific targets (ongoing trials)

NCT00265941 (definitive, phase Ill, RTOG0522)
NCT00547157 (definitive, phase Il, CONCERT-1)

Negative

Negative

Not yet reported

Failed to significantly increase CRR or PFS
Terminated early after 34 pts, no analysis

Terminated early, only assessment of outcome
at 6 months - no responses seen

DNA repair
PARP Olaparib NCT02308072, (phase I, ORCA-2) Recruiting
Cell cycle
WEE-1 AZD1775 NCT02585973 (phase Ib) Not yet recruiting
CHK-1 LY2606368 NCT02555644 (phase 1) Not yet recruiting
EGFR family
EGFR/Her2 Lapatinib NCT01711658 (phase Il, TRYHARD) Recruiting
AKT/PI3K
PI3K alpha BYL719 NCT02537223 (phase 1) Recruiting
Phospho-AKT Nelfinavir NCT02207439 (phase 1) Recruiting
Environmental targets (ongoing trials)
Hypoxia Nimorazole NCT01880359 (phase ) Recruiting
Immune checkpoints (ongoing trials)
PD-1 Pembrolizumab NCT02586207, (definitive RCT, phase 1) Recruiting
NCT02641093 (adjuvant RT or RCT, phase II) Recruiting
NCT02296684 (adjuvant RCT, phase II) Recruiting
CTLA-4 Ipilimumab NCT01935921° (definitive, phase 1) Recruiting
NCT01860430° (definitive, phase Ib) Recruiting

“Ipilimumab combined with cetuximab-based bioradiation, not with platinum-based RCT
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infection. In contrast, adaptive immunity is serving to
eliminate host cells infected with viruses by recognizing
peptides from intracellular viral proteins loaded onto
major histocompatibility complex (MHC) molecules and
displayed on the host cell surface. The adaptive immune
system is also able to recognize mutated proteins in
tumor cells via the same mechanism.

There are multiple mechanisms by which a tumor cell
harboring immunogenic mutations can elicit adaptive
immune responses, as schematically summarized in Fig. 1.
Tumor cells may spontaneously undergo apoptosis or
necrosis, or may be driven to do so by radiotherapy and
chemotherapy. The resulting apoptotic bodies can be
processed by dendritic cells (DCs). The protein repertoire
of dying cells is subsequently presented on the surface to
T cells (the afferent arm of adaptive immune activation). T
cells recognizing peptides derived from ‘foreign’ mutated
proteins are activated by their and, after clonal expansion,
these T cells search throughout the body for tumor cells
displaying exactly this mutation on their surface. The cells
which are recognized as carrying this mutation are killed
through the lytic machinery of T cells (the execution of
the efferent arm of adaptive immunity). However, in a pa-
tient with a growing tumor, this system has obviously failed
as a consequence of one or many mechanisms which tumor
cells have adopted to escape immune destruction.

Immune evasion in SCCHN: hideout, defense, camouflage
and balanced immune destruction

There are several ways for SCCHN to evade recogni-
tion by the adaptive immune system, as schematically

effector T cell

Tumor cell

Dendritic cell

Apoptotic body Apoptosis
@ ‘Chemotherapy
Radiotherapy

Necrosis

Fig. 1 The afferent and efferent arms of adaptive tumor immunity.
Tumor cells undergo apoptosis or necrosis, either spontaneously or
after radio- or chemotherapy. Apoptotic bodies from tumor cells can
be processed by dendritic cells. The antigen repertoire of dying cells
is subsequently presented by dendritic cells via MHC molecules to
T cells (the afferent arm of adaptive immune activation). T cells
recognizing peptides by their T cell receptor (TCR) are activated
and acquire cytolytic effector functions
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illustrated in Fig. 2. Early tumors may grow in a hideout,
because they display neither a significant level of apoptosis
or necrosis nor inflammatory signals and thus do not elicit
any danger signal in the tissue (Fig. 2a). Although danger
signals might subsequently be produced during the pro-
gression of the disease, the lymphocytic infiltrate may be
confined to the rim of the tumor tissue with no infiltration
into the tumor itself (Fig. 2b). Secretion of indoleamine 2,
3-dioxygenase (IDO) is among the major defense mecha-
nisms used by tumors to prevent lymphocytic infiltration
[10]. Tumors frequently also counterbalance infiltration
by lymphocytes by down-regulation of their MHC mole-
cules, thereby avoiding the presentation of peptides from
intracellular proteins to T cells which results in an ef-
fective camouflage (Fig. 2c). As schematically depicted
in Fig. 2d, in tumors with extensive inflammatory cell
infiltration a delicate balance between immune destruc-
tion and immune evasion may exist which is based on
immunosuppressive mechanisms including high expres-
sion of IDO and PD-L1 as well as recruitment of FoxP3+
regulatory T cells (Treg) [11]. Representative histological
images from SCCHN tumor sections exemplifying the
above-mentioned types of immune evasion are presented
in Fig. 3.

A number of both genetic and environmental mecha-
nisms allow such immune escape and have been described
in SCCHN (for a recent detailed review see [12]), includ-
ing selection of poorly antigenic cancer cell subsets, dis-
turbances in MHC class I- and class II-mediated antigen
presentation [13-15], expression and secretion of im-
munosuppressive cytokines [16], expression of the pro-
apoptotic Fas ligand to induce activation-induced cell
death in T cells [17], and recruitment of immunosuppres-
sive immune cell subsets into the tumor [18]. More re-
cently, evidence is increasing that expression of immune
checkpoint components that may limit T cell responses
also occurs frequently in these tumors [18-20].

Immunomodulatory effects of ionizing radiation

Ionizing radiation has been used for more than a century
to treat cancer [21], on the basis that rapidly proliferating
cancer cells are more sensitive to DNA damage induced
by radiation than normal tissue. Radiotherapy has trad-
itionally been viewed as immunosuppressive due to the
inherent sensitivity of lymphocytes to radiation-induced
damage but it became evident that radiotherapy can also
enhance tumor-specific immune responses. Strong sup-
port of an active role of the immune system for the
success of radiotherapy came from studies in which
the extent of tumor control by radiotherapy was com-
pared in immunocompetent and -deficient xenograft
models. Studies in the model of melanoma revealed
that the ablative effects of radiotherapy were strongly
dependent on radiation-induced cytokine responses [22]
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Fig. 2 Mechanisms of immune evasion by tumors. a In the early phase of tumor development tumors remain undetected by the immune system
because of the lack of danger signals such as significant levels of apoptotic or necrotic cells or pro-inflammatory cytokines. b By secretion of soluble
factors such as indoleamine 2,3-dioxygenase (IDO) by tumor cells the infiltration of lymphocytes is inhibited. ¢ If moderate immune cell infiltration
eventually occurs tumor cells downregulate the expression of components of the antigen presentation machinery including MHC class | and Il which
results in their impaired recognition by antigen-specific T cells. d In tumors with a larger extent of immune cell infiltration, tumor cell destruction by
cytotoxic T cells is inhibited by high expression of immunosuppressive mechanisms such as IDO, PD-L1 and FoxP3+ Treg

and cytotoxic CD8+ T cells [23]. In a preclinical model of
SCCHN, pretreatment of tumor cell lines with chemother-
apeutic drugs and radiation significantly increased the
extent of their cytolysis by antigen-specific CD8+ T cells
[24]. All these observations suggest that not only genetic
and phenotypic traits of tumor cells but also immunity

of the host are implicated into the clinical success of
radiotherapy [22, 23, 25-27].

Mechanistically, radiotherapy has been shown to aug-
ment the afferent as well as efferent arms of cancer
immunity. The induction of a specific T cell response to
tumor cells (afferent immunity) has been observed in

-

N

Fig. 3 Representative histological images of SCCHN tumor sections displaying different levels of immune evasion. a Tumor areas (green arrows)
show the absence of any lymphocyte filtration at the rim or within the tumor cell nests. b Lymphocyte infiltrates are seen at the tumor border
(black arrows) but are absent within the tumor nests (green arrows). ¢ Despite a high extent of lymphocyte infiltration no signs of tumor cell lysis
or apoptosis are visible. d Tumor areas with infiltrating lymphocytes are composed of vital and apoptotic tumor cells (black arrows), indicative of
a balance between immune destruction and evasion

.
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multiple studies. Almost 20 years ago molecular pathways
were first described that were activated by treatment-
induced cell stress (in particular after treatment with
anthracyclins and ionizing radiation) and which in-
duced a modality of cell death that was highly efficient
in eliciting immune responses [28]. The immunogenic
effects of radiation (reviewed in [29]) are thought to
result from ‘autovaccination’ by antigens released from
dying tumor cells. Translocation of a protein called
calreticulin which is normally residing in the endoplas-
matic reticulum to the cell surface promotes the uptake
of dying cancer cells by DCs and the release of antigens
that can be efficiently presented [30]. Release of ATP,
heat shock proteins and high-mobility group box 1
(HMGBI1) by dying cancer cells help in recruiting and
activating DCs through toll-like receptor signaling path-
ways [31]. By integration of these danger signals DCs
undergo an important maturation process. They up-
regulate the expression of co-stimulatory proteins and
pro-inflammatory cytokines, and acquire the ability of
cross-presenting antigens to cytotoxic CD8+ T cells
by which they initiate adaptive immunity [32].

Radiotherapy can also influence the efficacy of tumor
cell destruction (efferent immunity) within the radi-
ation field by altering tumor cell characteristics or the
tissue microenvironment. Tumor cells in which the dam-
age from radiation has not been sufficient to induce cell
death show increased expression of MHC class-I antigen-
presenting molecules [33] and adhesion molecules [34],
stabilizing the binding of T cells to tumor cells and allevi-
ating TCR activation. As a result, tumor cells that survive
radiation may be eliminated through CD8+ T cell-mediated
lysis [33].

It has been known for some time that irradiated tissues
often show very strong changes in the local cytokine milieu.
As a result of their action, a cascade of pro-inflammatory
processes are triggered. Secretion of interferon-y enhances
expression of MHC class-I by cancer cells, sustaining and
extending the initial effects of radiation to allow efficient
recognition and killing by T cells [26, 34]. In addition,
immune cell trafficking is enhanced through induction of
chemokines, such as CXCL16 that attract effector T cells to
the irradiated tumor site [29].

Immune effects within the radiation field, however, are
not sufficient for cure, as effective treatment of a high-
risk primary cancer has to secure not only local but also
systemic control of the disease. In principle, the nature
of the adaptive immune system should be mechanistic-
ally well suited for systemic tumor surveillance. There is
emerging evidence that radiotherapy can also be associ-
ated with immune destruction of distant metastases,
pointing towards efferent immunity outside of the radio-
therapy field. This phenomenon termed abscopal anti-
tumor effect was already described in 1953 [35]. Clinical
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reports of an abscopal effect after radiotherapy are few,
but cover several different tumor types, including melan-
oma and a variety of carcinomas [36]. Growth suppression
of distant non-irradiated tumors by a combination therapy
of DC infusion and radiotherapy was also reported in a
murine model of squamous cell carcinoma in the head
and neck, indicating that indeed systemic antitumor activ-
ity can be induced by approaches which augment the
immune-activating effects of radiotherapy.

The knowledge gained from mechanistic studies on
the immunomodulatory effects of radiation mentioned
above has changed the way the response to radiotherapy
with/without chemotherapy in patients with cancer is
now interpreted, by acknowledging the essential role of
the host immune system for the success of radiotherapy.
Importantly, these indirect effects of radiation — within
and outside the field of treatment — also suggest new
treatment possibilities, including combinations with estab-
lished or novel forms of immunotherapy.

Immune checkpoint blockade as novel
immunotherapeutic strategy in cancer

The introduction of immune checkpoint inhibitors is cur-
rently revolutionizing treatment of metastatic cancers. Pre-
viously, cancer immunology had concentrated either on
afferent immune stimulation, i.e. induction of T cell im-
munity, most frequently by vaccination, or on stimulation
of efferent T cell activity, e.g. by interleukin-2 treatment.
An important limitation of these approaches was the tight
regulation of the immune system by mechanisms termed
immune checkpoints which are physiologically crucial to
prevent autoimmune diseases (Fig. 4). At the afferent side
of immunity the molecule cytotoxic T-lymphocyte protein
4 (CTLA-4) is expressed on antigen-activated T cells to
dampen the magnitude of T cell activation. At the efferent
side, the expression of the cell surface receptor PD-1 (pro-
grammed cell death protein 1) on activated T cells block
their effector function, if bound to the ligand PD-L1 or
PD-L2 on the target cell. Tumor cells frequently use the
expression of PD-L1 and PD-L2 to escape immune de-
struction. Blocking antibodies directed to the immuno-
regulatory proteins CTLA-4, PD-1 and PD-L1 have been
shown to release these immune checkpoints in different
ways. Antibodies to CTLA-4 (namely ipilimumab and tre-
melimumab) allow induction of autoimmunity, including
immunity to cancer. However, there is a tight window of
opportunity, as autoimmune phenomena can be quite
serious after application of these agents [37]. Antibodies to
PD-1 or PD-L1 do not promote induction of de-novo im-
munity but release the effector phase of immunity (Fig. 4),
hereby allowing the execution of tumor cell destruction by
T cells. Thus, the presence of tumor-specific T cells is
required for efficacy of agents interfering with the
PD-1/PD-L1 interaction.
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Dendritic cell Tumor cell
Fig. 4 Immune checkpoints as modulators of the afferent and
efferent arm of adaptive immunity. Cytotoxic T-lymphocyte protein
4 (CTLA-4) is an inhibitory receptor acting as a major negative
regulator of T cell responses. As part of the afferent immune response
CTLA-4 upregulation on antigen-activated T cells dampens the
magnitude of T cell activation. At the efferent side, programmed
death receptor 1 (PD-1) which is expressed on activated T cells
blocks their effector functions upon binding to the ligands PD-L1 or
PD-L2 on target cells. Tumor cells frequently use the expression of
PD-L1 and PD-L2 to escape immune destruction

The application of immune checkpoint inhibitors has
recently been evaluated in a number of clinical trials and
demonstrated remarkable activity in a broad spectrum of
cancer types. Ipilimumab, nivolumab and pembrolizumab
(the latter two agents both anti-PD-1 antibodies) were the
first three immune checkpoint inhibitors which received
EDA approval for the treatment of metastatic melanoma.
A three-arm phase III trial in melanoma [38] answered
the fundamental question in cancer immunology as to
whether the de-novo induction of T cell responses by ipili-
mumab or the augmentation of a pre-existing T cell re-
sponse by nivolumab may be more efficacious. Response
rates and progression-free survival clearly favored nivolu-
mab over ipilimumab, with the combination of both even
more effective but at the cost of considerable immune-
related toxicities [38].

There are at least eight anti-PD-1/PD-L1 antibodies
currently in clinical development, covering phases I to
III. In addition, the preclinical and early clinical develop-
ment of inhibitors against other immune checkpoints,
such as T cell immunoglobulin mucin receptor 3 (TIM3)
and lymphocyte activation gene 3 protein (LAG3), and
against co-stimulatory molecules, such as OX40 and
CD137, are underway. Final results from several successful
phase III trials with ipilimumab, nivolumab and pembroli-
zumab improving overall survival of metastatic cancer
have been reported in melanoma and lung cancer, and it
can be expected from the data available for a broad range
of other histologies that this novel class of agents will be
firmly established in modern treatment of many cancers.
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In recurrent/metastatic SCCHN, several PD-1/PD-L1
blocking agents are currently being investigated, with
most mature information on nivolumab and pembrolizu-
mab. The phase 1b multicohort trial Keynote-012 tested
the efficacy of the anti-PD-1 antibody pembrolizumab for
treatment of PD-L1+ in recurrent/metastatic SCCHN
[39]. A best overall response rate of 18 % was reported,
with no obvious difference being observed between HPV+
(25 %) and HPV- tumors (14 %). Duration of responses
was approximately 12 months [39]. Comparable results
(overall response rate: 18 %; HPV+, 22 %; HPV-, 16 %)
were reported for the Keynote-055 study in patients with
R/M SCCHN resistant to platinum and cetuximab have
been included [40]. Moreover, the randomized global
phase III trial Checkmate-141, evaluating the efficacy and
safety of nivolumab versus investigator’s choice in patients
with R/M SCCHN demonstrated an increase in 1-year
overall survival (OS) rate from 16 to 36 % by nivolumab
[41, 42]. Again, a survival benefit was observed in the
HPV+ and HPV- subgroup [41, 42].

Early evidence of clinical activity in SCCHN were also
reported from multi-arm expansion studies of anti-PD-
L1 antibodies (atezolizumab, MPDL3280A [43]; durva-
lumab, MEDI4736 [44]). Based on these promising data,
several further randomized phase III trials (NCT02358031,
Keynote-048; NCT02252042, Keynote-040) have been ini-
tiated. In general, the successful clinical trials of PD-1
blocking agents are a proof of the existence of adaptive
immunity towards SCCHN cells which can be very effect-
ive in a proportion of patients when unleashed by block-
ade of the PD-1/PD-L1 interaction.

Interference of immune checkpoints with resistance

to RCT

Deregulated expression of immune checkpoint proteins
has already been linked to poor efficacy of RCT in sev-
eral tumor models. High expression of PD-L1 in tumor
cells and stromal lymphocytes accompanied by low CD8+
T cell infiltration has recently been identified as a poor
prognostic biomarker in patients with stage III non-small
cell lung cancer (NSCLC) receiving cisplatin-based RCT
[45]. In addition, tumor control by neoadjuvant or con-
current RCT was observed to be inefficient in patients
with esophageal squamous cell carcinomas displaying
elevated immunostaining for PD-L1 in neoplastic and
adjacent non-malignant esophageal epithelium [46]. Pre-
clinical studies in a variety of syngeneic mouse models of
cancer [47] have also demonstrated that expression of PD-
L1 can be induced by radiation itself and that such upreg-
ulation impairs both local tumor control and protection
against tumor re-challenge [47]. It is therefore not surpris-
ing that blocking antibodies directed to these immune
checkpoints were able to significantly enhance the im-
munogenic effects of radiotherapy [27, 48, 49].
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In locally advanced SCCHN the magnitude of immune
suppression could also be linked to the efficacy of RCT,
however, a direct role of immune checkpoint proteins re-
mains to be established. Low numbers of tumor-infiltrating
cytotoxic CD8+ T cells before treatment were significantly
correlated with poor outcome after RCT in several studies
[50-53] but the role of CTLA-4 or PD-1/PD-L1 as nega-
tive regulators of CD8+ T cell activation has not been
addressed. By inducing a change in the composition
and functions of the immune cell compartment RCT
was shown to relieve the extent of immune suppression:
while the numbers of CD8+ and granzyme B+ cytotoxic
cells only slightly decreased after RCT, a more pronounced
decrease of FoxP3+ Treg was observed, resulting in an 2-
to 3-fold increase in the cytotoxic T cell/FoxP3+ Treg
ratio [50]. These data strongly support the idea that
application of immune checkpoint inhibitors together
with radio(chemo)therapy could also lead to a significant
improvement of local as well as distant tumor control in
SCCHN. Consequently, the first phase I/II trials evaluating
the combination of pembrolizumab with standard definitive
or adjuvant RCT as well as ipilimumab with cetuximab-
based bioradiation (Table 2) have already been started, and
several further trials with other inhibitors of PD-1 or
PD-L1 are in preparation.

Potential biomarkers for patient selection for immune
checkpoint blockade

Precise biomarkers to identify patients who benefit from
immune checkpoint inhibition alone or in combination
with RCT still have to be established. Current data in
multiple cancers reveal that verification of PD-L1 over-
expression by immunohistochemistry is associated with
improved clinical outcome of anti-PD-1 therapy. However,
the presence of robust responses in some patients with
low or undetectable expression of PD-L1 complicates the
issue of PD-L1 as an exclusive predictive biomarker [54].
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In the Keynote-012 trial of SCCHN, an elevated expression
of PD-L1 and the presence of an interferon-y expression
signature were associated with improved progression-free
survival [39, 55]. The same signature had previously been
established as predictive signature for outcome after pem-
brolizumab in metastatic melanoma [56] and its predictive
value was also demonstrated in advanced gastric cancer
[57]. In addition, patients with large immune cell infiltra-
tion in tumor tissue and high mutational load were more
likely to benefit from immune checkpoint blockade in
bladder [58] and colorectal cancer [59]. Taken together,
patients with PD-L1+ tumors displaying immune-related
gene expression signatures, including genes regulating T
cell functions, the antigen presentation machinery and
[FN-y signaling, are most likely to benefit from immune
checkpoint inhibition.

Rational development of combination regimens

While there is much excitement around the phenomenon
of a radiation-induced anticancer immune response and
combining radio(chemo)therapy with immunotherapy, nu-
merous questions remain to be addressed in clinical trials.
A major challenge is to identify not only the optimal
immune checkpoint inhibitor as partner for a given radio-
therapy schedule but also the best chronological sequence
for their combined application. Preclinical evidence can
serve as guidance in treatment schedule and clinical trial
development. As outlined above, danger signals induced
by radiation lead to the recruitment of immune cells into
the tumor. However, cells of the immune system are also
vulnerable to radiation, as their exposure to ionizing radi-
ation induces apoptosis in mature natural killer (NK) cells
as well as T and B cells. Since radiotherapy is generally de-
livered in daily fractions, re-irradiation of the tumor might
therefore damage infiltrating immune cells that display
cytolytic activity themselves or might significantly reduce
the capacity of DCs to activate effector T cells. In addition,

Table 2 Current clinical trials (at clinicaltrials.gov) evaluating the combination of RT with immune checkpoint inhibitors

Clinical setting

Clinical trial

Drug

Combination

Resectable locally advanced SCCHN

Locally advanced SCCHN

Intermediate/High risk locally advanced SCCHN
Locally advanced SCCHN

locally advanced laryngeal carcinoma

Intermediate/High risk locally advanced SCCHN

locoregional inoperable recurrence or second primary SCCHN
Advanced metastatic disease (multicohort)

Brain metastasis (multicohort)

NCT02641093 phase |l
NCT02296684 phase I
NCT01935921 phase |
NCT01860430 phase Ib
NCT02586207 phase |
NCT02759575 phase /1l
NCT02764593 phase |
Phase Ill

NCT02289209 phase |I
NCT02303990 phase |
NCT02669914 phase |l

Pembrolizumab
Pembrolizumab
Ipilimumab
Ipilimumab
Pembrolizumab
Pembrolizumab
Nivolumab
Nivolumab
Pembrolizumab
Pembrolizumab

Durvalumab

Adjuvant RT/RCT
Adjuvant RT/RCT
Definitive RT + cetuximab
Definitive RT + cetuximab
Definitive RT + CDDP
Definitive RT + CDDP

Definitive RT, RT+ CDDP, RT + cetuximab

Definitive RT + CDDP
Reirradiation
RT

Stereotactic radiosurgery

RT radiotherapy, CDDP cisplatin
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DCs may find a hostile environment for T cell activation
in draining lymph nodes, which represent their natural
surrounding for interaction with T cells, as draining lymph
nodes are systematically included into the radiation field
in SCCHN. Conversely, however, the induction of im-
munogenic cell death (ICD) by each daily radiotherapy
fraction might transiently generate a favorable milieu for
immune activation within the tumor tissue, which may
vanish again after termination of radiotherapy. In support
of the latter, concurrent application of an anti-PD-L1 anti-
body together with fractionated radiotherapy significantly
improved tumor control in a xenograft model [47]. In
contrast, fractionated radiotherapy followed by delayed
application of anti-PD-L1 was completely ineffective in
enhancing the local efficacy of radiotherapy [47]. Certainly,
more studies will be needed to address this important
issue.

Besides the optimal time schedule also the optimal
type and dosing of chemotherapy has to be established,
if desired to be included into the treatment regimen. Sig-
nificant differences in the ability of chemotherapeutic
drugs to induce ICD have been reported previously [32].
Cisplatin which is an essential component of current
state-of-the-art RCT regimens in SCCHN does not in-
duce ICD [60] despite its presumed identical mechanism
of action to that of oxaliplatin, a potent inducer of ICD.
This has been attributed to the lack of calreticulin expos-
ure after cisplatin treatment [60]. However, radiotherapy
is a potent inducer of calreticulin exposure [30], and re-
cent studies have shown that combining cisplatin with
compounds that induce calreticulin exposure leads to full-
scale ICD [60]. Thus, potentiation of ICD by cisplatin
could still represent one of its major mechanism of ac-
tion when cisplatin is administered concurrently with
radiotherapy.

Taxanes including docetaxel and paclitaxel which are
also common combination partners of radiotherapy in
locally advanced SCCHN are known to modulate antitu-
mor immune responses as well [61]. Similar to cisplatin,
paclitaxel does not induce ICD. However, concurrent
paclitaxel treatment was shown to significantly enhance
radiation-induced ICD in breast cancer cell lines [62].
Similarly, docetaxel treatment itself did not induce ATP
or HMGBI secretion by tumor cells. However, calreticulin
exposure of tumor cells after docetaxel treatment was
observed which significantly enhanced tumor cell killing
by antigen-specific CD8+ cytotoxic T cells [61].

Intriguingly, investigations on the immunogenic ef-
fects of chemotherapeutic drugs revealed also their dir-
ect interference with immune checkpoint expression.
Treatment of DCs in vitro with platinum-based com-
pounds strongly enhanced their potential to activate T
cells which was caused by downregulation of PD-L2 in
DCs [63]. This effect was mediated by inactivation of
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STATS, the transcriptional regulator of PD-L2, and oc-
curred also in tumor cells resulting in their enhanced
recognition by T cells [63].

Overall, these preclinical observations provide a sound
rationale for investigating immune checkpoint inhibitors
with radiotherapy alone as well as in combination with
standard cisplatin-based as well as taxane-based RCT. In
addition, there is accumulating data that the efficacy of
cetuximab-based regimens in treatment of recurrent/
metastatic SCCHN is not only based on the inhibition of
EGER signaling pathways but also on the activation of
Fcy receptor-positive NK cells leading to DC maturation
and activation of cytotoxic T cells [64]. A combination of
immune checkpoint inhibitors with cetuximab-based bior-
adiation protocols might therefore also represent a very
attractive chemotherapy-free concept for improvement of
primary treatment of locally advanced SCCHN.

Toxicity of combination regimens

The toxicity of radiotherapy is mostly occurring directly
at the irradiation site. Mucositis, xerostomia and swal-
lowing dysfunctions are common side effects in radio-
therapy of head and neck cancers. Clearly, the extent of
early and late toxicity is dependent on the radiation
technique and the applied dose: Intensity-modulated
radiotherapy, which conforms closely to the tumor vol-
ume, avoids or minimizes exposure to unaffected tissue
and thereby significantly reduces local side effects of
irradiation [65]. On the other hand, addition of concur-
rent chemotherapy to radiotherapy not only improved
efficacy of the treatment in locally advanced SCCHN but
also increased both the toxicity and the spectrum of
adverse events as compared to radiotherapy alone [66].
The toxicity of immunotherapy is dependent on the ad-
ministered agent and dosage. In previous clinical trials,
immune checkpoint blockade immunotherapy presented
acceptable toxicity. Even occasional severe toxicity was
manageable through treatment interruption or involve-
ment of immunosuppressive drugs. During ipilimumab
treatment approximately 60 % patients showed immune-
related adverse events, of them 10-15 % being grade
3-4 [67]. The blockade of PD-1/-L1 showed less se-
vere ir-AEs in previous phase I studies [68]. Diarrhea
and skin rash were the most common immune-related
adverse events after ipilimumab, other adverse effects
included enterocolitis, hypothyroidism, hypophysitis and
neuropathies [68]. The most common adverse events re-
ported for both nivolumab and pembrolizumab were mild
fatigue, rash, pruritus and diarrhea, which could be usually
managed without dose interruption or discontinuation
[68]. First toxicity data from a phase I study of the com-
bined application of ipilimumab with radiotherapy for
treatment of metastatic melanoma (NCT01497808, [48])
argue against an exacerbating toxicity profile of the
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combined regimen. No dose-limiting toxicities, defined by
the study protocol as any treatment-related grade >4
immune-related toxicity or grade =3 non-immune related
toxicity experienced during study treatment or within
30 days after the last injection of ipilimumab were ob-
served [48]. Considering the different kinds and acceptable
adverse events, the combinatorial treatment of radiother-
apy and immune checkpoint inhibitors seems feasible for
SCCHN patients.

Conclusions

The introduction of immune checkpoint inhibitors into
cancer treatment has been celebrated as the breakthrough
of the year 2013. Impressive activity was proven in meta-
static melanoma and lung cancer, and promising results
were presented for recurrent/metastatic SCCHN. Given
the immunogenic effect of radiotherapy and its enhance-
ment by chemotherapy or cetuximab, it remains to be
determined whether immune checkpoint inhibitors could
further increase the activation of adaptive immunity and
ultimately improve overall current cure rates of locally ad-
vanced SCCHN.
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