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Abstract

Genomic selection has been proposed as the standard method to predict breeding values in animal and plant breeding.
Although some crops have benefited from this methodology, studies in Coffea are still emerging. To date, there have been no
studies describing how well genomic prediction models work across populations and environments for different complex
traits in coffee. Considering that predictive models are based on biological and statistical assumptions, it is expected that
their performance vary depending on how well these assumptions align with the true genetic architecture of the phenotype.
To investigate this, we used data from two recurrent selection populations of Coffea canephora, evaluated in two locations,
and single nucleotide polymorphisms identified by Genotyping-by-Sequencing. In particular, we evaluated the performance
of 13 statistical approaches to predict three important traits in the coffee—production of coffee beans, leaf rust incidence and
yield of green beans. Analyses were performed for predictions within-environment, across locations and across populations
to assess the reliability of genomic selection. Overall, differences in the prediction accuracy of the competing models were
small, although the Bayesian methods showed a modest improvement over other methods, at the cost of more computation
time. As expected, predictive accuracy for within-environment analysis, on average, were higher than predictions across
locations and across populations. Our results support the potential of genomic selection to reshape traditional plant breeding
schemes. In practice, we expect to increase the genetic gain per unit of time by reducing the length cycle of recurrent
selection in coffee.

Introduction

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41437-018-0105-y) contains supplementary
material, which is available to authorized users.

Plant and animal breeders have used quantitative genetics
effectively to increase mean phenotypic performance in
selected populations. Traditionally, genetic progress has
been achieved by combining phenotypic evaluations with
the pedigree record, which involves visual evaluation and
trait screening over several successive generations (God-
dard and Hayes 2007). These approaches have brought
significant gains in recent decades. However, it is important
to take into account the effort required to achieve these
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gains; for the majority of perennial crops, this approach is
costly and time-consuming, particularly for traits expressed
late in a plant’s life-cycle.

The advent of molecular markers has provided an
opportunity to achieve faster genetic gains (Lande and
Thompson 1990). Meuwissen et al. (2001) first proposed to
use all available molecular markers to predict quantitative
traits in breeding programs. Known as genomic selection
(GS), the methodology has become widely adopted in the
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animal and plant breeding communities because of its
potential to increase genetic gains and shorten the breeding
cycle. The rationale behind this approach is that, whenever
marker density is high enough, most quantitative trait loci
(QTLs) will be in linkage disequilibrium (LD) with some
markers and hence estimates of marker effects will lead to
accurate predictions of genetic merit for a complex trait
(Goddard and Hayes 2007).

When confronting the problem of modeling the rela-
tionship between genetic variation and variation in the
observed traits, an important question is what statistical
method might better describe this relationship. Several
analytical approaches have been proposed for genome-based
prediction of genetic values, such as penalized and Bayesian
estimation procedures, as well as nonparametric regression
and dimension reduction methods (Gianola et al. 2009;
Kirkkdinen and Sillanpad 2012; Gianola 2013; de Los
Campos et al. 2013). A common feature of all these methods
is that they were designed to handle highly-dimensional
data, with a particular focus on producing accurate estimates
in settings in which the number of variables, or SNPs (p), is
larger than the number of samples (r). Most successful
approaches are based on variable selection and/or shrinkage
techniques from the statistics literature (Kirkkdinen and
Sillanpid 2012; Zhou et al. 2013; Garrick et al. 2014).

Comparisons between genomic prediction models have
been carried out in a variety of scenarios for different spe-
cies and traits (Heslot et al. 2012; Riedelsheimer et al. 2012;
Daetwyler et al. 2013; Wang et al. 2015). Empirical and
simulation studies have suggested that different models
work better in different scenarios, since biological and
technical factors affect prediction accuracy. These factors
include population size, genetic architecture and differences
between the training and validation data sets (de Los
Campos et al. 2013; Daetwyler et al. 2013). Because of this,
when considering analyses of new species and breeding
scenarios, it can be helpful to compare and assess several
methods before carrying out the final genomic analyses.
Here we perform such an assessment for genomic prediction
in coffee, an important agricultural commodity in which
genomic studies are still emerging.

So far, genomic prediction accuracy has usually been
evaluated within single environments (Windhausen et al.
2012a, b; Beaulieu et al. 2014; Gamal El-Dien et al. 2015).
In coffee, however, breeding schemes are most commonly
performed in multiple environments to measure perfor-
mance of genotypes across a range of conditions. In this
study, therefore, we focus on the following question: are
marker effects estimated in one set of environments useful
for prediction in other environments? This question has
important practical implications for the effectiveness of GS
in perennial species such as coffee. If feasible, for example,
a single prediction model could be used across different
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environments resulting in time and cost economy (Resende
et al. 2012a).

This investigation builds on our earlier work that
explored the potential of GS for production of coffee beans
(Ferrdo et al. 2017). In that work, we used a mixed model
framework with integration of spatial and temporal
variance-covariance structures. In combination, this inves-
tigation explores the potential of several statistical methods
to predict three important traits—production of coffee
beans, leaf rust incidence, and yield of green beans—eval-
uated in two recurrent selection populations of Coffea
canephora. Our results demonstrate the usefulness of
genome-base prediction for coffee breeding. We also pro-
vide guidance on implementing molecular assisted selection
in practical breeding programs.

Materials and methods

The description of the Materials and methods is organized
as follows. In the Sections ‘“Plant material” and “Experi-
mental design”, we describe the development of the popu-
lation used in the experiments, collection of the phenotype
data, and breeding scenarios proposed for GS investigation.
We take additional steps, described in the Section ‘“Phe-
notypic model”, to prepare the phenotype data for analysis
with whole-genome prediction models. At this stage of the
analysis, no marker information was included in the model.
The protocols for DNA sequencing and calling SNP gen-
otypes are described in the Section “Genotypic data”.
Finally, in the Sections “Genomic prediction methods” and
“Evaluation of genomic predictions” we describe the
genomic prediction methods used in our experiments and
explain how these methods were compared.

Plant material

We consider an experimental population designed by the
Instituto Capixaba de Pesquisa, Assisténcia Técnica e
Extensdo Rural (Incaper), ES State, Brazil. Phenotype
measurements were collected from two recurrent selection
populations formed from the recombination of superior C.
canephora clones. Clones were selected by the Incaper as
progenitors (founders) based on high production of coffee
beans and similar stages of fruit maturity. The latter is an
important feature of new coffee varieties because it allows
harvests to be standardized. Based on the maturity group,
coffee populations were designated as “Intermediate” or
“Premature”. The Intermediate population, on average, had
fruits that started to ripen in March and April, and then were
harvested in June. The fruits of the Premature population
started ripening, and were harvested one month earlier, on
average.



Accurate genomic prediction of Coffea canephora in multiple environments using whole-genome... 263

Fig. 1 Genomic selection
experimental scenarios. Here,
“environment” is defined as a
combination of location (FEM,
FES) and population
(Intermediate, Premature). FEM
Scenarios a—d assess genomic
selection within the same
environment; Scenarios 1-4
compare GS performance
across-locations; Scenarios 5-8
evaluate GS performance across

populations; and Scenarios 9-12 1l 1121

assess both across-location and
cross-population predictions.
Direction of the arrows indicate
differences in the training and
test data sets

FES

INTERMEDIATE

PREMATURE

[C]
[5]
[10]
[11] [31] 4]
[12]
[8] [D]
[71

Scenarios:

[A][B] [C] [D] = within-environment
[1]1[2] [3] [4] = across-locations

[51[6]1[7][8] = across-populations
[9]1[10] [11] [12] = across-environments

In 1997, the original Intermediate and Premature popu-
lations were derived from crosses of 16 and 9 progenitors,
respectively. Each population was planted in an isolated
field under open pollination conditions. In 2000, after one
cycle of recombination, seeds were derived from each
maternal plant, which were then use to develop a new
population. At this point, the same number of seeds per
maternal plant were harvested in order to preserve genetic
diversity. After four consecutive harvest-production years
(2002-2005), 103 progenies from the Intermediate popu-
lation and 87 progenies from the Premature population were
selected based on their high performance in terms of pro-
duction of coffee beans and tolerance to biotic and abiotic
stress over these four years. In 2006, founders and the
selected progenies belonging to both populations were
cloned and assigned to randomized complete blocks with
three replications and five plants per plot. The average
measurement per plot was used as the phenotype for all
subsequent analyses in this study.

Both populations were established in two locations,
chosen to be representative of Brazilian coffee production:
Marilandia Experimental Farm, or FEM (latitude 19%24°
south, longitude 40°31° west, 70 m altitude); and Sooretama
Experimental Farm, or FES (latitude 15%7° south, long-
itude 43°18° west, 40 m altitude).

The complete experiment used phenotype measurements
from 3570 coffee trees in the Intermediate population, and
from 2880 coffee trees in the Premature population.

Measures were recorded over four consecutive harvest-
production years (2008-2011) for three traits: production of
coffee beans (mature coffee fruit in the “cherries” stage, in
60-kg bags per hectare); natural infection of coffee leaf rust,
caused by the Hemileia vastatrix fungus (levels ranging
from 1 to 9, according to visual sporulation intensity eval-
uated in field); and yield of green beans post-harvest trait
(ripened beans, in g, after processing by dry methods to
remove dried husks in samples of 2 kg of coffee fruit in the
cherries stage).

Experimental design

To investigate potential for GS, we considered two aspects
of plant breeding: (i) prediction accuracy for different traits,
and (ii) prediction accuracy within and across environ-
ments. Here we define “environment” as a specific combi-
nation of location and population. Figure 1 summarizes our
experiments.

For within-environment experiments (Scenarios A-D),
predictions were evaluated using a Replicated Training-
Testing evaluation (Crossa et al. 2013). In each replication,
80% of the individuals were assigned randomly to the
training set (TRN), while the remaining 20% were assigned
to the test set (TST). This division was repeated 30 times
with different random assignments to TRN and TST.
Models were fitted to the training data and prediction
accuracy was evaluated in the test data.

SPRINGER NATURE



264

Luis Felipe Ventorim Ferréo et al.

For across-environment experiments (Scenarios 1-12),
we subdivide the experiments as follows (see Fig. 1): (i)
Scenarios 1-4 capture across-location predictions, in which
the test set contains samples collected from a different
location than the training set, while the source population is
kept the same; (ii) Scenarios 5—8 consider across-population
predictions, in which the training and test sets contain
samples from different populations, while the location is
kept the same; (iii) Scenarios 9—12 capture both across-
location and across-population predictions, in which the test
set has samples from a different population and a different
location than the training set. In these experiments we did
not use the Replicated Training-Testing design; for exam-
ple, in Scenario 1 the model was trained with all Inter-
mediate individuals from one location (e.g., FEM) and
validated using all Intermediate individuals from another
location (e.g., FES).

Phenotypic model

The phenotypes were adjusted for linear effects of envir-
onmental covariates, and other experimental covariates. In
particular, in our experiments we collected longitudinal data
across multiple harvest-years. Different variance-covariance
structures were tested to describe this temporal variation
across harvest, and therefore improve the estimation of
genetic effects. Using a similar notation to Pastina et al.
(2012), we considered the following statistical model
(underlined terms indicate random variables):

yijk:/l+Bj+Hk+Qii+€ijk (1)

where yjj; is the phenotype measured in individual i € {1....,n}
from block je{l,...,r} and harvest k€ {1,...,K}; u is the
intercept; H is the fixed harvest effect; B; is the fixed block
effect; G;; is a random genetic effect of genotype i at harvest k;
and g, is a random non-genetic residual error term. Here, r =
3 (the number of blocks) and K = 4 (the number of harvests).

To model the random genetic effects, we assumed a
multivariate normal distribution with a zero mean and a
variance-covariance matrix G. We formulated G as the
Kronecker product G = ZZXK ®UI;", in which I;*" is the
n x n identify matrix. Four structures ZgXK different levels
of complexity (i.e., number of model parameters to be
estimated) were investigated (see Supplementary Table S1).

Similarly, for the residual error, we assumed a multi-
variate normal distribution with a zero mean and variance-
covariance matrix R defined as R = R** @ [ @ I;*".
The term [g*" is an Identity of dimension equal to the
number of blocks, r. For the term RE*X the “Ident” and
“Diag” variance-covariance structures were considered
(Supplementary Table S1). Our previous study showed no
improvements in the goodness-of-fit values when spatial
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trends were evaluated (see Ferrdo et al. 2017); therefore, we
did not consider spatial analysis here.

The final model choices were based on AIC (Akaike
Information Criterion) (Akaike 1974) and BIC (Bayesian
Information Criterion) (Schwarz 1978). Since calculation of
heritability in complex linear mixed models is not
straightforward (Cullis et al. 2006; Oakey et al. 2016),
broad-sense heritability (’) was estimated from the sim-
plest phenotypic model—that is, identity structure for the
genetic and residual matrices—as: = m; where 0§
is the estimated variance of the genotype gcorﬂnponent, ol is
the estimated variance of the residual component, and » and
K are the number of blocks and harvests, respectively.

All analyses described in this section were performed

using the R package nlme (Pinheiro et al. 2013).
Genotypic data

The Intermediate and Premature populations were geno-
typed using the Genotype-by-Sequencing (GBS) approach
that was first developed by FElshire et al. (2011). We fol-
lowed the GBS protocol used by the Genomic Diversity
Facility at Cornell University.

Leaves were collected and lyophilized. DNA was
extracted using Qiagen DNeasy Plant, and the genomic
libraries were prepared following Elshire et al. (2011). The
DNA samples were digested using the ApeKI restriction
enzyme, and 96 samples were multiplexed per Illumina flow
cell for sequencing.

The GBS analysis pipeline was implemented with the
TASSEL-GBS software, version 4.3.7 (Glaubitz et al.
2014). Sequenced tags were aligned against the C. cane-
phora genome assembly (Denoeud et al. 2014). SNPs were
extracted from the raw Variant Call Format (VCF file) and
filtered manually as follows: (i) triallelic SNPs were
removed; (ii) SNPs with minor allele frequency (MAF) less
than 1% were removed; and (iii) SNPs with genotypes that
were called in less than 70% of the samples were discarded.

To ensure that all genotypes were called consistently, we
used a Bayesian approach that incorporates genetic back-
ground information, similar to Chan et al. (2016), to call
genotypes with low coverage (which we defined as geno-
types with less than or equal to five sequenced reads).
Specifically, we used a two-step approach: first, the
maximum-likelihood estimates of genotypes were computed
following Chan et al. (2016) (assuming a uniform genotype
prior); second, the inferred parental genotypes were pro-
vided as prior information for inferring the genotypes of
the progenies. To improve accuracy of the parental genotype
estimates, we increased the sequencing coverage of
the parents to 3x the coverage of the progenies. To call the
genotypes, we retained the maximum-probability genotype,
encoded as reference allele counts (0, 1 or 2) in our files.
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All SNP manipulation and genotype calling (aside from
genotypes of low-coverage samples) were carried out using
VCFtools (Danecek et al. 2011). We used R (R Core Team
2013) to implement the Bayesian genotype calling incor-
porating parental genotype estimates. SNP density plots
were created using the synbreed R package (Wimmer et al.
2012).

Genomic prediction methods

We compared 13 different methods for genomic prediction
of coffee traits. Most of the genomic prediction approaches
included in our experiments are based on a linear regression
in which the outcome of interest y is modeled as a linear
combination of the SNP markers:

y=ul, +Xp+e (2)

Here, y is an n-vector of phenotypes measured on n
individuals, after adjusting for linear effects of environ-
mental factors and other experimental factors, as explained
in Sec. 2.3; X is an n X p matrix of genotypes measured at p
SNPs; f is a p-vector of SNP effects to be estimated; 1, is
an n-vector of 1’s; u is the intercept, and ¢ is an n-vector of
normally distributed residuals, € ~ N (0, Gglnxn).

For comparing genomic prediction approaches, we
defined three classes of methods: (1) fixed multiple
regression, (2) Bayesian methods, and (3) a third class of
methods based on techniques originally developed in
machine learning (which don’t already fit into the first two
categories).

Fixed multiple regression

This class of method builds on standard statistical associa-
tion analysis approaches used in genome-wide association
studies (GWAS) which test each SNP, one at a time, for
association with the phenotype (we refer to this as “single-
SNP” analyses). We implement a fixed regression proce-
dure following Spindel et al. (2015), using a subset of
markers identified from a single-SNP analysis. For each
replication in the cross-validation scheme (Replicated
Training-Testing evaluation), single-marker regression was
applied to all SNPs, and association p-values were com-
puted using an F-test. A linear regression model was then
fitted to the data using the 100 most significant markers. We
refer to this method as “fixedMRL”.

Machine learning methods
We consider three approaches from the machine learning

literature: regularized regression, dimension reduction, and
random forests.

1. Regularized regression: This method fits a regres-
sion model with all p SNPs, shrinking all coeffi-
cients toward zero. Regression coefficients are fitted
by solving an optimization problem that balances
goodness-of-fit against model complexity (de Los
Campos et al. 2013; James et al. 2013). Several
regularized approaches have been proposed, and
they differ in the choice of penalty function. Ridge
regression (RR) and LASSO are the two most
prominent approaches. RR shrinks all coefficients
toward zero, with a penalty applied to the {,-norm of
the coefficients. In contrast, LASSO uses the ¢{;-
norm (James et al. 2013). The RR-BLUP is a version
of RR that implements best linear unbiased predic-
tion (BLUP) using a mixed model approach (Endel-
man 2011). The RR-BLUP and LASSO approaches
were implemented using, respectively, the rrBLUP
(Endelman 2011) and glmnet (Friedman et al. 2010)
R packages. The LASSO penalty strength was
chosen via cross-validation, following Silva et al.
(2011).

2. Partial least squares regression (PLSR): This is a
dimension-reduction approach that transforms the
variables (SNPs), then fits a model with the
transformed variables. PLSR is similar to principal
component regression (PCR); both methods construct
a matrix of latent components as a linear transforma-
tion (James et al. 2013). PLSR was implemented
using the pls R package (Wehrens and Mevik 2007)
with the default settings.

3. Random forest (RF): A random forest is a
collection of regression trees, in which a subset of
SNPs is used to define the best split at each node
(James et al. 2013). Different variables are used at
each split in different trees. The RF prediction for
an observation is obtained by averaging the
predictions over trees. One feature of the RF
approach is that it allows for non-linear relation-
ships between genotype and phenotype. RF was
implemented in our study using the RandomForest
R package (Liaw and Wiener 2002) with the default
settings.

Bayesian methods

All Bayesian approaches are based on a hierarchical linear
regression method, building on (2), and differ primarily in
the priors placed on the regression coefficients and other
model parameters (Gianola 2013). Using notation similar to
de Los Campos et al. (2013), the posterior distribution of
the model parameters u, f§, o> given the hyperparameters

SPRINGER NATURE
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Table 1 Summary of effect size

distributions used in selected Name Pl Keyword Software

genomic prediction methods, t B ~ t(O v 62) bayesA® BGLR"

adapted from Zhou et al. (2013) ) 4 e N
Point-t B ~mt(0,0,62) + (1 — )8 bayesB* BGLR
Point-normal Bi~naN (0,62) + (1 — m)do bayesC®, BGLR",

2 R s bayesVS® varbvs®

Point-normal- p; ~mN(0,07) +mN(0,0.167) + m3N(0,0.0107) bayesR? BayesR!
mixture (1= =73 = 713)30
Normal pj~nN (0,62) bayesRR® BGLR"
Normal-mixture ~ §; ~ 7N (0,62 + o3) + (1 — 7)N(0,53) bslmm® GEMMA'
Double- B; ~ DE(0,0) bayesLASSO*  BGLR"
exponential

*Meuwissen et al. (2001)

Habier et al. (2011)

“Carbonetto et al. (2017)

Erbe et al. (2012)

“Whittaker et al. (2000)

Zhou et al. (2013)

€Pérez and de los Campos (2013)
"Park and Casella 2008

**Notation used in Zhou et al. 2013. DE = “double-exponential’” distribution. For the scaled #-distribution,
v and o2 are the number of degrees-of-freedom and scale parameter, respectively. In the DE distribution, @ is
the scale parameter.dy denotes a point mass at zero. Notes: Some applications of these methods combine a
particular effect size distribution with a random effects term, with covariance matrix K, to capture sample
covariance structure (“cryptic relatedness™); if K«XX, it can be shown that this is equivalent to assuming a
normal distribution for the effect sizes; this is one motivation for the effect size distributions used in the
many of the methods summarized in the above table. In some papers, the “Keyword” column may refer to
fitting techniques rather than the assumed effect size distributions. More details in Zhou et al. 2013

is expressed as:

(3)

where p(u,3,06°[y, ) is the posterior density of model
parameters u, f3, o> given the data (y) and the hyperpara-
meters , p(y’,u, b, 02) is the regression likelihood based on
(2), and p(u,p,c*|w) is the prior density of model para-
meters. Table 1 summarizes the Bayesian methods eval-
uated in our experiments.

For all Bayesian methods except bayesVS, we ran the
Markov chain for 20,000 time steps, with a burn-in of
2000. The bayesVS method uses a variational approx-
imation instead of Markov chain Monte Carlo (MCMC)
(Carbonetto and Stephens 2012). The bayesA, bayesB,
bayesC, bayesRR and bayesLASSO models are imple-
mented in the BGLR package (Pérez and de los Campos
2013); the bayesR method is implemented in the BayesR
package (Erbe et al. 2012); and the BSLMM (Bayesian
Sparse Linear Mixed Model) method is implemented as
part of the GEMMA software (Zhou et al. 2013). For all
methods, we adopted the default hyperparameter and prior
settings.

p(u. B, 0%y, ®) < p(ylu, p,0*)p(u, B, o*|w)
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Evaluation of genomic predictions

We applied each of the 13 methods to predict within-
environment phenotypes (Scenarios A-D in Fig. 1). The
best performing method was used in the others scenarios
(Scenarios 1-12 in Fig. 1). To compare the models, we
primarily focused on quantifying the prediction ability,
commonly used in the GS literature as a measure of the
prediction accuracy. To this end, we compute the Pearson
correlation (r,,) between predicted (y;) and adjusted phe-
notypes (y;) obtained with Eq. (1).

Following Asoro et al. (2011), we used analysis of var-
iance (ANOVA) to investigate how different factors might
be responsible for differences in accuracy among methods.
We used the following model in the ANOVA:

rep = p + method + trait + pop + loc + (method X trait)
+(method x pop) + (mehotd x loc) + (trait x loc) + error

(4)

where u is the intercept; the levels of method are the
prediction methods; the levels of trait are the three traits
(production of coffee beans, coffee leaf rust, and yield of
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Fig. 2 Left-hand panel: summary of production of coffee beans (in 60-
kg bags of mature coffee fruit in the cherries stage per hectare) and
yield of green beans (in g, of mature beans after processing using dry
methods to remove the entire dried husk in samples of 2 kg of coffee
fruit in the cherries stage) evaluated in two locations (FEM, FES), four

green beans); the levels of pop are the two populations
(Intermediate and Premature), and the levels loc are the two
locations (FEM and FES) considered. Other terms in (4)
correspond to double interactions among factors.

Alternatively, we also estimate the mean squared pre-
diction error (MSPE), slope and computational time to
compare the 13 models. MSPE was computed using the
formula:

MSPE =15 (y; —§,)%, where n is the number of
samples in the test set. To compute the slope, adjusted
phenotypes were linearly regressed on predicted phenotypes
to express the degree of bias of the predictions, as suggested
by Moser et al. (2009). Runtimes for model fitting were
recorded in minutes for all methods and data sets. All
computations were single threaded and performed on an
Intel Core 17-3770 processor (3.40 GHz) with 8 GB of
memory.

Since the degree of genetic relationships between train-
ing and test sets can impact accuracy of the predictions, the
relationships of both populations were investigated using
principal components analysis (PCA) and Fst.

In our experiments, we also investigated the effect of
number of included SNPs on the predictive ability. To this
end, we considered two approaches to selecting SNPs: (i)
guided subsets, and (ii) random subsets. To construct the
“guided” SNP subsets, we selected 10 SNPs within win-
dows of the same length (in base-pairs) in each C. cane-
phora chromosome. To construct SNP subsets of different
sizes, we considered different window sizes, ranging from 5
to 900 Kb, by increments of 100 Kb. Following Spindel

alnjewsald

[\
ISs ,{ IK‘
8 2 468 2 468 2 46 8
Scale of scores of coffee leaf rust

harvests (2008-2011) and two populations (Intermediate, Premature).
Right-hand panel: Summary of coffee leaf rust scores (Hemileia vas-
tatix), ranging from 1 to 9, according to sporulation observation.
Curves are kernel density estimates, which are smoothed version of the
histogram

et al. (2015), we selected the SNPs with highest minor allele
frequencies (MAF) and best call rates within each window.
This resulted in SNP subsets with the following numbers of
SNPs: 35,427 (smallest windows), 20,450, 13,690, 10,189,
7989, 6577, 5559, 4780, and 4240 (largest windows). For
the Premature population the number of SNPs in each
subset was 40,767, 21,433, 13,969, 10,283, 8019, 6587,
5560, 4780, and 4240. To construct random SNP subsets,
we used exactly the same number of SNPs as in the “gui-
ded” subsets; however, SNPs were randomly sampled in
each window instead of selecting them based on MAF and
call rate.

Results
Phenotypic data

Figure 2 summarizes the phenotypic variation in both
populations and at both locations. On average, FES location
was more productive than FEM location, and showed
higher incidence of rust. We observed a lack of annual
production stability in coffee bean production over different
years in both populations. This instability was quantified in
the mixed model analysis, with better goodness-of-fit values
(lower AIC and BIC) when heterogeneity of residual and
genetic variance were taken into account (Supplementary
Table S3). Further, the boxplots in Fig. 2 highlight this
cyclical production, interleaving years of high (2008, 2010)
and low bean production (2009, 2011).
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Table 2 Broad-sense heritability of production (weight of mature
coffee fruit in the cherries stage, in kg), incidence coffee leaf rust
(1-9 scale) and yield of green beans (weight, in g, in samples of 2
kilograms of coffee fruit in the cherries stage) across two locations
(FEM and FES) and two recurrent selection populations of Coffea
canephora (Intermediate and Premature)

Trait Intermediate Premature

FEM FES FEM FES
Production 0.70 0.81 0.74 0.85
Rust 0.61 0.86 0.56 0.89
Green 0.52 0.86 0.72 0.92

Heritability estimates of the three traits, in different
environments, ranged from 0.56 to 0.92 (Table 2). Inci-
dence of rust and yield of green beans showed the highest
heritability values (0.89 and 0.92, respectively). On aver-
age, traits evaluated in the FES location and in the Pre-
mature population showed higher heritabilities than the
FEM location and Intermediate population.

Genotyping-by-Sequencing in C. canephora

After following the quality-control steps (see 'Materials and
methods'), a total of 45,748 (on average, 64.4 SNPs per Mb)
and 59,332 (on average, 83.5 SNPs per Mb) molecular
markers (SNPs) were retained in the Intermediate and Pre-
mature populations, respectively. Among these, 38,106
SNPs (on average, 53.7 SNPs per Mb) were identified in
both populations (Fig. 3b). GBS yielded good coverage of
SNPs for most of the C. canephora genome in both popu-
lations (Fig. 3b).

Genetic similarity between training and test populations
is an important factor affecting prediction accuracy (de Los
Campos et al. 2013; Daetwyler et al. 2013). Based on the
GBS genotypes, the Intermediate and Premature population
are very similar; the Fst measure is 0.0158, and both
populations strongly overlap in the projection of the sam-
ples onto their first two principal components (Fig. 3a).

Comparison of methods for genomic prediction

For phenotype prediction within the same environment, we
evaluated prediction accuracy using 13 previously devel-
oped genomic prediction methods for three traits. Although
the methods differ in assumptions of the marker effects,
most methods yield predictions at comparable levels of
accuracy (Fig. 4). The one exception is the fixedMLR
approach that consistently yielded poor predictions.

Aside from the fixedMLR method, average predictive
ability in different traits and environments ranged from
0.17 to 0.69 (Supplementary Table S4). On average,
Bayesian methods were slightly more accurate than
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methods labeled as “machine learning” (0.47 versus 0.45).
Differences in predictive ability were statistically sig-
nificant (P < 0.05) for different traits, locations and popu-
lations (Supplementary Table S2). Average predictive
ability was slightly higher for incidence of leaf rust and
yield of green beans (0.50 and 0.49, respectively) than
production (0.38), in accordance with the heritability
results (Table 2). Average prediction accuracy was slightly
higher at the FEM location than FES (0.47 vs. 0.45), and
predictions in the Premature population were on average
more accurate than in the Intermediate population (0.54 vs.
0.39). Accordingly, similar performance across the com-
peting models was observed for the slope and MSPE values
(Supplementary Tables S5 and S6).

Although Bayesian approaches tend to yield higher
predictive values, they typically come with a much greater
computational cost than the alternatives methods (Fig. 5).
Of the 13 methods compared, we found that the RR-BLUP
and BSLMM methods achieved the best combination of
high accuracy and low computational cost. Based on this
result, in subsequent experiments we focused on the RR-
BLUP method.

In order to check the impact of the SNP density on the
predictive ability, we sampled SNPs across the chromo-
somes (i) guided by MAF and genotyping call rate value;
and (ii) randomly sampled. Regardless to the approach
taken, we observed a similar predictive ability across dif-
ferent SNP densities (Supplementary Figure S1). For sev-
eral traits, predictive ability improved modestly as more
SNPs were used, but for other traits we observed little to no
improvement from using a larger number of SNPs
(~35,000) versus a small subset of SNPs drawn from across
the genome (e.g., ~4000 SNPs).

In Fig. 6, we summarize the prediction accuracy in dif-
ferent environments (Scenarios 1-12) using the RR-BLUP
method. In most cases, positive prediction values were
obtained (Fig. 6). When making predictions across locations
(Scenarios 1-4), the predictive ability remained high for all
traits. The incidence of rust and yield of green beans were
consistently predicted with greater accuracy than production
trait. These results suggest the potential for using GS
models to make predictions in different locations. Across-
population (Scenarios 5-8) analyses also yielded some
positive values, but, on average, at lower magnitude than
across-location predictions. Our results also indicated that
production of grain beans was more impacted in across-
population predictions and negative values were observed
in Scenarios 6 and 8, respectively. Rust incidence and the
yield of green beans yielded higher correlation values.
Models trained in the Premature population and tested in the
Intermediate population had lower prediction accuracy. This
could be explained by the fact that the Premature population
size was smaller than the Intermediate population.



Accurate genomic prediction of Coffea canephora in multiple environments using whole-genome... 269

a b

125 = o
@ Qo :
o o Bo 2 & Premature Intermediate
o Qp & 9 )
100+ O 2 (0] o

& o X Population

] [ ) I "

z 754 ® Intermediate 8k

O [ )

o O Premature

e o
504 o
[ ]
60 30 0 30
PCA2 (3%)

C [ Premature Intermediate ] Across the populations |
184 153 123 «° §| 3\! o 135 112 20 68 45 2 122 102 81 61 41 20 0
B e ) s —

S T ——
7 o g — EE—-E ——=1. . =
$ === EER —E=EETEEC = SE=—sn=El==5
5 - = i J— — - = =
=) — == = =
2 ) —
@ - = ==
. - - - — - —
< 4 — = — B 1
[ B e — — — —1
o —_— —1 —— - L J
— = — =] =] — = B =N
= == J— = N : — = __ == =

g 8 - J— = - = o = = = =

5 | . = =

2 |

2

s

2 |

5

2 |

‘g I T T T T T T T T T 1 I T T T T T T T T T 1 r T T T T T T T T T 1
i 2 3 4 5 6 7 8 9 10 M1 1 2 83 4 5 6 7 8 9 10 11 i 2 3 4 5 6 7 8 9 10 11

chromosomes

Fig. 3 a Principal component analysis (PCA) of the two Coffea
canephora breeding populations; b Venn diagram is showing common
and distinct SNPs to both population (k= 10°> SNPs) ¢ SNP density

In the last set of scenarios, we evaluated prediction
accuracy when both locations and populations differed
between the training and test sets (Scenarios 9-12). As
expected, overall lower predictive accuracy among all
comparison were observed. This fact was more evidence for
production traits that, once again, yielded negative values of
predictive accuracy.

Discussion

The benefits of GS compared with traditional phenotypic
evaluations are well documented, and increasingly widely
appreciated (Hayes et al. 2009; de Los Campos et al. 2013).
Nonetheless we believe this potential remains under
exploited in coffee crops. Possible reasons include: (i)

(number of SNPs per 400,000 Mb) across the 11 C. canephora chro-
mosomes in Premature, Intermediate, and common to both populations

limited genomic resources available; (ii) difficulty in
maintaining field experimentation given the long generation
cycle, late expression of target traits and requirement of
large areas for cultivation; and (iii) physiological makeup
(low genetic diversity, ploidy barrier in C. arabica, and self-
incompatibility in C. canephora. Herein, we have presented
the potential to implement GS in conventional coffee
breeding schemes. To this end, accurate phenotypic metrics,
high-throughput genotyping and appropriate whole-genome
statistical models are important requirements.

For studying coffee crops, complex quantitative traits are
typically evaluated across multiple locations and harvests,
which are collectively referred to as Multi-Environments
Trials (MET) (Smith et al. 2005). Several statistical models
have been proposed specifically for MET analyses, since the
data collected in these setting typically violate basic
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Fig. 4 Evaluation of 13 statistical methods for predicting three coffee
traits—production of coffee beans, incidence of coffee leaf rust and
yield of green beans—in two Coffea canephora populations (Inter-
mediate and Premature) evaluated in two locations (FEM and FES).
Refer to the “Genomic prediction methods” section for an overview of
the methods compared. Prediction accuracy was computed as the

assumptions of conventional ANOVA models (e.g.,
homogeneity and independence of variances). As a con-
sequence, bias can be introduced in estimation of genetic
values, which may ultimately affect the predictive ability in
GS studies. Guided by this previous work, we used a mixed
model framework with appropriate covariance structures to
account for genetic and non-genetic effects on the pheno-
types. The flexibility to fit the residual and genetic variances
showed better goodness-of-fit values than traditional
ANOVA results.

High-throughput genotyping capacity has been increased
by rapid progress in next-generation DNA sequencing
(NGS). Genotyping-by-sequencing (GBS) is a product of
this advance. Using GBS, we identified a total of 45,748
and 59,332 SNPs in the Intermediate and Premature popu-
lations, respectively. We emphasize that this total number of
SNPs is larger than the set identified in a recent study on C.
arabica that used a similar approach (DArT methodology)
(Del Moncada et al. 2015). This difference in SNP identi-
fication could be explained by the fact that C. canephora
possesses higher genetic diversity due to its origin, repro-
duction method and dissemination (Ferrdo et al. 2015).

For predictive analysis, we initially compared 13 pre-
dictive models on within-environment predictions. Assum-
ing that GS models are align with the true genetic
architecture of the phenotype, we were expecting a depen-
dence between predictive ability and trait. For example,
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Pearson correlation between the predicted and adjusted phenotype in
test samples. Cross-validation were performed using a Replicated
Training-Testing. In each replication, 80% of the data were assigned to
train the model and 20% remaining to validate the model. The pro-
cedure was replicated 30 times

bayesRR models assumes that marker effects are normally
distributed with fixed variance, similar to the Fisher’s infi-
nitesimal model proposes (Fisher 1919; Meuwissen et al.
2001). In contrast, bayesB assumes that most loci have no
effect on the phenotypic variation, that is, traits controlled
by relatively few loci whose effects vary in size (Meuwissen
et al. 2001). Although conceptually different, we observed
similar predicative performances of the competition models,
evidencing a somewhat difference of our empirical results
with previous simulation studies (Meuwissen et al. 2001;
Coster et al. 2010).

Recently, several empirical evaluations have been pub-
lished comparing predictive models and, like ours, reporting
similar results across models (Moser et al. 2009; Heffner
et al. 2011; Riedelsheimer et al. 2012; Resende et al. 2012b;
Daetwyler et al. 2013; Wang et al. 2015). Some aspects of
this similarity might be associated to statistical and biolo-
gical properties. Statistically, the high discrepancy between
number of observation and parameters can restrict the pro-
cess of statistical learning resulting in similar predictive
performances among methods (de Los Campos et al. 2013;
Gianola 2013). Biologically, this similarity can be asso-
ciated with the complex nature of traits. For real data, dis-
tribution of QTLs effects for most traits is perhaps less
extreme than has been hypothesized in simulation studies
(Hayes et al. 2009; de Los Campos et al. 2013; Daetwyler
et al. 2013).
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Fig. 5 Total runtimes, in minutes, for fitting the 13 genomic prediction
models in all cross-validation runs. Runtimes are shown separately for
the three coffee traits—production of coffee beans, incidence of coffee
leaf rust and yield of green beans—in the two Coffea canephora

One method that consistently performed worse than the
others was the fixed regression method (denoted by “fix-
edMLR?” in the results). Fixed regression has been useful to
detect genome-wide associations. However, these associa-
tions typically explain only a small fraction of the genetic
variance of quantitative traits (Manolio et al. 2009). By
contrast, methods that simultaneously fit effects for all
markers are able to account for a much greater proportion of
the genetic variation and, consequently, these approaches
are more appropriate to predictive purposes (Meuwissen
et al. 2001; Moser et al. 2009).

Contrasting to the predictive results, computational
requirements significantly differ across the models. Con-
sistent with previous studies, we found that Bayesian
methods typically involved greater computational demand
(Moser et al. 2009; Heslot et al. 2012; Neves et al. 2012).
Particularly, computational cost is an important considera-
tion since frequent re-estimation of marker effects is
necessary in breeding programs (Moser et al. 2009). Judged
by the overall performance, we found that RR-BLUP
method presented important attributes for GS implementa-
tion, including straightforward implementation using exist-
ing mixed models software, relative simplicity, good
performance, and limited computing time.

In a GS context, the possibility to predict phenotypic
performance within and across environments is an out-
standing question that has not been fully explored in coffee.
As expected, within-environment predictions (Scenarios

populations (Intermediate and Premature). Cross-validation were per-
formed using a Replicated Training-Testing. In each replication, 80%
of the data were assigned to train the model and 20% remaining to
validate the model. The procedure was replicated 30 times

A-D) yielded higher correlation values than cross-
predictions (Scenarios 1-12). It has long been recognized
that expression of genotypes are affected by environmental
conditions and, as a consequence, across-location predic-
tions (Scenarios 1-4) exhibited lower predictive perfor-
mance than within-environment predictions (Scenarios
A-D). In particular, this suggests that genotype-by-location
(GxL) interactions are important, even considering that both
locations are within the same breeding zone. In theory, GXL
interactions occur because the capture and conversion
abilities of a plant are determined by its particular ensemble
of genes, which are expressed conditionally to the amount
and quality of inputs received in each environment (Mal-
osetti et al. 2013). This differential expression is captured
by the estimate of marker effects and ultimately influences
the predictions. Decaying accuracy across locations has
been observed in GS studies in trees (Resende et al. 2012a;
Beaulieu et al. 2014; Gamal El-Dien et al. 2015), cassava
(Ly et al. 2013), and maize (Windhausen et al. 2012a, b).
For predictions in different populations (Scenarios 5-8),
lower accuracy values can be explained by quantitative
genetic concepts, which supports allele substitution effects
varying between populations due to differences in allele
frequency and LD pattern between SNPs and QTLs (Asoro
et al. 2011; Windhausen et al. 2012a, b; Lehermeier et al.
2015). Similar results are presented in Neves et al. (2012) in
mice populations and by Hayes et al. (2009) in dairy cattle.
Scenarios 9-12 represented the most challenging condition
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Fig. 6 Predictive ability of cross-environment genomic predictions
using the RR-BLUP method. “Environment” refers to a combination
of location (FEM, FES) and population (Intermediate, Premature). As
explained in Fig. 1, Scenarios 1-4 are used to evaluate GS perfor-
mance across locations; Scenarios 5-8 assess GS performance across

for GS as these scenarios combine predictions across
locations and populations simultaneously. In most cases,
models yielded poor prediction accuracy, with predictive
abilities near to zero for the production trait.

Our results suggest the feasibility of incorporating GS
into recurrent selection programs so long as predictive
models are used to make predictions within the same
environment, or within the same breeding zone. Tradition-
ally, one cycle of phenotypic recurrent selection in coffee is
divided into three phases: (i) progenies are obtained from a
base population; (ii) field trials are conducted in multiple
environments and harvests; and (iii) a new base population
is generated via selection and recombination of the best
individuals. In coffee, due to the long juvenile period
associated with multiple evaluations across harvests, 5-6
years are required on average to complete a breeding cycle.
Another challenge is that evaluating and maintaining mul-
tiple field trials is expensive and laborious. Therefore,
incorporating GS prediction models can potentially reduce
the time and expense of recurrent selection. We suggest
applying GS methods in the second and third stages of
recurrent selection programs by coupling prediction and
selection during the seedling phase inside of greenhouses.
Rapid-cycle recurrent selection supported by GS has
potential to accelerate the increase of favorable alleles in the
population and reduce both monetary and time costs asso-
ciated with phenotyping (Windhausen et al. 2012a, b;
Grenier et al. 2015). In a modern breeding scheme, phe-
notypic trials in multiple environments might be considered
in advanced phases (e.g., third recurrent cycle), in order to
re-estimate marker effects.

Outside the main topic of genomic prediction models,
several other aspects of our study may be of interest to the
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Scenarios

populations; and Scenarios 9—-12 evaluate prediction accuracy when
both the location and population differ between the training and tests
sets. Predictive ability was recorded for three coffee traits: production
of coffee beans, incidence of coffee leaf rust, and yield of green beans

development of GS in coffee. For some traits, we found that
prediction accuracy did not greatly improve as we included
more SNPs in the models. In particular, we noted high
predictive values for models trained with ~10,000 SNPs.
Other studies have 