
Cancers of the
Head & Neck

Davis et al. Cancers of the Head & Neck  (2016) 1:12 
DOI 10.1186/s41199-016-0013-x
REVIEW Open Access
Costimulatory and coinhibitory immune
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Abstract

Head and neck squamous cell carcinoma (HNSCC) represents a model of escape from anti-tumor immunity.
The high frequency of p53 tumor suppressor loss in HNSCC leads to genomic instability and immune stimulation
through the generation of neoantigens. However, the aggressive nature of HNSCC tumors and significant rates of
resistance to conventional therapies highlights the ability of HNSCC to evade this immune response. Advances in
understanding the role of co-stimulatory and immune checkpoint receptors in HNSCC-mediated immunosuppression
lay the foundation for development of novel therapeutic approaches. This article provides an overview of these
co-stimulatory and immune checkpoint pathways, as well as a review of preclinical and clinical evidence supporting
the modulation of these pathways in HNSCC. Finally, the synergistic potential of combining these approaches is
discussed, along with an update of current clinical trials evaluating combinations of immune-based therapies in
HNSCC patients.
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Background
Head and neck squamous cell carcinoma (HNSCC) is the
sixth most common cancer in the world, affecting over
500,000 people each year [1]. While HPV-associated
HNSCC responds well to standard anti-cancer therapies,
five-year survival rates of carcinogen-induced HNSCC are
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60 % or less [1]. This poor prognosis despite advances in
chemotherapy, radiation, and surgical protocols highlights
the need for treatments with greater efficacy in the
HPV- population, and improved toxicity profiles for
HPV+ patients. Advances in understanding the role of
the immune system in preventing development and
growth of HNSCC has led to renewed focus on
immune-targeting therapies as a means of achieving
these goals.
In a process termed immune surveillance, recognition

of non-self antigens on tumor cells allows for their
destruction by the host immune system [2]. The high
frequency of p53 tumor suppressor loss in HNSCC
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leads to significant genomic instability and the gener-
ation of neoantigens, which can activate the immune
system and attract infiltrates of effector T-lymphocytes
and natural killer (NK) cells into the tumor [3–5].
These adaptive anti-tumor immune responses have
been correlated with improved outcomes in many can-
cers, including HNSCC [6, 7]. However, in order for a
clinically significant cancer to develop, the tumor must
escape from this anti-cancer immunity through a var-
iety of mechanisms [8]. HNSCC represents an ideal
model for understanding and targeting these mecha-
nisms of immune escape in order to unleash the full
power of the immune response that can be induced by
its characteristically high genetic alteration rate. On the
other hand, HPV+ HNSCC is an excellent model of
viral-induced cancer, in which oncoproteins such as E6
and E7 are by definition antigenic and therefore tumor
development is predicated upon evasion of antiviral
immunity [9].
Once recruited to the tumor microenvironment, T-cells

interact with antigen-presenting cells (APCs) at the
“immune synapse,” and require two simultaneous sig-
nals from APCs before they can be activated to mediate
their anti-tumor effects (Fig. 1). The first, “signal one,”
Fig. 1 The Immune Synapse. The balance between costimulatory (green)
signaling mediated through antigen presentation on MHC (blue). Adapte
occurs through interaction of the T-cell receptor (TCR)
on the surface of the T-cell and a major histocompati-
bility complex (MHC) molecule presenting tumor anti-
gen on the surface of an APC (Fig. 1, blue). The
second, “signal two” is made up of interactions between
co-stimulatory molecules on the surface of APCs and
T-cells, such as B7 on the APC surface and CD28 on
the T-cell (Fig. 1, green) [2]. Both of these signals must
also occur in the context of a third signal made up of
immune-activating cytokines such as IL-12, type I
(IFNα/β) or type II (IFNγ) interferon [10, 11].
In contrast to these co-stimulatory molecules, the in-

hibitory “immune checkpoints” prevent T-cell activation.
These checkpoints normally function to prevent exag-
gerated immune responses and subsequent autoimmune
disease. However, HNSCC subverts this physiologic
function in order to suppress tumor-directed immune
activation. The two best known checkpoints include pro-
grammed death-1 (PD-1) and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), both of which are the
targets of FDA-approved inhibitory antibodies [12].
Like other cancers, HNSCC tumor cells mediate im-

munosuppression in the tumor microenvironment (TME)
through mechanisms including upregulation of PD-L1
and coinhibitory signals (red) alters the net stimulating effect of TCR
d from Ferris RL, J Clin Oncol. 2015;33(29):3293–304
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expression and release of immunosuppressive factors [13].
In addition, recruitment or differentiation of immunosup-
pressive regulatory T cells (Tregs) and myeloid-derived
suppressor cells (MDSCs) represent key mechanisms of
immune escape. This review will focus on co-stimulatory
receptors, inhibitory checkpoint receptors, and combin-
ation immunotherapies in HNSCC.

Review
Activating co-stimulatory receptors to enhance
anti-tumor immune responses
As mentioned previously, the co-stimulatory receptors that
make up “signal two” play a central role in the activation of
tumor-fighting T-cells. Absence of this co-stimulatory
signal can lead to induction of T-cell anergy or apop-
tosis and decreased strength of the immune response.
In addition to the classically described CD28/B7, other
key co-stimulatory interactions between T-cells and
APCs, respectively, include CD137/CD137-L, OX40/
OX40-L, and CD40-L/CD40 (Fig. 1). These costimula-
tory receptors are members of the tumor necrosis factor
receptor superfamily. Decreased expression of CD137,
OX40, CD27, and CD28 have been observed on T-cells
derived from HNSCC patients compared to those from
healthy controls, emphasizing the potential benefits of tar-
geting these co-stimulatory pathways in this population
[14–16]. Agonists of co-stimulatory receptors are cur-
rently under investigation in multiple trials for HNSCC
and other malignancies. Liver toxicity and cytokine
storm symptoms have been reported with costimulatory
agonists, but these immune-related adverse events
(irAEs) may be dose-dependent. Though extensive in-
formation on irAEs of these agents is not yet available,
they appear to be well tolerated [17].

CD137
CD137 (also known as 4-1BB) is a costimulatory recep-
tor expressed on the surface of activated T-cells, NK
cells, and dendritic cells. When bound by its ligand
(CD137-L) on the surface of APCs such as macrophages,
dendritic cells, and B cells, trimerization of activated
CD137 enhances proliferation, cytotoxic capacity, and
survival of T-cells [18]. Stimulation of CD137 with an
anti-CD137 monoclonal antibody (mAb) has been
shown to induce T-cell mediated eradication of estab-
lished solid tumors in mice [19]. Although anti-CD137
mAb has not been effective as a monotherapy in
HNSCC models, it has been shown to synergize with
chemoradiation in a model of HPV+ HNSCC to inhibit
tumor growth [20, 21].
Two humanized monoclonal antibodies (mAb) against

CD137 have been developed including urelumab (IgG4)
and PF-05082566 (IgG2) [12]. These antibodies have
been evaluated in early phase trials in melanoma, non-
small cell lung cancer (NSCLC) and lymphoma, as
monotherapy or in combination with rituximab [12].
Studies of CD137 mAb in combination with other im-
munotherapies are underway in solid cancers including
HNSCC, and are discussed further below.

CD40-L
CD40-L expressed on the surface of activated CD4 T-cells
binds to CD40 on APCs, playing a key role in the “helper”
T-cell function to activate APCs to prime CD8 T-cells
[22]. Expression of both CD40 and CD40-L decrease with
increasing HNSCC stage, and surgical resection results in
increased APC expression of CD40 [23]. These data im-
plicate downregulation of this co-stimulatory pathway
in HNSCC immune escape, with subsequent reversal
following surgical resection of the tumor bulk. In
addition to its expression on immune cells, CD40 has
also been identified on HNSCC cell lines and human
HNSCC tumors [24, 25]. The precise role of CD40 in
this context is controversial, as ligation of CD40 has
been shown to inhibit growth of HNSCC cell lines
while also inhibiting cancer cell apoptosis and increas-
ing secretion of proangiogenic cytokines [24, 25]. In
vitro studies of agonistic CD40 mAb induced APC acti-
vation and maturation, and recombinant CD40L in-
creased the ability of APCs to cross-prime naïve T-cells
to tumor antigens [26, 27]. These data suggest a role
for this approach in augmenting responses to tumor
vaccines, which has been demonstrated in a murine
solid tumor model [28].
A variety of CD40-targeting therapies have been

developed, including agonistic mAbs and recombinant
ligands. Although this approach has not been studied
specifically in the HNSCC population, one HNSCC pa-
tient treated in a phase I trial of recombinant CD40-L
experienced a durable and complete response [29].
Phase I trials of agonistic CD40 mAb alone and in com-
bination with standard therapies have shown promise
in a variety of solid tumors, encouraging further studies
of this approach in combination with other immune-
targeting therapies [30–32].

OX40
Like CD137, OX40 is a co-stimulatory molecule expressed
on the T-cell surface that promotes T-cell proliferation,
cytokine secretion and memory function when bound by
its ligand (OX40-L) [12]. The relevance of OX40 to the
local immune response in HNSCC has been demon-
strated by the observation that close to 30% of T-cells
within the tumor and tumor-draining lymph nodes of
HNSCC patients expressed OX40, compared to none of
the peripheral blood mononuclear cells (PBMCs) [33].
OX40 is also expressed on regulatory T-cells (Tregs), and
appears to inhibit Treg-mediated immunosuppression [34].
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Although not explicitly evaluated in HNSCC models,
OX40 agonism has improved tumor-free survival in a
number of solid tumor models through expansion of
tumor-specific CD4+ T-cells [34]. An agonistic OX40
mAb was also shown to synergize with cytolytic therapy
through apoptosis of Tregs and enhanced CD8 T-cell
response [35]. In a sarcoma model, surgical resection
followed by adjuvant anti-OX40 treatment resulted in
improved survival and increased antigen-specific T-cell
proliferation compared to surgical treatment alone [36].
A phase I trial of the murine agonistic anti-human

OX40 mAb 9B12 in patients with refractory solid tu-
mors demonstrated a mild toxicity profile and promising
immunologic correlates (NCT01644968) [37]. Although
no objective responses were observed, 12 out of the 30
patients experienced regression of at least one metastatic
tumor deposit [37]. Additional therapies targeting OX40,
including the anti-OX40 mAbs MEDI6469, MEDI0562, PF-
04518600, and the OX40L fusion protein MEDI6383, are
currently in phase I trials in patients with advanced solid
tumors (NCT02205333, NCT02318394, NCT02315066,
NCT02221960). In addition, based on the promising
preclinical data combining anti-OX40 treatment with
surgery [36], a phase Ib trial of OX40 agonistic mAb
MEDI6469 prior to definitive surgical resection is cur-
rently recruiting patients with locoregionally advanced
HNSCC (NCT02274155).

Inhibiting immune checkpoint receptors to enhance
anti-tumor immune responses
A reciprocal approach to agonism of co-stimulatory re-
ceptors is the inhibition of the immunosuppressive
checkpoint receptors. These molecules are upregulated
by immune activation, and serve a physiologic role by
preventing excessive inflammation and autoimmune dis-
ease. However, when overexpressed in the TME, these
checkpoints contribute to tumor-promoting immuno-
suppression, and therefore represent a promising target
for disinhibiting immune responses against tumor cells
and improving HNSCC patient outcomes. Immune-
related adverse events (irAEs) may occur in patients
treated with these drugs, including rash, gastrointestinal
symptoms, thyroid disorders or autoimmune pneumon-
itis; however these irAEs are now easily recognized and
treated with steroids and/or cessation of the drug in
most cases [38].

PD-1/PD-L1
PD-1 is expressed by activated CD8 T-cells, NK cells, B
cells, monocytes, and dendritic cells, and normally serves
to prevent overactivation of the immune response [12].
However, chronic antigen exposure can lead to chronic
upregulation of PD-1 and subsequent T-cell fatigue [39].
Ligation by PD-L1 inhibits activation signaling through
the TCR. PD-L1 is expressed by the majority of HNSCC
tumors, and blockade of PD-L1 has been shown to syner-
gize with T-cell immunotherapy in an animal model of
HNSCC [40]. CD8 T-cells derived from HPV+ HNSCC
samples expressed high levels of PD-1, and HPV+
HNSCC cells were observed to express greater levels of
PD-L1 compared to HPV- samples [41, 42]. In addition,
infiltration of T-cells expressing PD-1 has been associated
with a better prognosis in HPV+ disease, emphasizing the
role of prior immune activation in patient prognosis [42].
A variety of antibodies have been developed against

both PD-1 and PD-L1, including pembrolizumab
(anti-PD1 mAb; FDA approved for HNSCC, melanoma
and NSCLC) and nivolumab (anti-PD1; FDA approved
for melanoma, NSCLC, and renal cell carcinoma).
Numerous clinical trials targeting the PD-1/PD-L1
pathway have been extensively discussed in recent re-
views [2, 13, 43]. Therefore we will only briefly high-
light a few current late-phase trials in HNSCC, then
further discuss checkpoint inhibitor combination trials
below. Of note, the Keynote 40 and Keynote 48 phase
III trials comparing pembrolizumab to standard of
care are currently recruiting patients with recurrent or
metastatic HNSCC who have failed platinum-based
treatment (NCT02252042), or as first-line therapy
(NCT02358031). The Keynote 55 phase II trial is
evaluating pembrolizumab in HNSCC patients who
have failed both platinum and cetuximab therapy
(NCT02255097). Pembrolizumab was recently FDA ap-
proved based on long-term data from the KEYNOTE-012
trial including HNSCC patients with recurrent or meta-
static HNSCC on or following platinum-based chemother-
apy. KEYNOTE-012 showed an overall response rate of
17.7 %, median overall survival of 8.5 months, and 6-
month progression-free survival (PFS) rate of 25 %; 12 %
of patients had grade 3–4 adverse events [44]. The Check-
mate 141 phase III trial comparing nivolumab to investi-
gator’s choice in patients with recurrent or metastatic,
platinum-refractory HNSCC (NCT02105636) was stopped
early due to significant survival benefit including a 30 %
reduction in risk of death and doubling of one-year sur-
vival from 17 to 36 % [45]. Median overall survival in
Checkmate 141 was 7.5 months with nivolumab vs. 5.1
months for investigator’s choice therapy; overall response
rate ranged from 18–33 %, with higher response rates
noted in patients whose tumors expressed higher levels of
PD-L1 [46]. Similar to KEYNOTE-012, in Checkmate 141
the rate of grade 3–4 adverse events was 13 % [45, 46].

CTLA-4
CTLA-4 is transiently expressed by activated T-cells
upon binding of an antigen-bearing MHC molecule to
the TCR, thereby limiting exaggerated immune re-
sponses [47]. CTLA-4 is also constitutively expressed on
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the surface of Tregs in the HNSCC microenvironment
[48]. In animal models, CTLA-4 expression was neces-
sary to the immunosuppressive function of Tregs, and
conditional knockout of CTLA-4 in Tregs protected
from tumor development [49]. CTLA-4 binds B7 ligands
CD80 and CD86 with higher affinity than CD28, thereby
competitively inhibiting “signal two” in the T-cell activa-
tion cascade [47]. Preclinical studies in solid tumor
models demonstrated regression of established tumors
and the rejection of further tumor challenge following
anti-CTLA-4 mAb treatment [50].
Since that time, two humanized anti-CTLA-4 mAbs,

ipilimumab (IgG1) and tremelimumab (IgG2), have been
developed and evaluated in phase III trials in advanced
melanoma [47]. Based on results of two phase III trials
of ipilimumab demonstrating enhanced survival and im-
proved tumor responses, ipilimumab became the first
FDA-approved checkpoint inhibitor in 2011 [51, 52]. For
patients with platinum-refractory, recurrent or meta-
static, PD-L1-negative HNSCC, an ongoing phase II/III
study includes tremelimumab and durvalumab (anti-
PD-L1) as separate monotherapies or in combination
(NCT02319044). Trials combining multiple checkpoint
inhibitors are further discussed below.

LAG-3
LAG-3 is another inhibitory checkpoint that is expressed
on the surface of Tregs in HNSCC patients [53]. LAG-3
has been identified as a key regulatory molecule involved
in prevention of autoimmune disease, as well as the
development of tumor tolerance [54, 55]. Knockout of
LAG-3 in murine models has been shown to reduce the
immunosuppressive activity of Tregs, and conversely
ectopic expression of LAG-3 has been shown to confer
immunosuppressive capacity upon CD4 T-cells [56]. In
addition to playing a role in the immunosuppressive
functions of Tregs, LAG-3 expression has also been ob-
served on effector CD8 T-cells at the immunologic syn-
apse [57]. Anti-LAG-3 mAb treatment in solid tumor
models has shown success in inhibiting primary tumor
growth through activation of antigen-specific T-cells in
the TME [55]. In murine solid tumor models, LAG-3
and PD-1 co-expression has been identified on the sur-
face of TILs, and combination anti-LAG-3 and anti-PD-
1 antibody treatment cured the majority of established
tumors in mice [58]. Early phase clinical trials evaluating
anti-LAG-3 mAb in combination with other checkpoint
inhibitors are reviewed in Table 1.

TIM-3
TIM-3 represents an additional inhibitory checkpoint
that has been implicated both in the immunosuppressive
function of Tregs and in the exhaustion of effector T
cells in the TME. Elevated expression of TIM-3 has been
observed on intratumoral Tregs derived from patients
with HNSCC and non-small cell lung cancer, and has
been observed to correlate with worse clinical outcomes
[53, 59]. TIM-3 has also been implicated in the exhaus-
tion of effector T cells through upregulation of TCR
signaling [60]. Anti-TIM-3 mAbs have been shown to
modestly inhibit solid tumor growth in murine models,
and have induced more impressive control of tumor
growth in combination with CTLA-4 and PD-1 target-
ing therapies [61, 62].

B7-H3
Initially identified as a co-stimulatory receptor of T cell
function [63], B7-H3 has since been described as a co-
inhibitory checkpoint expressed in a variety of tumor
types [64, 65]. Although the specific immunological role
of B7-H3 in cancer remains controversial, B7-H3 expres-
sion has been correlated with poor prognosis in multiple
cancer types, including HNSCC [66]. Antibodies target-
ing the B7-H3 molecule have been shown to exhibit
antitumor activity in solid tumor models with surface
expression of B7-H3 [67]. Early phase trials combining
these agents with other checkpoint inhibitors are cur-
rently underway (Table 1).

Combination immunotherapies for maximal enhancement
of anti-tumor immune responses
Although many of the above mentioned immunotherapy
approaches have shown significant efficacy in certain pa-
tients, there is room for improvement with regards to
expanding response rates. Current efforts focus on the
rational combination of immunotherapy approaches in
order to increase the breadth and depth of patient re-
sponses (Table 1). It is important to note, however, that
combination immunotherapies may increase the frequency
and/or severity of immune-related adverse events [38].

Cetuximab
Cetuximab is a human-mouse chimeric IgG1 antibody
against epidermal growth factor receptor (EGFR) that is
FDA approved as a monotherapy for recurrent/meta-
static HNSCC, in combination with radiation therapy
for advanced HNSCC, and in combination with chemo-
radiation for recurrent/metastatic HNSCC [13]. Al-
though more than 80 % of HNSCC tumors overexpress
EGFR, only 10-20 % of patients respond to cetuximab
treatment [68]. In patients who respond, cetuximab is
thought to mediate part of its effect through inhibition
of EGFR signaling and downstream proliferation signals.
However, evidence suggests that much of the therapeutic
effect of cetuximab is derived from activation of NK cells
and antibody-dependent cell-mediated cytotoxicity (ADCC)
[43]. Extracellular binding of cetuximab to EGFR exposes
the constant region (Fc) of cetuximab to binding by the



Table 1 Current Combination Immunotherapy Trials Including HNSCC Patients

Targets Treatments Phase Clinical Trial ID Patient Eligibility Status

Costimulatory/Checkpoint Combinations

CD137 (4-1BB)
PD-L1

PF-05082566 + Avelumab Ib/II NCT02554812 Advanced/metastatic solid tumors Recruiting

CD137 (4-1BB)
PD-1

PF-05082566 + Pembrolizumab I NCT02179918 Advanced/metastatic solid tumors Recruiting

OX40
PD-L1

MEDI6383 +/−Durvalumab I NCT02221960 Recurrent or metastatic solid tumors Recruiting

OX40
CTLA-4
PD-L1

MEDI6469 Alone, + Tremelimumab,
or + Durvalumab

Ib/II NCT02205333 Advanced solid tumors Ongoing, not
recruiting

CD27
PD-L1

Varlilumab + Atezolizumab I/II NCT02543645 Advanced cancers including HNSCC Recruiting

CD27
PD-1

Varlilumab + Nivolumab I/II NCT02335918 Advanced solid tumors Recruiting

Checkpoint/Checkpoint Combinations

CTLA-4
B7-H3

Ipilimumab +MGA271 I NCT02381314 Advanced/metastatic B7-H3+ HNSCC,
melanoma, or NSCLC

Recruiting

CTLA-4
PD-L1

Tremelimumab + Durvalumab III NCT02551159 HNSCC with no prior chemotherapy Recruiting

CTLA-4
PD-L1

Tremelimumab + Durvalumab I NCT02262741 Recurrent or metastatic HNSCC Recruiting

CTLA-4
PD-L1

Tremelimumab + Durvalumab
(monotherapy or combination)

II NCT02319044 Recurrent or metastatic HNSCC Ongoing, not
recruiting

CTLA-4
PD-L1
Vaccine

Tremelimumab + Durvalumab +
PolyICLC

I/II NCT02643303 Advanced solid tumors including
HPV- HNSCC or HPV+ HNSCC after
prior treatment failure

Not yet
recruiting

PD-L1
CTLA-4

Durvalumab +/−Tremelimumab III NCT02369874 Recurrent or metastatic HNSCC Recruiting

PD-1
B7-H3

Pembrolizumab + MGA271 I NCT02475213 B7-H3+ advanced HNSCC Recruiting

PD-L1
HPV E7

Durvalumab +
ADXS 11–001

I/II NCT02291055 Recurrent or metastatic HPV-
associated HNSCC

Ongoing, not
recruiting

LAG-3
PD-1

BMS-986016 +/− Nivolumab I NCT01968109 Advanced solid tumors Recruiting

LAG-3
PD-1

LAG525 +/− PDR001 I/II NCT02460224 Advanced solid tumors Recruiting

TIM-3
PD-1

MBG453 +/−PDR001 I/II NCT02608268 Advanced solid malignancies Recruiting

Cetuximab Combinations

CD137 (4-1BB) Urelumab + Cetuximab Ib NCT02110082 Advanced/metastatic HNSCC or CRC Ongoing, not
recruiting

CTLA-4 Iplimumab + Cetuximab + IMRT Ib NCT01860430,
NCT01935921

Stage III-IVB HNSCC p16- or
intermediate-risk p16+

Recruiting

TLR8 Cetuximab + SOC Chemo
(CDDP + 5-FU) +/− VTX-2337

II NCT01836029 Recurrent or metastatic HNSCC Ongoing, not
recruiting

TLR8 Cetuximab + VTX-2337 window
of opportunity before surgery

Ib NCT02124850 Stage II-IVA resectable HNSCC Recruiting
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activating Fc receptor (CD16/FcγRIII) expressed on NK
cells. This activation signal induces ADCC mediated by NK
cells resulting in tumor cell lysis (Fig. 2). The variability of
patient response to cetuximab is thought to be in part due
to polymorphisms in NK cell FcγRIII, which lead to vari-
ation in its affinity for the Fc region of cetuximab [69].
In addition to mediating ADCC, cetuximab-activated

NK cells have been shown to promote maturation of



Fig. 2 Cetuximab-Mediated ADCC. The Fab portion of Cetuximab binds to EGFR on the surface of tumor cells, while its Fc region binds to
the Fc receptor CD16/FcγRIII on the NK cell surface. This leads to NK cell activation and release of cytolytic granules containing perforin and
granzyme B that result in tumor cell lysis and release of tumor antigen. This tumor antigen is subsequently presented on APCs to activate
antigen-specific T-cells
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APCs and the development of an adaptive immune
response [68]. Recent evidence also suggests that cetuxi-
mab treatment decreases the function of immunosup-
pressive myeloid cells [70]. Increased numbers of
monocytic MDSCs were observed in patients who did
not respond to cetuximab therapy, suggesting potential
for improving responses through combining cetuximab
with MDSC-targeting treatments [70]. Given the low re-
sponse rate to cetuximab as a monotherapy or in com-
bination with standard therapies, recent efforts have
focused on combining cetuximab with additional im-
munotherapies to enhance ADCC.
Human NK cells have been shown to upregulate sur-

face expression of CD137 following exposure to cetuxi-
mab and EGFR-expressing cell lines [71]. In preclinical
studies, sequential treatment with cetuximab followed by
anti-CD137 mAb eradicated established tumors in an
NK-cell dependent manner [71]. In addition to this en-
hancement of ADCC, preclinical evidence also supports
a mechanistic role for the adaptive immune “vaccinal
effect.” Mice previously cured with this combination
therapy rejected rechallenge with both EGFR-positive
and negative cell lines, which supports immunologic
memory and epitope spreading [72]. Based on this
promising preclinical data, a phase Ib trial combining
cetuximab with the anti-CD137 mAb urelumab is cur-
rently underway (NCT02110082).
In addition to FcγRIII polymorphisms, proposed mecha-

nisms of resistance to cetuximab-mediated ADCC
include an increase in the number of Tregs within the
HNSCC TME following cetuximab treatment [73].
These CTLA-4+ Tregs were shown to suppress
cetuximab-mediated ADCC, and their increased num-
bers correlated with poor patient prognosis [73]. Ex
vivo treatment of HNSCC tumor-infiltrating lympho-
cytes with the anti-CTLA-4 mAb ipilimumab depleted
Tregs and restored NK cell-mediated ADCC [73].
Based on this promising preclinical data, two phase Ib
studies combining ipilimumab with intensity modulated
radiation therapy (IMRT) and cetuximab are currently
recruiting patients with untreated advanced HNSCC
(NCT01860430, NCT01935921).

Toll like receptor agonists
Toll-like receptors (TLRs) are transmembrane receptors
that recognize microbial invasion and respond through
activation of the innate immune system [74]. TLR7 and
TLR8 have been particular targets for improving anti-
cancer immunity. An early topical TLR7/8 agonist, imi-
quimod, is FDA approved for actinic keratosis and basal
cell carcinoma. In addition, novel stabilized immune-
modulatory RNA (SIMRA) compounds are also under
study for their dual TLR7/8 agonism [75]. However,
recent development of a potent and selective TLR8
agonist has focused attention on this endosomal TLR
that is naturally activated by viral single-stranded RNA.
Stimulation of TLR8 results in activation of dendritic
cells and macrophages and subsequent secretion of
immune-activating cytokines. TLR8 signaling has also
been implicated in reversal of Treg function [76]. VTX-
2337, a TLR8 agonist, has been shown to induce TNFα
and IL-12 secretion by monocytes and myeloid dendritic
cells, in addition to increasing NK cell cytotoxicity and
secretion of IFNγ [77]. VTX-2337 has also been reported
to enhance rituximab and trastuzumab-induced ADCC
in lymphoma and breast cancer cells lines, respectively
[77]. Subsequent preclinical studies using PBMCs from
healthy individuals and HNSCC patients demonstrated
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the ability of VTX-2337 to enhance cetuximab-mediated
ADCC against HNSCC cells [78].
Based on these promising preclinical data regarding

selective TLR8 agonism, VTX-2337 was studied in a
phase I trial in advanced solid tumors [79]. This trial
demonstrated clinical tolerability in addition to in-
creases in plasma levels of immune-activating cytokines
G-CSF, monocyte chemoattractant protein-1, macro-
phage inflammatory protein-1β, and TNFα when
administered at higher doses. Based on this informa-
tion, phase II placebo-controlled trials of combination
therapy with VTX-2337 have been initiated, including a
comparison of chemotherapy + cetuximab + VTX-2337 to
chemotherapy + cetuximab alone in recurrent or meta-
static HNSCC (NCT01836029). In addition, a phase Ib
study of neoadjuvant cetuximab + VTX-2337 vs. cetuxi-
mab + VTX-2337 + nivolumab is currently recruiting
patients with stage II-IVA surgically resectable HNSCC
(NCT02124850).

Checkpoint inhibitors
Although the degree and durability of response to check-
point inhibitor monotherapy has been impressive, object-
ive response rates remain low. For example, preliminary
data from the KEYNOTE-012 expansion cohort showed
an objective response in 18.2 % of recurrent/metastatic
HNSCC patients treated with pembrolizumab monother-
apy [80]. For this reason, much attention is currently
directed towards combining checkpoint inhibitors with a
variety of immune-based therapies to achieve higher
response rates in both preclinical and clinical studies
(Table 1).
Signaling through various immune checkpoints and

downregulation of costimulatory receptors each repre-
sent a distinct mechanism of tumor-mediated immuno-
suppression. Combining inhibitors that target different
checkpoints is a logical strategy to generate synergy and
target potential mechanisms of resistance to therapy. For
example, melanoma patients with high PD-L1 expression
did not respond to anti-CTLA4 mAb and radiation,
implicating PD-1/PD-L1 signaling in this resistance
(NCT01497808) [81]. However, in preclinical studies of
melanoma, combined targeting of CTLA-4 and PD-1
more than doubled the rate of tumor rejection and in-
creased tumor-infiltrating T-cells while reducing Tregs
and MDSCs in the TME [82]. Synergism has also been
described between antibodies targeting PD-1 and TIM-3
[61], and PD-1 and LAG-3 [58] in solid tumor models,
leading to current clinical trials evaluating these com-
binations in patients with advanced solid tumors
(NCT02608268, NCT01968109, NCT02460224).
A phase I trial of combined nivolumab (anti-PD-1)

and ipilimumab (anti-CTLA-4) in advanced melanoma
showed an overall response of 40 % and objective
responses in 53 % of patients treated with the maximal
tolerated dose [83]. These outcomes exceed responses
seen with either drug as a monotherapy. Preliminary
results from another phase I trial combining durvalumab
(anti-PD-L1) and tremelimumab (anti-CTLA-4) in NSCLC
patients showed an overall response rate of 25 %, and the
interesting finding that this efficacy did not depend on PD-
L1 expression in the tumor [84]. Many further studies
combining checkpoint inhibitors with one another and
with co-stimulatory molecules are currently underway and
summarized in Table 1.
In addition, simultaneous agonism of co-stimulatory

pathways and antagonism of inhibitory checkpoints allows
one to “step on the gas while taking the foot off the
brakes.” In solid tumor models, combined treatment with
agonistic anti-OX40 mAb and anti-CTLA-4 mAb im-
proved survival and induced tumor regression through ex-
pansion of effector CD8 T-cells [85]. Combined targeting
of OX40 and PD-L1 or OX40 and CTLA-4 is currently
under study in early phase trials in advanced solid tumors
(NCT02221960 & NCT02205333). Studies in solid tumor
models also demonstrated synergy between mAbs target-
ing CD137, PD-1, and CTLA-4 [86]. Based on these data,
two current phase I/II trials are evaluating the combin-
ation of anti-CD137 and anti-PD-1/PD-L1 mAb in ad-
vanced solid tumors (NCT02554812 & NCT02179918).

Combination of immunotherapies with standard
or targeted therapies
In addition to combination immunotherapies for HNSCC,
other promising strategies under investigation include the
combination of these agents with standard-of-care or tar-
geted therapies. Studies in HNSCC and other cancer types
suggest that radiotherapy, cisplatin chemotherapy, and other
cytotoxic drugs may enhance anti-tumor adaptive immunity
in the TME [87–90]. As a result, radiation and cisplatin may
also increase immune checkpoint expression [89–92]. These
findings suggest a strong rationale for combining radiation
and/or chemotherapy with checkpoint inhibitors and other
immune therapies, and such combinations are currently
under study in multiple clinical trials.
The Cancer Genome Atlas and other studies have re-

vealed specific genomic alterations in HNSCC that may
be targeted by specific therapies [93]. Although cetuxi-
mab is so far the only targeted agent that is FDA-
approved for HNSCC, a myriad of targeted agents are
under investigation in preclinical and clinical studies of
HNSCC. Future treatment strategies are likely to utilize
combinations of targeted agents with immune and
standard therapies.

HPV-specific immunotherapies
As mentioned above, HPV-associated HNSCC repre-
sents distinct mechanisms of antiviral immune escape,
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and this disease entity also may benefit from specific
antiviral immunotherapies. Since patients with HPV-
associated disease generally have an excellent prognosis
and high cure rates, newer therapeutic strategies have
focused on improving upon long-term toxicities seen
with current therapies. Therapeutic vaccines and adop-
tive transfer of immune cells have been studied in
HPV-associated HNSCC [2] and will be combined with
surgery, chemoradiation, targeted therapies or other
immune therapies in ongoing and future trials. Trials of
combination immunotherapies specific to patients with
HPV-associated disease are detailed in Table 1.

Conclusions
Recent advances in understanding the balance between
costimulatory and inhibitory immune pathways at the im-
mune synapse have encouraged interest in re-directing
these signals from tumor-promoting immunosuppression
towards tumor-fighting immunity. With the development
of an array of costimulatory agonists and checkpoint in-
hibitors, these immune-based strategies have become a
focal point for research in many cancers, including
HNSCC. In addition to focusing on clinical application
of these novel immunotherapies, much work is under-
way to investigate mechanisms of resistance in those
patients who do not achieve durable responses. Ra-
tional design of combination strategies represents a
promising approach to target resistance, while care
must be taken to avoid immune over-activation and
serious autoimmune consequences.
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